

Table of Contents

Preface

1. Build, deploy and run
1.1. Build
1.2. Deploy
1.3. Run

2. Phases
2.1. Phases
2.2. Interactions
2.3. Mapping onto HTTP

3. Controllers
3.1. Overview
3.2. Request routing
3.3. Controller phases
3.4. Controller classes

4. Responses
4.1. Content responses
4.2. Render response
4.3. View response
4.4. Redirect response
4.5. Error response

5. Bridges
5.1. Servlet bridge
5.2. Portlet bridge

6. Inversion of Control
6.1. Containers
6.2. Inversion Of Control
6.3. Beans in action
6.4. Provider factories

7. Templating
7.1. The templating engines
7.2. Using templates

8. Templating SPI
8.1. Compiling a Groovy template
8.2. Type safe URL resolution
8.3. Template Service Provider Interface
8.4. Template at work
8.5. Qualified template class

9. Taglib
9.1. Taglib syntax
9.2. Include tag
9.3. Decorate / Insert tag
9.4. Title tag
9.5. Param tag

10. Assets
10.1. Asset serving
10.2. Asset server

10.3. Asset plugin
10.4. Managing assets programmatically

11. Javascript modularity
11.1. Introduction to modules
11.2. Defining a module
11.3. Requiring a module

12. Juzu Servlet Plugin
12.1. Servlet class generation
12.2. Asset server automatic registration

13. Juzu Portlet Plugin
13.1. Portlet class generation
13.2. Portlet preferences injection
13.3. Resource bundle injection
13.4. Building

14. Juzu File Upload Plugin
14.1. File upload in an action phase
14.2. File upload in a resource phase

15. Juzu Less Plugin
15.1. Usage
15.2. Building

16. Juzu WebJars Plugin
16.1. Usage
16.2. Building

List of Examples

1.1. Generating an application for the Tomcat server and the Guice injection container
1.2. Generating an application for the Tomcat server and the Spring injection container
1.3. Configuring the dev mode in web.xml
3.1. Declaring a controller route
3.2. Route parameters
3.3. Route parameter matching
3.4. Route parameter matching
3.5. Route priority
3.6. The RequestLifeCycle interface
5.1. The Juzu servlet configuration
5.2. Path mapping configuration
5.3. The Juzu portlet configuration
6.1. Configuring the Spring container in web.xml
6.2. Time provider factory
6.3. Time provider configuration
7.1. Controller URL syntax
7.2. Controller URL with parameters
7.3. Explicit controller URL
7.4. Message syntax
7.5. Using a template
7.6. Returning the generated juzu.Response.Content
7.7. Native template parameter declaration

7.8. Mustache template parameter declaration
7.9. Named bean
7.10. Template parameters
7.11. Named bean
7.12. Template parameters
9.1. Start and end tag syntax
9.2. Empty tag syntax
9.3. The include tag
9.4. The wrapped template
9.5. The decoraring template
9.6. Setting the title
9.7. Declaring a template parameter
9.8. Using the template parameter
10.1. JQuery UI declarative asset configuration
10.2. Declarative relative application asset configuration
10.3. Declarative relative server asset configuration
10.4. External classpath asset configuration
11.1. Defining a simple module
11.2. The ##foo.js## self-executing function
11.3. Defining a module with dependencies
11.4. The ##bar.js## self-executing function
11.5. The jQuery uses the following construct for defining itself
11.6. The ##foo.js## module declaration
11.7. The ##bar.js## module declaration
12.1. Juzu servlet generation
13.1. Injecting portlet preferences
13.2. Injecting the portlet resource bundle
15.1. Annotating an application package for processing LESS files
15.2. LESS and Asset plugins in action
16.1. Annotating an application package for declaring WebJars
16.2. WebJars and Asset plugin in action
16.3. WebJars and AMD plugin in action

Preface
Juzu is a web framework based on MVC concepts for developing Portlet applications. Juzu is an
open source project developed on GitHub licensed under the license.project LGPL 2.1

https://github.com/juzu/juzu
http://www.gnu.org/licenses/lgpl-2.1.html

Page 5 of 69

1.

