
MVC
Model-View-Controller API

Ivar Grimstad, Christian Kaltepoth

Version 1.0 Public Review, December 2017

Table of Contents
License. 2

1. Introduction. 8

1.1. Goals. 8

1.2. Non-Goals . 8

1.3. Additional Information . 9

1.4. Terminology . 9

1.5. Conventions . 9

1.6. Specification Leads. 10

1.7. Expert Group Members. 10

1.8. Contributors. 11

1.9. Acknowledgements . 11

2. Models, Views and Controllers . 12

2.1. Controllers . 12

2.2. Models . 15

2.3. Views . 17

3. Exception Handling . 19

3.1. Exception Mappers. 19

3.2. Validation Exceptions . 20

3.3. Binding Exceptions. 25

4. Security . 26

4.1. Introduction. 26

4.2. Cross-site Request Forgery . 26

4.3. Cross-site Scripting . 28

5. Events . 29

5.1. Observers . 29

6. Applications. 36

6.1. MVC Applications . 36

6.2. MVC Context. 36

6.3. Providers in MVC . 37

6.4. Annotation Inheritance. 37

7. View Engines . 38

7.1. Introduction. 38

7.2. Selection Algorithm . 39

7.3. FacesServlet . 40

8. Internationalization . 42

8.1. Introduction. 42

8.2. Resolving Algorithm . 42

8.3. Default Locale Resolver. 44

Appendix A: Summary of Annotations . 46

Appendix B: Change Log. 47

B.1. Changes Since 1.0 Early Draft 2 . 47

B.2. Changes Since 1.0 Early Draft . 47

Appendix C: Summary of Assertions . 48

Bibliography . 50

Comments to jsr371-users@googlegroups.com

1

mailto:jsr371-users@googlegroups.com

License
This specification is dual licensed under the JCP License and the Apache 2.0 License.

JCP License

IVAR GRIMSTAD IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE AGREEMENT
("AGREEMENT"). PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY.
BY DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THIS
AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THEM, SELECT THE "DECLINE" BUTTON
AT THE BOTTOM OF THIS PAGE AND THE DOWNLOADING PROCESS WILL NOT CONTINUE.

Specification: JSR-371 MVC ("Specification")
Version: 1.0
Status: Pre-FCS Public Release
Release: Public Review Release
Copyright © 2017 Ivar Grimstad (ivar.grimstad@gmail.com)
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected
by one or more U.S. patents, foreign patents, or pending applications. Except as provided under the
following license, no part of the Specification may be reproduced in any form by any means
without the prior written authorization of Ivar Grimstad and its licensors, if any. Any use of the
Specification and the information described therein will be governed by the terms and conditions
of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1, 2
and 3 below, Ivar Grimstad hereby grants you a fully-paid, non-exclusive, non-transferable, limited
license (without the right to sublicense) under Ivar Grimstad’s intellectual property rights to:

1. Review the Specification for the purposes of evaluation. This includes: (i) developing
implementations of the Specification for your internal, non-commercial use; (ii) discussing the
Specification with any third party; and (iii) excerpting brief portions of the Specification in oral
or written communications which discuss the Specification provided that such excerpts do not
in the aggregate constitute a significant portion of the Specification.

2. Distribute implementations of the Specification to third parties for their testing and evaluation
use, provided that any such implementation:

a. does not modify, subset, superset or otherwise extend the Licensor Name Space, or include
any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented;

b. is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or
"INCOMPATIBLE" or "UNSTABLE" or "BETA" in any list of available builds and in proximity
to every link initiating its download, where the list or link is under Licensee’s control; and

2

mailto:ivar.grimstad@gmail.com

c. includes the following notice: "This is an implementation of an early-draft specification
developed under the Java Community Process (JCP) and is made available for testing and
evaluation purposes only. The code is not compatible with any specification of the JCP."

3. Distribute applications written to the Specification to third parties for their testing and
evaluation use, provided that any such application includes the following notice: "This is an
application written to interoperate with an early-draft specification developed under the Java
Community Process (JCP) and is made available for testing and evaluation purposes only. The
code is not compatible with any specification of the JCP."

The grant set forth above concerning your distribution of implementations of the Specification is
contingent upon your agreement to terminate development and distribution of your
implementation upon final completion of the Specification. If you fail to do so, the foregoing grant
shall be considered null and void. Other than this limited license, you acquire no right, title or
interest in or to the Specification or any other Ivar Grimstad intellectual property, and the
Specification may only be used in accordance with the license terms set forth herein. This license
will expire on the earlier of: (a) two (2) years from the date of Release listed above; (b) the date on
which the final version of the Specification is publicly released; or (c) the date on which the Java
Specification Request (JSR) to which the Specification corresponds is withdrawn. In addition, this
license will terminate immediately without notice from Ivar Grimstad if you fail to comply with any
provision of this license. Upon termination, you must cease use of or destroy the Specification.

"Licensor Name Space" means the public class or interface declarations whose names begin with
"java", "javax", "com.[Specification Lead]" or their equivalents in any subsequent naming
convention adopted through the Java Community Process, or any recognized successors or
replacements thereof

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Ivar Grimstad
or Ivar Grimstad’s licensors is granted hereunder. Java and Java-related logos, marks and names
are trademarks or registered trademarks of Oracle America, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR
DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY IVAR GRIMSTAD. IVAR GRIMSTAD
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This
document does not represent any commitment to release or implement any portion of the
Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE
INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. IVAR GRIMSTAD MAY
MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will

3

be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL IVAR GRIMSTAD OR ITS
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION,
EVEN IF IVAR GRIMSTAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

You will hold Ivar Grimstad (and its licensors) harmless from any claims based on your use of the
Specification for any purposes other than the limited right of evaluation as described above, and
from any claims that later versions or releases of any Specification furnished to you are
incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government
prime contractor or subcontractor (at any tier), then the Government’s rights in the Software and
accompanying documentation shall be only as set forth in this license; this is in

accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection
with your evaluation of the Specification ("Feedback"). To the extent that you provide Ivar Grimstad
with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and
non-confidential basis, and (ii) grant Ivar Grimstad a perpetual, non-exclusive, worldwide, fully
paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to
incorporate, disclose, and use without limitation the Feedback for any purpose related to the
Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal
law. The U.N. Convention for the International Sale of Goods and the choice of law rules of any
jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import
regulations in other countries. Licensee agrees to comply strictly with all such laws and regulations
and acknowledges that it has the responsibility to obtain such licenses to export, re-export or
import as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior
or contemporaneous oral or written communications, proposals, conditions, representations and
warranties and prevails over any conflicting or additional terms of any quote, order,

4

acknowledgment, or other communication between the parties relating to its subject matter during
the term of this Agreement. No modification to this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.

Rev. January 2006

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined
by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50 outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by
this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of
a Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of authorship. For the purposes of
this License, Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted" means any form of electronic, verbal, or written

5

http://www.apache.org/licenses/

communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking
systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and
improving the Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or
by combination of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then any patent licenses granted to
You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, provided
that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License;
and

b. You must cause any modified files to carry prominent notices stating that You changed the
files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide

6

additional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated in
this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use
in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including,
without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate and
grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use or inability to use the Work
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty,
indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability incurred by, or claims asserted
against, such Contributor by reason of your accepting any such warranty or additional liability.

7

Chapter 1. Introduction
Model-View-Controller, or MVC for short, is a common pattern in Web frameworks where it is used
predominantly to build HTML applications. The model refers to the application’s data, the view to
the application’s data presentation and the controller to the part of the system responsible for
managing input, updating models and producing output.

Web UI frameworks can be categorized as action-based or component-based. In an action-based
framework, HTTP requests are routed to controllers where they are turned into actions by
application code; in a component-based framework, HTTP requests are grouped and typically
handled by framework components with little or no interaction from application code. In other
words, in a component-based framework, the majority of the controller logic is provided by the
framework instead of the application.

The API defined by this specification falls into the action-based category and is, therefore, not
intended to be a replacement for component-based frameworks such as JavaServer Faces (JSF) [1],
but simply a different approach to building Web applications on the Java EE platform.

1.1. Goals
The following are goals of the API:

Goal 1

Leverage existing Java EE technologies.