1
Build, deploy and run

We will see in this chapter how to build and deploy a Juzu application.

1.1. Build
Building a Juzu application is usually done in two steps

Compile the application to its binary representation

Package the application as a war file

Compiling an application requires a few jars to be present on the compilation classpath:

The Juzu core jar for the Juzu API

The JSR-330 jar for the @Inject API

Any Juzu extension jar such as plugins or additinal template engines

After compilation, classes need to be packaged as a web application archive () and thenwar
deployed in a server. We will show several ways to package a Juzu application.

At the moment Juzu focuses on Maven because it is built with Maven, however that does not
mean that Juzu is coupled to Maven, in the future we will provide additional examples or
quickstart for alternative build systems.

1.1.1. With Maven

Juzu libraries are deployed in the , compiling an application with require aMaven Central repository
few dependencies to find the correct jars.

1.1.1.1. Using the Juzu Maven bom

The is a Juzu artifact that serves the purpose of building and packaging an application:bom

provide a set of dependencies that will be sufficient for compiling the application using its
Maven transitive dependencies

http://search.maven.org/

Page 6 of 69

2.

1.

2.

3.

1.

2.

3.

4.

provide a predefined assembly descriptor that creates a war file containing the application
classes, resources and libraries

To achieve the first step, we simply declare the following dependency in a Maven artifact:

<dependency>
 org.juzu<groupId> </groupId>
 juzu-bom-core<artifactId> </artifactId>
 0.7.0-beta15<version> </version>
</dependency>

Assembling the application requires more XML but is very straightforward:

<plugin>
 maven-assembly-plugin<artifactId> </artifactId>
 <dependencies>
 <dependency>
 org.juzu<groupId> </groupId>
 juzu-bom-core<artifactId> </artifactId>
 0.7.0-beta15<version> </version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <goals>
 single<goal> </goal>
 </goals>
 package<phase> </phase>
 <configuration>
 <descriptorRefs>
 tomcat-guice<descriptorRef> </descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
</plugin>

The plugin takes care of packaging the application:assembly

The plugin dependency declares on the artifact because it contains thejuzu-bom-core
predefined descriptors such as the descriptortomcat-guice

The goal of the assembly plugin is executed during the phasesingle package

The predefined descriptor packages the application for the Tomcat server andtomcat-guice
with the Guice framework

Any dependency on the application is packaged in WEB-INF/lib

The application classes are copied in WEB-INF/classes

The web application files are copied to the root of the archivesrc/main/webapp

Specific deployment descriptors may be copied in the war file depending on the

Page 7 of 69

3.

4.

predefined descriptor

In this example we used the predefined descriptor. The bom relies on the tomcat-guice Maven
, Juzu provides the that makes easy to packageAssembly plugin predefined assembly descriptors

a Juzu application:

Table 1.1. The predefined descriptors

tomcat gatein liferay

all tomcat gatein liferay

guice tomcat-guice gatein-guice liferay-guice

spring tomcat-spring gatein-spring liferay-spring

cdi tomcat-cdi gatein-cdi liferay-cdi

The predefined assembly descriptor does a similar job to the Maven packaging but withwar
more flexibility. To achieve the same result, the usage of a war packaging with the overlay
feature.

1.1.1.2. Juzu archetype

The following produces a base Juzu application for Tomcat with the Guice injection container:

Example 1.1. Generating an application for the Tomcat server and the Guice injection container

mvn archetype:generate \
 -DarchetypeGroupId=org.juzu \
 -DarchetypeArtifactId=juzu-archetype \
 -DarchetypeVersion=0.7.0-beta15 \
 -DgroupId=org.example \
 -DartifactId=myapp \
 -DpackageName=org.example.myapp \
 -Dversion=1.0.0-SNAPSHOT

The generated application is a quickstart ready to can be customzed for developing more complex
applications. The archetype uses the packager described in the previous section.