Goal 2

Integrate with CDI [2] and Bean Validation [3].

Goal 3

Define a solid core to build MVC applications without necessarily supporting all the features in
its first version.

Goal 4

Explore layering on top of JAX-RS for the purpose of re-using its matching and binding layers.

Goal 5

Provide built-in support for JSPs and Facelets view languages.

1.2. Non-Goals
The following are non-goals of the API:

Non-Goal 1

Define a new view (template) language and processor.

Non-Goal 2

Support standalone implementations of MVC running outside of Java EE.

8

Non-Goal 3

Support REST services not based on JAX-RS.

Non-Goal 4

Provide built-in support for view languages that are not part of Java EE.

It is worth noting that, even though a standalone implementation of MVC that runs outside of Java
EE is a non-goal, this specification shall not intentionally prevent implementations to run in other
environments, provided that those environments include support for all the EE technologies
required by MVC.

1.3. Additional Information
The issue tracking system for this specification can be found at:

https://github.com/mvc-spec/mvc-spec/issues

The corresponding Javadocs can be found online at:

https://www.mvc-spec.org/

The reference implementation can be obtained from:

https://www.mvc-spec.org/ozark/

The expert group seeks feedback from the community on any aspect of this specification, please
send comments to:

jsr371-users@googlegroups.com

1.4. Terminology
Most of the terminology used in this specification is borrowed from other specifications such as
JAX-RS and CDI. We use the terms per-request and request-scoped as well as per-application and
application-scoped interchangeably.

1.5. Conventions
The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD NOT’,
‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described in
RFC 2119 [4].

Assertions defined by this specification are formatted as [[an-assertion]] using a descriptive name
as the label and are all listed in the Summary of Annotations section.

Java code and sample data fragments are formatted as shown below:

9

https://github.com/mvc-spec/mvc-spec/issues
https://www.mvc-spec.org/
https://www.mvc-spec.org/ozark/
mailto:jsr371-users@googlegroups.com

1 package com.example.hello;
2
3 public class Hello {
4 public static void main(String args[]){
5 System.out.println("Hello World");
6 }
7 }

URIs of the general form http://example.org/… and http://example.com/… represent application or
context-dependent URIs.

All parts of this specification are normative, with the exception of examples, notes and sections
explicitly marked as ‘Non-Normative’. Non-normative notes are formatted as shown below.

Note

This is a note.

1.6. Specification Leads
The following table lists the current and former specification leads:

Ivar Grimstad (Individual Member) (Jan 2017 - present)

Christian Kaltepoth (ingenit GmbH & Co. KG) (May 2017 - present)

Santiago Pericas-Geertsen (Oracle) (Aug 2014 - Jan 2017)

Manfred Riem (Oracle) (Aug 2014 - Jan 2017)

1.7. Expert Group Members
This specification is being developed as part of JSR 371 under the Java Community Process. The
following are the present expert group members:

Mathieu Ancelin (Individual Member) Ivar Grimstad (Individual Member)

Neil Griffin (Liferay, Inc) Joshua Wilson (RedHat)

Rodrigo Turini (Caelum) Stefan Tilkov (innoQ Deutschland GmbH)

Guilherme de Azevedo Silveira (Individual
Member)

Frank Caputo (Individual Member)

Christian Kaltepoth (ingenit GmbH & Co. KG) Woong-ki Lee (TmaxSoft, Inc.)

Paul Nicolucci (IBM) Kito D. Mann (Individual Member)

Rahman Usta (Individual Member) Florian Hirsch (adorsys GmbH & Co KG)

Santiago Pericas-Geertsen (Oracle) Manfred Riem (Oracle)

10

http://example.org/
http://example.com/
https://jcp.org/en/jsr/detail?id=371

1.8. Contributors
The following are the contributors of the specification:

Daniel Dias dos Santos Phillip Krüger

1.9. Acknowledgements
During the course of this JSR we received many excellent suggestions. Special thanks to Marek
Potociar, Dhiru Pandey and Ed Burns, all from Oracle. In addition, to everyone in the user’s alias
that followed the expert discussions and provided feedback, including Peter Pilgrim, Ivar Grimstad,
Jozef Hartinger, Florian Hirsch, Frans Tamura, Rahman Usta, Romain Manni-Bucau, Alberto Souza,
among many others.

11

Chapter 2. Models, Views and Controllers
This chapter introduces the three components that comprise the architectural pattern: models,
views and controllers.

2.1. Controllers
An MVC controller is a JAX-RS [5] resource method decorated by @Controller. [[mvc:controller]] If
this annotation is applied to a class, then all resource methods in it are regarded as controllers
[[mvc:all-controllers]]. Using the @Controller annotation on a subset of methods defines a hybrid
class in which certain methods are controllers and others are traditional JAX-RS resource methods.

A simple hello-world controller can be defined as follows:

 1 @Path("hello")
 2 public class HelloController {
 3
 4 @GET
 5 @Controller
 6 public String hello(){
 7 return "hello.jsp";
 8 }
 9 }

In this example, hello is a controller method that returns a path to a JavaServer Page (JSP). The
semantics of controller methods differ slightly from JAX-RS resource methods; in particular, a
return type of String is interpreted as a view path rather than text content. Moreover, the default
media type for a response is assumed to be text/html, but otherwise can be declared using
@Produces just like in JAX-RS.

A controller’s method return type determines how its result is processed:

void

A controller method that returns void is REQUIRED to be decorated by @View [[mvc:void-
controllers]].

String

A string returned is interpreted as a view path.

Response

A JAX-RS Response whose entity’s type is one of the above.

The following class defines equivalent controller methods:

12

 1 @Controller
 2 @Path("hello")
 3 public class HelloController {
 4
 5 @GET @Path("void")
 6 @View("hello.jsp")
 7 public void helloVoid() {
 8 }
 9
10 @GET @Path("string")
11 public String helloString() {
12 return "hello.jsp";
13 }
14
15 @GET @Path("response")
16 public Response helloResponse() {
17 return Response.status(Response.Status.OK)
18 .entity("hello.jsp").build();
19 }
20 }

Controller methods that return a non-void type may also be decorated with @View as a way to
specify a default view for the controller. The default view MUST be used only when such a non-void
controller method returns a null value [[mvc:null-controllers]].

Note that, even though controller methods return types are restricted as explained above,
MVC does not impose any restrictions on parameter types available to controller methods: i.e., all
parameter types injectable in JAX-RS resources are also available in controllers. Likewise, injection
of fields and properties is unrestricted and fully compatible with JAX-RS —modulo the restrictions
explained in the Controller Instances section.

Controller methods handle a HTTP request directly. Sub-resource locators as described in the JAX-
RS Specification [5] are not supported by MVC.

2.1.1. Controller Instances

Unlike in JAX-RS where resource classes can be native (created and managed by JAX-RS), CDI beans,
managed beans or EJBs, MVC classes are REQUIRED to be CDI-managed beans only [[mvc:cdi-
beans]]. It follows that a hybrid class that contains a mix of JAX-RS resource methods and
MVC controllers must also be CDI managed.

Like in JAX-RS, the default resource class instance lifecycle is per-request [[mvc:per-request]]. That
is, an instance of a controller class MUST be instantiated and initialized on every request.
Implementations MAY support other lifecycles via CDI; the same caveats that apply to JAX-
RS classes in other lifecycles applied to MVC classes [1: In particular, CDI may need to create proxies
when, for example, a per-request instance is as a member of a per-application instance.] See [5] for
more information on lifecycles and their caveats.

13

2.1.2. Response

Returning a Response object gives applications full access to all the parts in a response, including the
headers. For example, an instance of Response can modify the HTTP status code upon encountering
an error condition; JAX-RS provides a fluent API to build responses as shown next.

 1 @GET
 2 @Controller
 3 public Response getById(@PathParam("id") String id) {
 4 if (id.length() == 0) {
 5 return Response.status(Response.Status.BAD_REQUEST)
 6 .entity("error.jsp").build();
 7 }
 8 //...
 9 }

Direct access to Response enables applications to override content types, set character encodings, set
cache control policies, trigger an HTTP redirect, etc. For more information, the reader is referred to
the Javadoc for the Response class.

2.1.3. Redirect and @RedirectScoped

As stated in the previous section, controllers can redirect clients by returning a Response instance
using the JAX-RS API. For example,

1 @GET
2 @Controller
3 public Response redirect() {
4 return Response.seeOther(URI.create("see/here")).build();
5 }

Given the popularity of the POST-redirect-GET pattern, MVC implementations are REQUIRED to
support view paths prefixed by redirect: as a more concise way to trigger a client redirect
[[mvc:redirect]]. Using this prefix, the controller shown above can be re-written as follows:

1 @GET
2 @Controller
3 public String redirect() {
4 return "redirect:see/here";
5 }

In either case, the HTTP status code returned is 302 and relative paths are resolved relative to the
application path –for more information please refer to the Javadoc for the seeOther method in JAX-
RS. It is worth noting that redirects require client cooperation (all browsers support it, but certain
CLI clients may not) and result in a completely new request-response cycle in order to access the
intended controller.

14

MVC applications can leverage CDI by defining beans in scopes such as request and session. A bean
in request scope is available only during the processing of a single request, while a bean in session
scope is available throughout an entire web session which can potentially span tens or even
hundreds of requests.

Sometimes it is necessary to share data between the request that returns a redirect instruction and
the new request that is triggered as a result. That is, a scope that spans at most two requests and
thus fits between a request and a session scope. For this purpose, the MVC API defines a new CDI
scope identified by the annotation @RedirectScoped. CDI beans in this scope are automatically
created and destroyed by correlating a redirect and the request that follows. The exact mechanism
by which requests are correlated is implementation dependent, but popular techniques include
URL rewrites and cookies.

Let us assume that MyBean is annotated by @RedirectScoped and given the name mybean, and consider
the following controller:

 1 @Controller
 2 @Path("submit")
 3 public class MyController {
 4
 5 @Inject
 6 private MyBean myBean;
 7
 8 @POST
 9 public String post() {
10 myBean.setValue("Redirect about to happen");
11 return "redirect:/submit";
12 }
13
14 @GET
15 public String get() {
16 return "mybean.jsp"; // mybean.value accessed in JSP
17 }
18 }

The bean myBean is injected in the controller and available not only during the first POST, but also
during the subsequent GET request, enabling communication between the two interactions; the
creation and destruction of the bean is under control of CDI, and thus completely transparent to the
application just like any other built-in scope.

2.2. Models
MVC controllers are responsible for combining data models and views (templates) to produce web
application pages. This specification supports two kinds of models: the first is based on CDI
@Named beans, and the second on the Models interface which defines a map between names and
objects. Support for the Models interface is mandatory for all view engines; support for CDI
@Named beans is OPTIONAL but highly RECOMMENDED. Application developers are encouraged to
use CDI-based models whenever supported by the view engine, and thus take advantage of the

15

existing CDI and EL integration on the platform.

Let us now revisit our hello-world example, this time also showing how to update a model. Since we
intend to show the two ways in which models can be used, we define the model as a CDI
@Named bean in request scope even though this is only necessary for the CDI case:

 1 @Named("greeting")
 2 @RequestScoped
 3 public class Greeting {
 4
 5 private String message;
 6
 7 public String getMessage() {
 8 return message;
 9 }
10
11 public void setMessage(String message) {
12 this.message = message;
13 }
14 //...
15 }

Given that the view engine for JSPs supports @Named beans, all the controller needs to do is fill out
the model and return the view. Access to the model is straightforward using CDI injection:

 1 @Path("hello")
 2 public class HelloController {
 3
 4 @Inject
 5 private Greeting greeting;
 6
 7 @GET
 8 @Controller
 9 public String hello() {
10 greeting.setMessage("Hello there!");
11 return "hello.jsp";
12 }
13 }

If the view engine that processes the view returned by the controller is not CDI enabled, then
controllers can use the Models map instead:

16

 1 @Path("hello")
 2 public class HelloController {
 3
 4 @Inject
 5 private Models models;
 6
 7 @GET
 8 @Controller
 9 public String hello() {
10 models.put("greeting", new Greeting("Hello there!"));
11 return "hello.jsp";
12 }
13 }

In this example, the model is given the same name as that in the @Named annotation above, but using
the injectable Models map instead.

As stated above, the use of typed CDI @Named beans is recommended over the Models map, but
support for the latter may be necessary to integrate view engines that are not CDI aware. For more
information about view engines see the View Engines section.

2.3. Views
A view, sometimes also referred to as a template, defines the structure of the output page and can
refer to one or more models. It is the responsibility of a view engine to process (render) a view by
extracting the information in the models and producing the output page.

Here is the JSP page for the hello-world example:

 1 <%@ page contentType="text/html; charset=UTF-8" language="java" %>
 2 <!doctype html>
 3 <html>
 4 <head>
 5 <title>Hello</title>
 6 </head>
 7 <body>
 8 <h1>${greeting.message}</h1>
 9 </body>
10 </html>

In a JSP, model properties are accessible via EL [6]. In the example above, the property message is
read from the greeting model whose name was either specified in a @Named annotation or used as a
key in the Models map, depending on which controller from the Models section triggered this view’s
processing.

Here is the corresponding Facelets example:

17

 1 <!DOCTYPE html>
 2 <html lang="en" xmlns:h="http://xmlns.jcp.org/jsf/html">
 3 <h:head>
 4 <title>Hello</title>
 5 </h:head>
 6 <h:body>
 7 <h:outputText value="#{greeting.message}" />
 8 </h:body>
 9 </html>

2.3.1. Building URIs in a View

In views links and form actions require a URI. To avoid repeating the declarative mapping to URIs
on controller methods MVC provides a way to build URIs from the MvcContext:

${mvc.uri(’MyController#myMethod’ {’id’: 42, ’foo’: ’bar’})}

The controller method can either be identified by the simple name of the controller class and the
method name separated by #(MyController#myMethod) or by the value of the @UriRef annotation.
Please refer to the Javadocs of MvcContext for a full description of the different ways to provide
parameter values for building URIs.

18

Chapter 3. Exception Handling
This chapter discusses exception handling in the MVC API. Exception handling in MVC is based on
the underlying mechanism provided by JAX-RS, but with additional support for handling binding
and validation exceptions that are common in MVC frameworks.

3.1. Exception Mappers
The general exception handling mechanism in MVC controllers is identical to that defined for
resource methods in the JAX-RS specification. In a nutshell, applications can implement exception
mapping providers for the purpose of converting exceptions to responses. If an exception mapper
is not found for a particular exception type, default rules apply that describe how to process the
exception depending on whether it is checked or unchecked, and using additional rules for the
special case of a WebApplicationException that includes a response. The reader is referred to the JAX-
RS specification for more information.

Let us consider the case of a ConstraintViolationException that is thrown as a result of a bean
validation failure:

 1 @Controller
 2 @Path("form")
 3 public class FormController {
 4
 5 @POST
 6 public Response formPost(@Valid @BeanParam FormDataBean form) {
 7 return Response.status(OK).entity("data.jsp").build();
 8 }
 9 }

The method formPost defines a bean parameter of type FormDataBean which, for the sake of the
example, we assume includes validation constraints such as @Min(18), @Size(min=1), etc. The
presence of @Valid triggers validation of the bean on every HTML form post; if validation fails, a
ConstraintViolationException (a subclass of ValidationException) is thrown.

An application can handle the exception by including an exception mapper as follows:

19

 1 public class FormViolationMapper
 2 implements ExceptionMapper<ConstraintViolationException> {
 3
 4 @Inject
 5 private ErrorDataBean error;
 6
 7 @Override
 8 public Response toResponse(ConstraintViolationException e) {
 9 final Set<ConstraintViolation<?>> set = e.getConstraintViolations();
10 if (!set.isEmpty()) {
11 // fill out ErrorDataBean ...
12 }
13 return Response.status(Response.Status.BAD_REQUEST)
14 .entity("error.jsp").build();
15 }
16 }

This exception mapper updates an instance of ErrorDataBean and returns the error.jsp view
(wrapped in a response as required by the method signature) with the intent to provide a human-
friendly description of the exception.

Even though using exception mappers is a convenient way to handle exceptions in general, there
are cases in which finer control is necessary. The mapper defined above will be invoked for all
instances of ConstraintViolationException thrown in an application. Given that applications may
include several form-post controllers, handling all exceptions in a single location makes it difficult
to provide controller-specific customizations. Moreover, exception mappers do not get access to the
(partially valid) bound data, or FormDataBean in the example above.