It is possible to generate the application for a different server and injection container:

http://maven.apache.org/plugins/maven-assembly-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html

Page 8 of 69

Example 1.2. Generating an application for the Tomcat server and the Spring injection container

mvn archetype:generate \
 -DarchetypeGroupId=org.juzu \
 -DarchetypeArtifactId=juzu-archetype \
 -DarchetypeVersion=0.7.0-beta15 \
 -DgroupId=org.example \
 -DartifactId=myapp \
 -DpackageName=org.example.myapp \
 -Dversion=1.0.0-SNAPSHOT \
 -DjuzuServer=tomcat \
 -DjuzuInject=spring

1.1.2. Using a prepackaged application

The Juzu distribution contains the Booking and Tutorial applications for GateIn and Liferay servers.
They can be used as basis to create applications.

1.1.3. Using an IDE

Juzu uses Annotation Processing Tool to perform many tasks at compilation time. APT is a
standard extension of a Java compiler. All Java IDE (Eclipse, Intellij and Netbeans) provide good
support for APT, we will show in the section how to configure and uses APT within those IDEs.

IDEs provide also Maven support, we will focus in this section on using APT without the Maven
support. Indeed the APT support may work differently when using Maven in your project, the
Maven and APT support within IDEs has a dedicated section.

1.1.3.1. Intellij support

todo

1.1.3.2. Eclipse support

todo

1.1.3.3. Netbeans support

todo

1.2. Deploy
At the moment the supported (i.e tested) portal servers are

Tomcat 6.x and 7.x

GateIn 3.2 / 3.3 / 3.4 and 3.5

Liferay 6.1

Other server may work but we are not aware of that as it was not tested in other environments.

Page 9 of 69

1.2.1. Tomcat

No specific deployment instruction.

1.2.2. GateIn

1.2.2.1. GateIn on Tomcat 6/7

No specific deployment instruction.

1.2.2.2. GateIn on JBoss AS 7

GateIn on JBoss AS7 requires a little modification to do:

Open the file and add modules/javax/api/main/module.xml <path
among the declaration: name="javax/annotation/processing"/> paths

<module = =xmlns "urn:jboss:module:1.1" name "javax.api">
 <dependencies>
 =<system export "true">
 <paths>
 =<path name "javax/annotation/processing"/>
 ...
 </paths>
 </system>
 </dependencies>
</module>

This configuration exposes the package to the classes seenjavax.annotation.processing

by Juzu.

1.2.3. Liferay

Liferay has been tested extensively with the Tomcat version, no specific deployment instruction is
required.

1.3. Run

1.3.1. Run modes

Juzu defines three modes for running an application, called :run modes

Production (): error reporting is minimalprod

Development (): provides verbose error reportingdev

Live (): allow to develop the application live with verbose error reportinglive

Page 10 of 69

1.3.2. How to choose the right run mode

When you are running an application use the run modeprod

When you are developing an application with a build system use the run modedev

When you are live developing an application use the run modelive

1.3.3. Configuring the run mode

Run mode is configured via servlet context parameters, by default the mode is enabled:prod

 : possible values , or juzu.run_mode prod dev live

 : the source path of the source to compile for the live modejuzu.src_path

Example 1.3. Configuring the dev mode in web.xml

<context-param>
 juzu.run_mode<param-name> </param-name>
 dev<param-value> </param-value>
</context-param>

Page 11 of 69

2
Phases

Request life cycle is the most important concept to get right when developping a web application,
whether it is a Juzu application or not. Juzu maps a request to a phase, in this chapter we will
explain the phase concept and its importance.

2.1. Phases
Juzu request life cycle is composed of four phases, we will explain three of them in this chapter,
the last one will be explained in another chapter of this guide.

The view phase : invoke the application to produce markup output aggregated within a page

The action phase : invoke the application to process an action

The resource phase : invoke the application to produce any kind of output as a full response
(i.e not in a page)

During the execution of a phase, parameters are provided by Juzu to execute the phase. Those
parameters are set by the application itself, for instance when it creates a link. The scope of the
parameters (i.e when the validity of the parameters) depends on the phase.