3.2. Validation Exceptions
MVC provides an alternative exception handling mechanism that is specific for the use case
described in the Exception Mappers section. Rather than funnelling exception handling into a
single location while providing no access to the bound data, controller methods may opt to act as
exception handlers as well. In other words, controller methods can get called even if parameter
validation fails as long as the binding that caused the error is defined accordingly.

Parameter bindings such as @FormParam and @QueryParam may be annotated with @MvcBinding to
enable MVC-specific binding rules. For MVC bindings a failed validation does not result in a
ConstraintViolationException being thrown. Instead, the corresponding ConstraintViolation is
stored in a request-scoped instance of BindingResult which can be injected into the controller. This
allows the controller to handle the error instead of relying on a global error handling mechanism
like a ExceptionMapper.

Let us revisit the example from the Exception Mappers section, this time using @MvcBinding for the
data binding:

20

 1 public class FormDataBean {
 2
 3 @MvcBinding
 4 @FormParam("age")
 5 @Min(18)
 6 private long age;
 7
 8 public long getAge() {
 9 return age;
10 }
11
12 public void setAge(long age) {
13 this.age = age;
14 }
15
16 }

Given that the property age is annotated with @MvcBinding, the controller can act as the exception
handler by handling the error itself:

 1 @Controller
 2 @Path("form")
 3 public class FormController {
 4
 5 @Inject
 6 private BindingResult br;
 7
 8 @Inject
 9 private ErrorDataBean error;
10
11 @POST
12 @ValidateOnExecution(type = ExecutableType.NONE)
13 public Response formPost(@Valid @BeanParam FormDataBean form) {
14 if (br.isFailed()) {
15 // fill out ErrorDataBean ...
16 return Response.status(BAD_REQUEST).entity("error.jsp").build();
17 }
18 return Response.status(OK).entity("data.jsp").build();
19 }
20 }

 1 /**
 2 * <p>Describes the binding result of all controller fields and controller
 3 * method parameters which are annotated with a binding annotation like
 4 * {@link javax.ws.rs.FormParam}.</p>
 5 *
 6 * <p>A binding can fail because of type conversion issues or in case of validation
 7 * errors. The former can for example happen if the binding annotation is placed on

21

 8 * a numeric type but the value cannot be converted to that type. The latter may be
 9 * caused by constraint violations detected during validation.
10 * </p>
11 *
12 * <p>Controller methods which declare a parameter of this type will be executed
13 * even if the binding for fields and method parameters fails.</p>
14 *
15 * @author Christian Kaltepoth
16 * @since 1.0
17 */
18 public interface BindingResult {
19
20 /**
21 * Returns <code>true</code> if there is at least one binding error or
22 * constraint violation.
23 *
24 * @return <code>true</code> if there is at least one binding error
25 * constraint violation.
26 */
27 boolean isFailed();
28
29 /**
30 * Returns an immutable list of all messages representing both binding errors
and
31 * constraint violations. The implementation will use {@link
BindingError#getMessage()}
32 * and {@link ConstraintViolation#getMessage()} to create the individual
messages.
33 *
34 * @return A list of human-readable messages
35 */
36 List<String> getAllMessages();
37
38 /**
39 * Returns an immutable set of all binding errors detected while processing
40 * parameter bindings.
41 *
42 * @return All binding errors detected
43 */
44 Set<BindingError> getAllBindingErrors();
45
46 /**
47 * Returns the binding error for the binding specified by the given
48 * parameter name. Will return <code>null</code> if no binding error
49 * was detected.
50 *
51 * @param param The parameter name
52 * @return The binding error or <code>null</code>
53 */
54 BindingError getBindingError(String param);
55

22

56 /**
57 * Returns an immutable set of all validation errors detected.
58 *
59 * @return All validation errors detected
60 */
61 Set<ValidationError> getAllValidationErrors();
62
63 /**
64 * Returns an immutable set of all validation errors detected
65 * for a parameter binding specified by the given parameter name.
66 *
67 * @param param The parameter name
68 * @return All validation errors for this parameter
69 * @see #getValidationError(String)
70 */
71 Set<ValidationError> getValidationErrors(String param);
72
73 /**
74 * Returns a single validation error detected for a parameter binding
75 * specified by the given parameter name. Will return the first if there
76 * is more than one and <code>null</code> if no error was detected.
77 *
78 * @param param The parameter name
79 * @return The first validation error for the parameter or <code>null</code>
80 * @see #getValidationErrors(String)
81 */
82 ValidationError getValidationError(String param);
83
84 }

23

 1 /**
 2 * <p>Represents a single validation error detected for a parameter. A validation
error always
 3 * corresponds to exactly one {@link ConstraintViolation}.</p>
 4 *
 5 * @author Christian Kaltepoth
 6 * @since 1.0
 7 */
 8 public interface ValidationError {
 9
10 /**
11 * The parameter name of the value that caused the validation error. This is
usually
12 * the name specified with the binding annotation (i.e. {@link
javax.ws.rs.FormParam}).
13 *
14 * @return The name of the parameter which caused the error
15 */
16 String getParamName();
17
18 /**
19 * The underlying {@link ConstraintViolation} detected for the parameter.
20 *
21 * @return The violation detected for the parameter
22 */
23 ConstraintViolation<?> getViolation();
24
25 /**
26 * Returns the interpolated error message for this validation error using the
current
27 * request locale.
28 *
29 * @return The human-readable error message
30 */
31 String getMessage();
32
33 }

The presence of the injection target for the field br indicates to an implementation that controller
methods in this class can handle errors. As a result, methods in this class that validate parameters
should call br.isFailed() to verify if validation errors were found. [2: The ValidateOnExecution
annotation is necessary to ensure that CDI and BV do not abort the invocation upon detecting a
violation. Thus, to ensure the correct semantics, validation must be performed by the JAX-RS
implementation before the method is called.]

The class BindingResult provides methods to get detailed information about any violations found
during validation. Instances of this class are always in request scope; the reader is referred to the
Javadoc for more information.

24

As previously stated, properties of type BindingResult are also supported. Here is a modified
version of the example in which a property is used instead:

 1 @Controller
 2 @Path("form")
 3 public class FormController {
 4
 5 private BindingResult br;
 6
 7 public BindingResult getBr() {
 8 return br;
 9 }
10
11 @Inject
12 public void setBr(BindingResult br) {
13 this.br = br;
14 }
15 //...
16 }

Note that the @Inject annotation has been moved from the field to the setter, thus ensuring the
bean is properly initialized by CDI when it is created. Implementations MUST give precedence to a
property (calling its getter and setter) over a field if both are present in the same class.

3.3. Binding Exceptions
As suggested by its name, instances of BindingResult also track binding errors of MVC bindings that
occur while mapping request parameters to Java types. Binding errors are discovered even before
validation takes place. An example of a binding error is that of a query parameter bound to an int
whose value cannot be converted to that type.

JAX-RS uses the notion of a parameter converter to provide extension points for these conversions;
if none are specified for the type at hand, a set of default parameter converters is available.
Regardless of where the parameter converter is coming from, a failure to carry out a conversion
results in an IllegalArgumentException thrown and, typically, a 500 error code returned to the client.
As explained before, applications can provide an exception mapper for IllegalArgumentException
but this may be insufficient when error recovery using controller-specific logic is required.

Controllers can call the same isFailed method to check for binding errors —the method returns
true if at least one error of either kind is found. Additional methods in the BindingResult type allow
to get specific information related to binding errors. See the Javadoc for more information.

25

Chapter 4. Security

4.1. Introduction
Guarding against malicious attacks is a great concern for web application developers. In particular,
MVC applications that accept input from a browser are often targetted by attackers. Two of the
most common forms of attacks are cross-site request forgery (CSRF) and cross-site scripting (XSS).
This chapter explores techniques to prevent these type of attacks with the aid of the MVC API.

4.2. Cross-site Request Forgery
Cross-site Request Forgery (CSRF) is a type of attack in which a user, who has a trust relationship
with a certain site, is mislead into executing some commands that exploit the existence of such a
trust relationship. The canonical example for this attack is that of a user unintentionally carrying
out a bank transfer while visiting another site.

The attack is based on the inclusion of a link or script in a page that accesses a site to which the
user is known or assumed to have been authenticated (trusted). Trust relationships are often stored
in the form of cookies that may be active while the user is visiting other sites. For example, such a
malicious site could include the following HTML snippet:

which will result in the browser executing a bank transfer in an attempt to load an image.

In practice, most sites require the use of form posts to submit requests such as bank transfers. The
common way to prevent CSRF attacks is by embedding additional, difficult-to-guess data fields in
requests that contain sensible commands. This additional data, known as a token, is obtained from
the trusted site but unlike cookies it is never stored in the browser.

MVC implementations provide CSRF protection using the Csrf object and the @CsrfValid annotation.
The Csrf object is available to applications via the injectable MvcContext type or in EL as mvc.csrf.
For more information about MvcContext, please refer to the MVC Context section.

Applications may use the Csrf object to inject a hidden field in a form that can be validated upon
submission. Consider the following JSP,

26

 1 <html>
 2 <head>
 3 <title>CSRF Protected Form</title>
 4 </head>
 5 <body>
 6 <form action="csrf" method="post" accept-charset="utf-8">
 7 <input type="submit" value="Click here"/>
 8 <input type="hidden" name="${mvc.csrf.name}"
 9 value="${mvc.csrf.token}"/>
10 </form>
11 </body>
12 </html>

The hidden field will be submitted with the form, giving the MVC implementation the opportunity
to verify the token and ensure the validity of the post request.

Another way to convey this information to and from the client is via an HTTP header. MVC
implementations are REQUIRED to support CSRF tokens both as form fields (with the help of the
application developer as shown above) and as HTTP headers.

The application-level property javax.mvc.security.CsrfProtection enables CSRF protection when set
to one of the possible values defined in javax.mvc.security.Csrf.CsrfOptions. The default value of
this property is CsrfOptions.EXPLICIT. Any other value than CsrfOptions.OFF will automatically
inject a CSRF token as an HTTP header; the actual name of this header is implementation
dependent.

Automatic validation is enabled by setting this property to CsrfOptions.IMPLICIT, in which case all
post requests must include either an HTTP header or a hidden field with the correct token. Finally,
if the property is set to CsrfOptions.EXPLICIT then application developers must annotate controllers
using @CsrfValid to manually enable validation [[mvc:csrf-options]] as shown in the following
example.

 1 @Path("csrf")
 2 @Controller
 3 public class CsrfController {
 4
 5 @GET
 6 public String getForm() {
 7 return "csrf.jsp"; // Injects CSRF token
 8 }
 9
10 @POST
11 @CsrfValid // Required for CsrfOptions.EXPLICIT
12 public void postForm(@FormParam("greeting") String greeting) {
13 // Process greeting
14 }
15 }

27

MVC implementations are required to support CSRF validation of tokens for controllers annotated
with @POST and consuming the media type x-www-form-urlencoded [[mvc:csrf-support]]; other media
types and scenarios may also be supported but are OPTIONAL.

4.3. Cross-site Scripting
Cross-site scripting (XSS) is a type of attack in which snippets of scripting code are injected and later
executed when returned back from a server. The typical scenario is that of a website with a search
field that does not validate its input, and returns an error message that includes the value that was
submitted. If the value includes a snippet of the form <script>...</script> then it will be executed
by the browser when the page containing the error is rendered.

There are lots of different variations of this the XSS attack, but most can be prevented by ensuring
that the data submitted by clients is properly sanitized before it is manipulated, stored in a
database, returned to the client, etc. Data escaping/encoding is the recommended way to deal with
untrusted data and prevent XSS attacks.

MVC applications can gain access to encoders through the MvcContext object; the methods defined
by javax.mvc.security.Encoders can be used by applications to contextually encode data in an
attempt to prevent XSS attacks. The reader is referred to the Javadoc for this type for further
information.

28

Chapter 5. Events
This chapter introduces a mechanism by which MVC applications can be informed of important
events that occur while processing a request. This mechanism is based on CDI events that can be
fired by implementations and observed by applications.

5.1. Observers
The package javax.mvc.event defines a number of event types that MUST be fired by
implementations during the processing of a request [[mvc:event-firing]]. Implementations MAY
extend this set and also provide additional information on any of the events defined by this
specification. The reader is referred to the implementation’s documentation for more information
on event support.

Observing events can be useful for applications to learn about the lifecycle of a request, perform
logging, monitor performance, etc. The events BeforeControllerEvent and AfterControllerEvent are
fired around the invocation of a controller; applications can monitor these events using an
observer as shown next.

 1 @ApplicationScoped
 2 public class EventObserver {
 3
 4 public void onBeforeController(@Observes BeforeControllerEvent e) {
 5 System.out.println("URI: " + e.getUriInfo().getRequestURI());
 6 }
 7
 8 public void onAfterController(@Observes AfterControllerEvent e) {
 9 System.out.println("Controller: " +
10 e.getResourceInfo().getResourceMethod());
11 }
12 }

29

 1 /**
 2 * <p>Event fired before a controller is called but after it has been matched.</p>
 3 *
 4 * <p>For example:
 5 * <pre><code> public class EventObserver {
 6 * public void beforeControllerEvent(@Observes BeforeControllerEvent e)
{
 7 * ...
 8 * }
 9 * }</code></pre>
10 *
11 * @author Santiago Pericas-Geertsen
12 * @see javax.enterprise.event.Observes
13 * @since 1.0
14 */
15 public interface BeforeControllerEvent extends MvcEvent {
16
17 /**
18 * Access to the current request URI information.
19 *
20 * @return URI info.
21 * @see javax.ws.rs.core.UriInfo
22 */
23 UriInfo getUriInfo();
24
25 /**
26 * Access to the current request controller information.
27 *
28 * @return resources info.
29 * @see javax.ws.rs.container.ResourceInfo
30 */
31 ResourceInfo getResourceInfo();
32 }

30

 1 /**
 2 * <p>Event fired after a controller returns successfully. If the controller throws
 3 * an exception, this event may not be fired. Must be fired after {@link
 4 * javax.mvc.event.BeforeControllerEvent}.</p>
 5 *
 6 * <p>For example:
 7 * <pre><code> public class EventObserver {
 8 * public void afterControllerEvent(@Observes AfterControllerEvent e) {
 9 * ...
10 * }
11 * }</code></pre>
12 *
13 * @author Santiago Pericas-Geertsen
14 * @see javax.enterprise.event.Observes
15 * @since 1.0
16 */
17 public interface AfterControllerEvent extends MvcEvent {
18
19 /**
20 * Access to the current request URI information.
21 *
22 * @return URI info.
23 * @see javax.ws.rs.core.UriInfo
24 */
25 UriInfo getUriInfo();
26
27 /**
28 * Access to the current request controller information.
29 *
30 * @return resources info.
31 * @see javax.ws.rs.container.ResourceInfo
32 */
33 ResourceInfo getResourceInfo();
34 }

Observer methods in CDI are defined using the @Observes annotation on a parameter position. The
class EventObserver is a CDI bean in application scope whose methods onBeforeController and
onAfterController are called before and after a controller is called.

Every event generated must include a unique ID whose getter is defined in MvcEvent, the base type
for all events. Moreover, each event includes additional information that is specific to the event; for
example, the events shown in the example above allow applications to get information about the
request URI and the resource (controller) selected.