2.1.1. View phase

The view phase invokes the application for the purpose of creating markup. This phase is
indempotent, it means that repeated invocation of the same phase with the same parameters
should produce the same markup (supposing than the application does not depend on some other
state, like a database that could change over time).

View parameters are associated with the current URL, it means that they are somehow persistent.
For instance you interact with an application to change its view parameters on each request and
then you interact with another application on the same page: the view parameters will remain the
same accross the invocation of the view phase of the application when the second application is
used.

Page 12 of 69

1.

2.

3.

2.1.2. Action phase

The action phase invokes the application for processing an action. During the invocation, action
parameters are provided and their validity is limited to the current action phase being executed,
after they will not be anymore available.

The action phase is not idempotent, invoking several times an action phase could have side effects
such as inserting several times the same data in a database.

Juzu does not expect markup returned during this phase, however it provides the opportunity to
configure the view parameters of the next view phase.

2.1.3. Resource phase

The resource phase allows the application to produce a web resource such as an image or a full
page. When this phase is invoked, a set of resources parameters are provided in the URL
producing the resource.

2.2. Interactions
Now that we have an overview of the phase, it is time to connect them and explain the interactions
between the phases.

Figure 2.1. Interaction between phases

An action phase is invoked by an URL produced during a view phase, this URL contains the
action parameters

After an action phase a view phase is executed and the view parameters are updated

A resource phase is invoked by anURL produced during a view phase, this URL contains the
resource parameters

2.3. Mapping onto HTTP
As said before, phases and interactions have a natural mapping with the HTTP protocol. It is
worthy to explain it because it will help you to understand fully the interations managed by Juzu.

Page 13 of 69

2.3.1. View phase

View phases are mapped on requests:GET

The view phase is idempotent like GET

View parameters are identified to query parameters

The response returned by a GET request should remain identical for the same parameters

During a view phase, the application produces URL which can invoke any application phase.

Figure 2.2. View phase

In this example the view phase produce markup parameterized by the parameter havingcolor

the value.red

2.3.2. Action phase

Action phase are created from view phase by processing a link that was found in the markup
response. The action phase is mapped on requests:POST

Both action phases and POST request are not idempotent

Action parameters are identified to form parameters

Action phase and POST requests should not be invoked more than one time

Figure 2.3. Action phase

Now let's update our example and suppose that the application returns markup with a form that
invokes an action phase. When the user submits the form it triggers the action phase, which in
returns updates the view parameter of the next view phase to the value .color blue

Page 14 of 69

Figure 2.4. View phase after action phase

The HTTP redirection will update the browser to show the next view phase with the expected view
parameters.

During the action phase, the application configures the parameters of the next view phase. When
the invocation of the phase is over, the server redirects the browser (with an HTTP temporary
redirection) to the next view phase URL. This URL contains the view parameters. This mechanism
is well known as pattern and is often used to ensure that a POST request is not Redirect After Post
triggered several times when the refresh button of the browser is used.

2.3.3. Resource phase

Resource phases are trivially mapped on request pretty much like a view phase. The mainGET
difference is that the resource phase is responsible for managing the entire response instead of
just a fragment of the response.

http://fr.wikipedia.org/wiki/Post-Redirect-Get

Page 15 of 69

3
Controllers

Controllers play an essential role in a Juzu application: they contain the code executed when Juzu
processes a request, this chapter provides an in depth study of Juzu controllers.

3.1. Overview
Juzu controllers are simply annotated methods of the application, here is the most basic controller
declaration:

public Controller {class
 Response.Content index() {@View public
 Response.render();return "hello world"
 }
}

The annotation declares a controller, the name has a special meaning@juzu.View view index

as it will be used when no other controller is specifed in a Juzu request.