The View Engines section describes the algorithm used by implementations to select a specific view
engine for processing; after a view engine is selected, the method processView is called. The events
BeforeProcessViewEvent and AfterProcessViewEvent are fired around this call and can be observed in
a similar manner:

31

 1 @ApplicationScoped
 2 public class EventObserver {
 3
 4 public void onBeforeProcessView(@Observes BeforeProcessViewEvent e) {
 5 // ...
 6 }
 7
 8 public void onAfterProcessView(@Observes AfterProcessViewEvent e) {
 9 // ...
10 }
11 }

32

 1 /**
 2 * <p>Event fired after a view engine has been selected but before its
 3 * {@link
javax.mvc.engine.ViewEngine#processView(javax.mvc.engine.ViewEngineContext)}
 4 * method is called. Must be fired after {@link
javax.mvc.event.ControllerRedirectEvent},
 5 * or if that event is not fired, after {@link
javax.mvc.event.AfterControllerEvent}.</p>
 6 *
 7 * <p>For example:
 8 * <pre><code> public class EventObserver {
 9 * public void beforeProcessView(@Observes BeforeProcessViewEvent e) {
10 * ...
11 * }
12 * }</code></pre>
13 *
14 * @author Santiago Pericas-Geertsen
15 * @see javax.enterprise.event.Observes
16 * @since 1.0
17 */
18 public interface BeforeProcessViewEvent extends MvcEvent {
19
20 /**
21 * Returns the view being processed.
22 *
23 * @return the view.
24 */
25 String getView();
26
27 /**
28 * Returns the {@link javax.mvc.engine.ViewEngine} selected by the
implementation.
29 *
30 * @return the view engine selected.
31 */
32 Class<? extends ViewEngine> getEngine();
33 }

33

 1 /**
 2 * <p>Event fired after the view engine method
 3 * {@link
javax.mvc.engine.ViewEngine#processView(javax.mvc.engine.ViewEngineContext)}
 4 * returns successfully. If the an exception is thrown while processing a view,
 5 * this event may not be fired. Must be fired after {@link
 6 * javax.mvc.event.BeforeProcessViewEvent}.</p>
 7 *
 8 * <p>For example:
 9 * <pre><code> public class EventObserver {
10 * public void afterProcessView(@Observes AfterProcessViewEvent e) {
11 * ...
12 * }
13 * }</code></pre>
14 *
15 * @author Santiago Pericas-Geertsen
16 * @see javax.enterprise.event.Observes
17 * @since 1.0
18 */
19 public interface AfterProcessViewEvent extends MvcEvent {
20
21 /**
22 * Returns the view being processed.
23 *
24 * @return the view.
25 */
26 String getView();
27
28 /**
29 * Returns the {@link javax.mvc.engine.ViewEngine} selected by the
implementation.
30 *
31 * @return the view engine selected.
32 */
33 Class<? extends ViewEngine> getEngine();
34 }

To complete the example, let us assume that the information about the selected view engine needs
to be conveyed to the client. To ensure that this information is available to a view returned to the
client, the EventObserver class can inject and update the same request-scope bean accessed by such
a view:

34

 1 @ApplicationScoped
 2 public class EventObserver {
 3
 4 @Inject
 5 private EventBean eventBean;
 6
 7 public void onBeforeProcessView(@Observes BeforeProcessViewEvent e) {
 8 eventBean.setView(e.getView());
 9 eventBean.setEngine(e.getEngine());
10 }
11 // ...
12 }

For more information about the interaction between views and models, the reader is referred to
the Models section.

CDI events fired by implementations are synchronous, so it is recommended that applications carry
out only simple tasks in their observer methods, avoiding long-running computations as well as
blocking calls. For a complete list of events, the reader is referred to the Javadoc for the
javax.mvc.event package.

Event reporting requires the MVC implementations to create event objects before firing. In high-
throughput systems without any observers the number of unnecessary objects created may not be
insignificant. For this reason, it is RECOMMENDED for implementations to consider smart firing
strategies when no observers are present.

35

Chapter 6. Applications
This chapter introduces the notion of an MVC application and explains how it relates to a JAX-RS
application.

6.1. MVC Applications
An MVC application consists of one or more JAX-RS resources that are annotated with @Controller
and, just like JAX-RS applications, zero or more providers. If no resources are annotated with
@Controller, then the resulting application is a JAX-RS application instead. In general, everything
that applies to a JAX-RS application also applies to an MVC application. Some MVC applications may
be hybrid and include a mix of MVC controllers and JAX-RS resource methods.

The controllers and providers that make up an application are configured via an application-
supplied subclass of Application from JAX-RS. An implementation MAY provide alternate
mechanisms for locating controllers, but as in JAX-RS, the use of an Application subclass is the only
way to guarantee portability.

All the rules described in the Servlet section of the JAX-RS Specification [5] apply to MVC as well.
This section recommends the use of the Servlet 3 framework pluggability mechanism and describes
its semantics for the cases in which an Application subclass is present and absent.

The path in the application’s URL space in which MVC controllers live must be specified either
using the @ApplicationPath annotation on the application subclass or in the web.xml as part of the
url-pattern element. MVC applications SHOULD use a non-empty path or pattern: i.e., "/" or "/*"
should be avoided whenever possible.

The reason for this is that MVC implementations often forward requests to the Servlet container,
and the use of the aforementioned values may result in the unwanted processing of the forwarded
request by the JAX-RS servlet once again. Most JAX-RS applications avoid using these values, and
many use "/resources" or "/resources/*" by convention. For consistency, it is recommended for
MVC applications to use these patterns as well.

6.2. MVC Context
MVC applications can inject an instance of MvcContext to access configuration, security and path-
related information. Instances of MvcContext are provided by implementations and are always in
application scope [[mvc:mvc-context]]. For convenience, the MvcContext instance is also available
using the name mvc in EL.

As an example, a view can refer to a CSS file by using the context path available in the MvcContext
object as follows:

<link rel="stylesheet" type="text/css" href="${mvc.contextPath}/my.css">

For more information on security see the Chapter on Security; for more information about the
MvcContext in general, refer to the Javadoc for the type.

36

http://jcp.org/en/jsr/detail?id=339

6.3. Providers in MVC
Implementations are free to use their own providers in order to modify the standard JAX-RS
pipeline for the purpose of implementing the MVC semantics. Whenever mixing implementation
and application providers, care should be taken to ensure the correct execution order using
priorities.

6.4. Annotation Inheritance
MVC applications MUST follow the annotation inheritance rules defined by JAX-RS
[[mvc:annotation-inheritance]]. Namely, MVC annotations may be used on methods of a super-class
or an implemented interface. Such annotations are inherited by a corresponding sub-class or
implementation class method provided that the method does not have any MVC or JAX-RS
annotations of its own: i.e., if a subclass or implementation method has any MVC or JAX-RS
annotations then all of the annotations on the superclass or interface method are ignored.

Annotations on a super-class take precedence over those on an implemented interface. The
precedence over conflicting annotations defined in multiple implemented interfaces is
implementation dependent. Note that, in accordance to the JAX-RS rules, inheritance of class or
interface annotations is not supported.

37

Chapter 7. View Engines
This chapter introduces the notion of a view engine as the mechanism by which views are
processed in MVC. The set of available view engines is extensible via CDI, enabling applications as
well as other frameworks to provide support for additional view languages.

7.1. Introduction
A view engine is responsible for processing views. In this context, processing entails (i) locating and
loading a view (ii) preparing any required models and (iii) rendering the view and writing the
result back to the client.

Implementations MUST provide built-in support for JSPs and Facelets view engines [[mvc:builtin-
engines]]. Additional engines may be supported via an extension mechanism based on CDI. Namely,
any CDI bean that implements the javax.mvc.engine.ViewEngine interface MUST be considered as a
possible target for processing by calling its supports method, discarding the engine if this method
returns false [[mvc:extension-engines]].