Controller methods can declare parameters for receiving request parameters:

public Controller {class
 Response.Content index(String person) {@View public
 Response.render(+ person == null ? : person);return "Hello " "world"
 }
}

Like previously, the controller returns the value when it is called the first time.index hello world
When the controller is called with the parameter it returns the hello string personalizedperson

with the corresponding parameter value: Juzu use the declared method parameter name to match
against the request parameters, in our case the request parameter.person

Any controller class (any class containing at least one controller method) generates a companion
class during the compilation of the project. Such companion class extends the original controller
class to provider companion methods for the controller method. The companion class has the
same name than the original class appended with the character:_

Page 16 of 69

public Controller_ {class
 Dispatch index() { }public static /* Generated code */
 Dispatch index(String person) { }public static /* Generated code */
}

Each methods generated a corresponding method companion. When any index index index

method is invoked it returns an object that generates the URL dispatching to thejuzu.Dispatch

corresponding phase when the method is invoked. When parameters are providedtoString()

they will be encoded in the generated URL.

@View Response.Content index() {public
 Response.render(+ Controller_.index() + ;return "Hello word. Say hello to Juzu"
}

URL companion methods have the name of the originating method appended with the suffix.URL
The method parameter types are the same.

3.2. Request routing
During a request, Juzu routes the request to the correct controller method. Previously we have
seen that any unmatched view phase request will be handled by the controller method.index

In this section we cover the binding of a controller method to a specific request. This binding is not
the same whether you are writing an application that deploys as a servlet or as a portlet.

The main difference between the two environements are the request and responses: servlets
interacts with the http protocol whereas the portlets interacts with the portal (which can turns into
the WSRP prococol in the case of a remote portlet).

In practice the main difference between servlet and portlet is the routing of the request: with a
servlet the controller methods needs to be bound to route.

3.2.1. Http request routing

When Juzu handles an http request it routes this request to a controller based on the request path.
Request routing is based on a set of route declarations, each declaration binds a route to a
controller method.

3.2.1.1. Default controller

Before discussing routing configuration, we shall remind the default controller method: the index
view controller method of the default controller will handle any unmatched request:

@View
 index() {public void

 // Handle unmatched request
}

When the application has a single controller class, the default controller is this controller. When
there are more than one controller, there is an ambiguity. In this situation the default controller

Page 17 of 69

should be specified in the annotation:@Application

@Application(defaultController = Controller.)class

3.2.1.2. Declaring a route

The annotation declares the route for a controller with a and an optional :@Route path priority

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})

 Route {public @interface

 /**
 * The route path.
 *
 * @return the route path
 */
 String value();

 /**
 * The route priority.
 *
 * @return the route priority
 */
 priority() ;int default 0

}

Controller method should declare an annotation, in practice with http the annotations @Route

, and are associated with an annotation.@View @Action @Resource @Route

Example 3.1. Declaring a controller route

@View @Route("/show")
 show() {public void

 ...
}

The request will be dispatched to the method./show show()

3.2.1.3. Route parameters

Route can declare parameters:

Example 3.2. Route parameters

@View @Route("/show/{id}")
 show(String id) {public void

 ...
}

In this example the route parameter will match the controller method parameter and aid id

Page 18 of 69

request like will invoke the method with the value./show/123 show(String id) 123

3.2.1.4. Route parameter pattern matching

Optionally, route parameters can match regular expression. This can be achieved with the @Param
annotation:

Example 3.3. Route parameter matching

@View @Route("/show/{id}")
 show(String id) {public void @Param(pattern="[0-9]+")

 ...
}

3.2.1.5. Route overloading

The same route can bound to different phases, the dispatch behavior depends on the http method:

in a method the phases priority are , , GET view action resource

in a method the phases priority are , , POST action view resource

Example 3.4. Route parameter matching

@View @Route("/show")
 showWithView() {public void

 ...
}

 @Action @Route("/show")
 showWithAction() {public void

 ...
}

With those rules:

A request on the path will invoke the methodGET /show showWithAction()

A request on the path will invoke the methodPOST /show showWithView()

3.2.1.6. Route priorities

When several routes match the same request, the router will use the first route found. The
 parameter of the annotation can be used to increase the priority of a route.priority @Route

This can be useful, specially when a route contains a parameter that could match another route
instead.