This is the interface that must be implemented by all MVC view engines:

 1 /**
 2 * <p>View engines are responsible for processing views and are discovered
 3 * using CDI. Implementations must inject all instances of this interface,
 4 * and process a view as follows:
 5 *
 6 * Gather the set of candidate view engines by calling {@link
#supports(String)}
 7 * and discarding engines that return <code>false</code>.
 8 * Sort the resulting set of candidates using priorities. View engines
 9 * can be decorated with {@link javax.annotation.Priority} to indicate
10 * their priority; otherwise the priority is assumed to be {@link
Priorities#DEFAULT}.
11 * If more than one candidate is available, choose one in an
12 * implementation-defined manner.
13 * Fire a {@link javax.mvc.event.BeforeProcessViewEvent} event.
14 * Call method {@link #processView(ViewEngineContext)} to process
view.
15 * Fire a {@link javax.mvc.event.AfterProcessViewEvent} event.
16 *
17 * <p>The default view engines for JSPs and Facelets use file extensions to
determine
18 * support. Namely, the default JSP view engine supports views with extensions
<code>jsp</code>
19 * and <code>jspx</code>, and the one for Facelets supports views with extension
20 * <code>xhtml</code>.</p>
21 *
22 * @author Santiago Pericas-Geertsen
23 * @see javax.annotation.Priority
24 * @see javax.mvc.event.BeforeProcessViewEvent

38

25 * @since 1.0
26 */
27 @SuppressWarnings("unused")
28 public interface ViewEngine {
29
30 /**
31 * Name of property that can be set in an application's {@link
javax.ws.rs.core.Configuration}
32 * to override the root location for views in an archive.
33 *
34 * @see javax.ws.rs.core.Application#getProperties()
35 */
36 String VIEW_FOLDER = "javax.mvc.engine.ViewEngine.viewFolder";
37
38 /**
39 * Default value for property {@link #VIEW_FOLDER}.
40 */
41 String DEFAULT_VIEW_FOLDER = "/WEB-INF/views/";
42
43 /**
44 * Returns <code>true</code> if this engine can process the view or
<code>false</code>
45 * otherwise.
46 *
47 * @param view the view.
48 * @return outcome of supports test.
49 */
50 boolean supports(String view);
51
52 /**
53 * <p>Process a view given a {@link javax.mvc.engine.ViewEngineContext}.
Processing
54 * a view involves <i>merging</i> the model and template data and writing
55 * the result to an output stream.</p>
56 *
57 * <p>Following the Java EE threading model, the underlying view engine
implementation
58 * must support this method being called by different threads. Any resources
allocated
59 * during view processing must be released before the method returns.</p>
60 *
61 * @param context the context needed for processing.
62 * @throws ViewEngineException if an error occurs during processing.
63 */
64 void processView(ViewEngineContext context) throws ViewEngineException;
65 }

7.2. Selection Algorithm
Implementations should perform the following steps while trying to find a suitable view engine for

39

a view [[mvc:selection-algorithm]].

1. Lookup all instances of javax.mvc.engine.ViewEngine available via CDI. [3: The @Any annotation in
CDI can be used for this purpose.]

2. Call supports on every view engine found in the previous step, discarding those that return
false.

3. If the resulting set is empty, return null.

4. Otherwise, sort the resulting set in descending order of priority using the integer value from the
@Priority annotation decorating the view engine class
or the default value Priorities.DEFAULT if the annotation is not present.

5. Return the first element in the resulting sorted set, that is, the view engine with the highest
priority that supports the given view.

If a view engine that can process a view is not found, as a fall-back attempt to process the view by
other means, implementations are REQUIRED to forward the request-response pair back to the
Servlet container using a RequestDispatcher [[mvc:request-forward]].

The processView method has all the information necessary for processing in the ViewEngineContext,
including the view, a reference to Models, as well as the HTTP request and response from the
underlying the Servlet container. Implementations MUST catch exceptions thrown during the
execution of processView and re-throw them as ViewEngineException’s [[mvc:exception-wrap]].

Prior to the view render phase, all entries available in Models MUST be bound in such a way that
they become available to the view being processed. The exact mechanism for this depends on the
actual view engine implementation. In the case of the built-in view engines for JSPs and Facelets,
entries in Models must be bound by calling HttpServletRequest.setAttribute(String, Object);

calling this method ensures access to the named models from EL expressions.

A view returned by a controller method represents a path within an application archive. If the path
is relative, does not start with "/", implementations MUST resolve view paths relative to value of
ViewEngine.DEFAULT VIEW FOLDER, which is set to /WEB-INF/views/. If the path is absolute, no further
processing is required [[mvc:view-resolution]]. It is recommended to use relative paths and a
location under WEB-INF to prevent direct access to views as static resources.

7.3. FacesServlet
Because Facelets support is not enabled by default, MVC applications that use Facelets are required
to package a web.xml deployment descriptor with the following entry mapping the extension *.xhtml
as shown next:

40

 1 <servlet>
 2 <servlet-name>Faces Servlet</servlet-name>
 3 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 4 <load-on-startup>1</load-on-startup>
 5 </servlet>
 6 <servlet-mapping>
 7 <servlet-name>Faces Servlet</servlet-name>
 8 <url-pattern>*.xhtml</url-pattern>
 9 </servlet-mapping>

It is worth noting that if you opt to use Facelets as a view technology for your MVC application,
regular JSF post-backs will not be processed by the MVC runtime. The usage of <h:form /> and
depending form components like <h:inputText /> is not recommended as they would be the entry
point to a real JSF application.

41

Chapter 8. Internationalization
This chapter introduces the notion of a request locale and describes how MVC handles
internationalization and localization.

8.1. Introduction
Internationalization and localization are very important concepts for any web application
framework. Therefore MVC has been designed to make supporting multiple languages and regional
differences in applications very easy.

MVC defines the term request locale as the locale which is used for any locale-dependent operation
within the lifecycle of a request. The request locale MUST be resolved exactly once for each request
using the resolving algorithm described in the Resolving Algorithm section.

These locale-dependent operations include, but are not limited to:

1. Data type conversion as part of the data binding mechanism.

2. Formatting of data when rendering it to the view.

3. Generating binding and validation error messages in the specific language.

The request locale is available from MvcContext and can be used by controllers, view engines and
other components to perform operations which depend on the current locale [[mvc:request-locale-
context]]. The example below shows a controller that uses the request locale to create a
NumberFormat instance.

 1 @Controller
 2 @Path("/foobar")
 3 public class MyController {
 4
 5 @Inject
 6 private MvcContext mvc;
 7
 8 @GET
 9 public String get() {
10 Locale locale = mvc.getLocale();
11 NumberFormat format = NumberFormat.getInstance(locale);
12 }
13 }

The following sections will explain the locale resolving algorithm and the default resolver provided
by the MVC implementation.

8.2. Resolving Algorithm
The locale resolver is responsible to detect the request locale for each request processed by the
MVC runtime. A locale resolver MUST implement the javax.mvc.locale.LocaleResolver interface

42

which is defined like this:

 1 /**
 2 * <p>Locale resolvers are used to determine the locale of the current request and
are discovered
 3 * using CDI.</p>
 4 *
 5 * <p>The MVC implementation is required to resolve the locale for each request
following this
 6 * algorithm:</p>
 7 *
 8 *
 9 * Gather the set of all implementations of this interface available for
injection via
10 * CDI.
11 * Sort the set of implementations using priorities in descending order. Locale
resolvers
12 * can be decorated with {@link javax.annotation.Priority} to indicate their
priority. If no
13 * priority is explicitly defined, the priority is assumed to be
<code>1000</code>.
14 * Call the method {@link #resolveLocale(LocaleResolverContext)}. If the
resolver returns
15 * a valid locale, use this locale as the request locale. If the resolver returns
16 * <code>null</code>, proceed with the next resolver in the ordered set.
17 *
18 *
19 * <p>Controllers, view engines and other components can access the resolved locale
by calling
20 * {@link MvcContext#getLocale()}.</p>
21 *
22 * <p>The MVC implementation is required to provide a default locale resolver with
a priority
23 * of <code>0</code> which uses the <code>Accept-Language</code> request header to
obtain the
24 * locale. If resolving the locale this way isn't possible, the default resolver
must return
25 * {@link Locale#getDefault()}.</p>
26 *
27 * @author Christian Kaltepoth
28 * @see javax.mvc.locale.LocaleResolverContext
29 * @see MvcContext#getLocale()
30 * @see java.util.Locale
31 * @since 1.0
32 */
33 public interface LocaleResolver {
34
35 /**
36 * <p>Resolve the locale of the current request given a {@link
LocaleResolverContext}.</p>

43

37 *
38 * <p>If the implementation is able to resolve the locale for the request, the
corresponding
39 * locale must be returned. If the implementation cannot resolve the locale, it
must return
40 * <code>null</code>. In this case the resolving process will continue with the
next
41 * resolver.</p>
42 *
43 * @param context the context needed for processing.
44 * @return The resolved locale or <code>null</code>.
45 */
46 Locale resolveLocale(LocaleResolverContext context);
47
48 }

There may be more than one locale resolver for a MVC application. Locale resolvers are discovered
using CDI [[mvc:extension-resolvers]]. Every CDI bean implementing the LocaleResolver interface
and visible to the application participates in the locale resolving algorithm.

Implementations MUST use the following algorithm to resolve the request locale for each request
[[mvc:resolve-algorithm]]:

1. Obtain a list of all CDI beans implementing the LocaleResolver interface visible to the
application’s BeanManager.

2. Sort the list of locale resolvers in descending order of priority using the integer value from the
@Priority annotation decorating the resolver class.
If no @Priority annotation is present, assume a default priority of 1000.

3. Call resolveLocale() on the first resolver in the list. If the resolver returns null, continue with
the next resolver in the list.
If a resolver returns a non-null result, stop the algorithm and use the returned locale as the
request locale.

Applications can either rely on the default locale resolver which is described in the Default Locale
Resolver section or provide a custom resolver which implements some other strategy for resolving
the request locale. A custom strategy could for example track the locale using the session, a query
parameter or the server’s hostname.

8.3. Default Locale Resolver
Every MVC implementation MUST provide a default locale resolver with a priority of 0 which
resolves the request locale according to the following algorithm [[mvc:default-locale-resolver]]:

1. First check whether the client provided an Accept-Language request header. If this is the case,
the locale with the highest quality factor is returned as the result.

2. If the previous step was not successful, return the system default locale of the server.

Please note that applications can customize the locale resolving process by providing a custom

44

locale resolver with a priority higher than 0. See the Resolving Algorithm section for details.

45

Appendix A: Summary of Annotations
Annotation Target Description

Controller Type or method Defines a resource method as an MVC controller.
If specified at the type level, it defines all
methods in a class as controllers.

View Type or method Declares a view for a controller method that
returns void. If specified at the type level, it
applies to all controller methods that return void
in a class.

CsrfValid Method States that a CSRF token must be validated
before invoking the controller. Failure to
validate the CSRF token results in a
ForbiddenException thrown.

RedirectScoped Type, method or field Specifies that a certain bean is in redirect scope.

UriRef Method Defines a symbolic name for a controller
method.

46

Appendix B: Change Log

B.1. Changes Since 1.0 Early Draft 2
• Section Controllers: Remove support for returning arbitrary objects from controller methods

• Section Controllers and Selection Algorithm: Removed Viewable class

• Updated specification license

• Section Controllers: Added a facelets example and a warning about the usage of in section View
Engines.

• Section Building URIs in a View: Added support for generating URLs in the view

• Section Internationalization: Simplify default locale resolver algorithm

• Section Models: Clarified that CDI support is only optional for view engines not
implementations

• Section Security: Make CsrfOptions.EXPLICIT the default

• Section Internationalization: New chapter about internationalization.

• Section Controllers: Clarified that Sub-resource locators are not supported.

B.2. Changes Since 1.0 Early Draft
• Section Binding Exceptions New section related to the use of BindingResult to handle binding

errors.

• Section Validation Exceptions The type ValidationResult renamed to BindingResult after
extending its scope to binding errors as well.

• Section Redirect and @RedirectScoped Introduce the redirect scope and related annotation.

• Section MVC Context: New section about injectable MvcContext.

• Chapter Security: New chapter about security.

• Section FacesServlet: New section about and its configuration.

• Chapter Events: Updated based on changes to package.

• Section Annotation Inheritance: New section on annotation inheritance rules.

• Section Redirect and @RedirectScoped: New section about HTTP redirects.

• Section Controllers: Allow to be used for controller methods returning a value.

• Section Controllers: Controller methods can return arbitrary Java types on which is called,
interpreting the result as a view path.

• Section Controllers: Updated return type sample using unique paths.

47

Appendix C: Summary of Assertions
[[mvc:controller]] Controller methods are JAX-RS resource methods annotated with @Controller.

[[mvc:all-controllers]] All resource methods in a class annotated with @Controller must be
controllers.

[[mvc:void-controllers]] Controller methods that return void must be annotated with @View.

[[mvc:cdi-beans]] MVC beans are managed by CDI.

[[mvc:per-request]] Default scope for MVC beans is request scope.

[[mvc:validation-result]] If validation fails, controller methods must still be called if a
ValidationResult field or property is defined.

[[mvc:event-firing]] All events in javax.mvc.event must be fired. See Javadoc for more information
on each event in that package.

[[mvc:builtin-engines]] Implementations must provide support for JSPs and Facelets.

[[mvc:extension-engines]] CDI beans that implement javax.mvc.engine.ViewEngine provide an ex-
tension mechanism for view engines.

[[mvc:selection-algorithm]] Implementations must use algorithm in the Selection Algorithm
section to select view engines.

[[mvc:request-forward]] Forward request for which no view engine is found.

[[mvc:exception-wrap]] Exceptions thrown during view processing must be wrapped.

[[mvc:view-resolution]] Relative paths to views must be resolved as explained in the Selection
Algorithm section.

[[mvc:null-controllers]] The @View annotation is treated as a default value for any controller
method that returns a null value.

[[mvc:redirect]] Support HTTP redirects using the redirect: prefix and a controller return type of
String.

[[mvc:annotation-inheritance]] Annotation inheritance is derived from JAX-RS and extended to
MVC annotations.

[[mvc:csrf-options]] CSRF support for configuration options defined by Csrf.CsrfOptions.

[[mvc:csrf-support]] CSRF validation required only for controllers annotated by @POST and
consuming the media type x-www-form-urlencoded.

[[mvc:mvc-context]] Application-scoped MvcContext available for injection and as mvc in EL.

[[mvc:request-locale-context]] The MvcContext must provide access to the current request locale.

48

[[mvc:extension-resolvers]] CDI beans implementing javax.mvc.locale.LocaleResolver provide an
extension mechanism for the request locale resolving algorithm.

[[mvc:resolve-algorithm]] The request locale must be resolved as described in the Resolving
Algorithm section.

[[mvc:default-locale-resolver]] Implementations must provide a default locale resolver as
described in the Default Locale Resolver section.

49

Bibliography
[1]

Edward Burns. JavaServer Faces 2.2. JSR, JCP, May 2013
http://jcp.org/en/jsr/detail?id=344

[2]

Pete Muir. Context and Dependency Injection for Java EE 1.1 MR. JSR, JCP, April 2014
http://jcp.org/en/jsr/detail?id=346

[3]

Emmanuel Bernard. Bean Validation 1.1. JSR, JCP, March 2013
http://jcp.org/en/jsr/detail?id=349

[4]

S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF,
March 1997
http://www.ietf.org/rfc/rfc2119.txt

[5]

Santiago Pericas-Geertsen and Marek Potociar. The Java API for RESTful Web Services 2.0 MR.
JSR, JCP, October 2014
http://jcp.org/en/jsr/detail?id=339

[6]

Kin man Chung. Expression Language 3.0. JSR, JCP, May 2013
http://jcp.org/en/jsr/detail?id=341

50

http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=349
http://www.ietf.org/rfc/rfc2119.txt
http://jcp.org/en/jsr/detail?id=339
http://jcp.org/en/jsr/detail?id=341

	MVC: Model-View-Controller API
	Table of Contents
	License
	Chapter 1. Introduction
	1.1. Goals
	1.2. Non-Goals
	1.3. Additional Information
	1.4. Terminology
	1.5. Conventions
	1.6. Specification Leads
	1.7. Expert Group Members
	1.8. Contributors
	1.9. Acknowledgements

	Chapter 2. Models, Views and Controllers
	2.1. Controllers
	2.2. Models
	2.3. Views

	Chapter 3. Exception Handling
	3.1. Exception Mappers
	3.2. Validation Exceptions
	3.3. Binding Exceptions

	Chapter 4. Security
	4.1. Introduction
	4.2. Cross-site Request Forgery
	4.3. Cross-site Scripting

	Chapter 5. Events
	5.1. Observers

	Chapter 6. Applications
	6.1. MVC Applications
	6.2. MVC Context
	6.3. Providers in MVC
	6.4. Annotation Inheritance

	Chapter 7. View Engines
	7.1. Introduction
	7.2. Selection Algorithm
	7.3. FacesServlet

	Chapter 8. Internationalization
	8.1. Introduction
	8.2. Resolving Algorithm
	8.3. Default Locale Resolver

	Appendix A: Summary of Annotations
	Appendix B: Change Log
	B.1. Changes Since 1.0 Early Draft 2
	B.2. Changes Since 1.0 Early Draft

	Appendix C: Summary of Assertions
	Bibliography