Page 19 of 69

Example 3.5. Route priority

@View @Route("/show/status", priority = 1)
 showStatus() {public void

 ...
}

 @View @Route("/show/{name}")
 show(String name) {public void

 ...
}

In the example, the controller will be invoked when the route isshowStatus() /show/status
requested. Without this higher priority, the controller might be invokedshow(String name)

instead. When no priority is specified, the default priority is .0

3.2.1.7. Redirect after post

As explained in the , an action never produces markup, instead an action phase isphases chapter
followed by a view phase that will return a markup response. Juzu handles this interaction with an
http redirection to the next view phase via the .redirect after post pattern

This behavior is good for the user because the browser will be updated with an URL of the view
phase that is bookmarkable and safely refreshable (i.e the user an refresh the page safely).

However Juzu does not enforce this behavior and it can be changed to have the view phase
immediatly invoked after the action phase.

@Action
@Route("/process")

 Response.View process() {public
 Controller_.index().withNo(PropertyType.REDIRECT_AFTER_ACTION);return
}

@juzu.View
@Route("/show")

 show() {public void
 //
}

3.2.2. Portlet request routing

Unlike the http protocol, the portlet request routing does not require the annotation@Route

because portlet requests are managed by the portal and have no concept of path mapping.

To achieve request routing, the portlet uses a special portlet request parameter named .juzu.op
This parameter determines which controller should be called during a phase. When the juzu.op
parameter is not present, Juzu will look for the view controller.index

3.3. Controller phases
There are several kinds of controllers bound to a request phase studied in the :???

Page 20 of 69

View controllers annoted with the annotation@juzu.View

Action controllers annotated with the annotation@juzu.Action

Resource controllers annotated with the annotation@juzu.Resource

Event controllers annotated with the annotation ()@juzu.Event not yet implemented

3.3.1. View controllers

A view controller method produces aggregated markup for the application, the invocation of the
method should produce markup that will be aggregated in larger page, therefore it should not care
about the overall HTML structure.

View parameters describe the current parameters of the view, they are often used for navigation
purpose in the application. Juzu supports simple data types such as string and structured data
types modelled by Java objects.

Simple data types can be the following types , and .String List<String> String[]

Later this will be expanded to more simple types such as number, etc..

Structured data types : todo

View controller method should return a object that is the content produced by thejuzu.Response

method. To be more precise it should return a or objectResponse.Body Response.Content

(the latter being a subclass of the former) that contains everything Juzu needs to display the
application.

 is a base class for content, it defines the method. Juzu invokes thisResponse.Content send

method when it needs to render the response produced by the view method. The invocation of the
 method will be performed after the view method is invoked.send

Could not locate the JavaCodeLink[juzu.Response.Content#send(juzu.io.Stream)] source

During the view phase a controller can generate URLs to other phases (except the event phase) by
using controller companion methods. Companion methods returns a object tojuzu.Dispatch

represent the URL. The final URL is returned by the method of the dispatch object.toString()

3.3.2. Action controllers

Action controller are executed during the action phase of a Juzu application. Usually action
methods perform two tasks

implement the logic of the application processing, for instance inserting an entity in the
database

configure the next view phase: setting the next view controller to display and configuring its
view parameters of the method when they exist

In the following example, the controller method creates a user and returns a createUser

 object that will tell Juzu to use the view controller during the nextResponse.View showUser

Page 21 of 69

view phase:

@Action
 Response.View addUser(String userName, String password) {public

 orgService.createUser(userName, password);
 Controller_.showUser(userName);return
}

 is a companion method that creates a object configured with theshowUser view Response.View

controller and arguments to use. Like url companion methods, view companion methods are
generated during the compilation of the project by Juzu.

3.3.3. Resource controllers

Resource controllers are similar to view controllers, however the resource has full control over the
target page. It means that a resource controller must produce the entire resource and it can also
chose the mime type returned. Resource controllers have several use cases:

Implement ajax resource serving

Produce an application resource, such as an image, a script, etc...

3.3.4. Event controllers

not yet implemented

3.4. Controller classes
Controller methods belongs to Java classes known as controller classes. Controller classes are
ordinary java classes, any class can be turned into a controller by declaring a controller method.
Controller classes are registered in the IOC container of the Juzu application, we will study later
the benefits.

3.4.1. Controller life cycle

We will study in this section the complete life cycle of a controller object. Juzu relies on the IOC
container for managing the life cycle of controller objects, based on the @javax.inject.Inject
annotation. If the controller desires, it can receive life cycle callbacks thanks to the

 and annotations.@javax.annotation.PostConstruct @javax.annotation.PreDestroy

Let's have a look at the complete life cycle of a controller object during a Juzu request:

Page 22 of 69

1.

2.

1.

2.

3.

3.

4.

1.

2.

5.

Figure 3.1. Life cycle of a controller object

Juzu begins the request, it will need an controller instance for the request and asks the IOC
container an instance

The IOC container creates a fully operational controller instance in several stesp

It gets a controller object instance either by creating a new instance by using the
default constructor or the constructor annotated with @Inject

It injects the controller declared dependencies by the annotation@Inject

It invokes any method annotated with @PostConstruct

Juzu obtains a valid controller instance and that method on the controllerdispatches

After the invocation, Juzu releases the controller instance and delegates it to the IOC
container again

It invokes any method annotated with @PreDestroy

It makes the instance available to the garbage collector

Juzu ends the request and use the objet returned by the controller methodResponse

Page 23 of 69

3.4.2. Controller dispatch

The bare minimum Juzu will do when dispatching to a controller method is to invoke this method
with the proper arguments and use the optionally returned object as a response for the request.

When the controller wants to deal with the dispatch in a generic manner (i.e detyped), it can
implement the interface that allows to:juzu.request.RequestLifeCycle

Be aware of the request life cycle around (i.e before and after) the controller method
dispatch

Control the response for the current request

Example 3.6. The RequestLifeCycle interface

public RequestLifeCycle {interface

 beginRequest(RequestContext context);void

 endRequest(RequestContext context);void

}

The method is invoked before the controller method invocation and the beginRequest

 is invoked after the controller method invocation.endRequest

The object provides a read/write access to a objectRequestContext juzu.Response

that is set with the response returned by the controller method invocation. The controller
method can declare no return type and instead set the response directly with the

 method.RequestContext#setResponse(juzu.Response)

When the controller method invocation throws an exception, the method willendRequest

be invoked with a response set on the .juzu.Response.Error RequestContext

The invocation can optionally set of response on the ,beginRequest RequestContext

when it does the dispatch will stop here and the provided response will be the request
response.

The invocation can optionally set a response on the , whenendRequest RequestContext

it does this overrides the previous response provided during the dispatch to the controller
method.

Page 24 of 69

4
Responses

Each request produces a response object: a subclass of the class.juzu.Response

Response objects are returned by method processing phases, the class of the object determines
the kind of response sent to the client. A response object may carry additional objects such as
assets (css or script).

Response object are created thanks to the static factory methods of the class.juzu.Response

The class is abstract and it has several subclasses that form a possible hierarchy ofResponse

response adapted to the phase being processed.

4.1. Content responses
A response is a markup or binary data, it can be created with the static method:content ok

 Response.Content<Stream.Char> ok(CharSequence content) { ... }public static

It can be used during a or phase to return markup:view resource

@View
 Response.Content index() {public

 Response.ok();return "Hello World"
}

4.2. Render response
A response extends a response, it specializes it for aggregated markup, i.e arender content
response where the application manages only one portion of the full page such as a portal:

@View
 Response.Content index() {public

 Response.ok().withTitle();return "Hello World" "The Hello"
}

Page 25 of 69

4.3. View response
 response is returned after the phase to configure the next phase. Usually viewView action view

responses are not created directly using static factory methods, instead they are created using
controller companion static methods, this will be in the controller chapter.explained

4.4. Redirect response
 responses are returned during an phase to redirect the user agent to an URL, itsRedirect action

usage is simple:

@Action
 Response.Redirect process() {public

 Response.redirect();return "http://www.host.com/"
}

4.5. Error response
 response can be returned during any phase to signal an application error. This kind ofError

response is different from a content response with a 5xx status code, however it can be turned into
a 5xx response to the client.

@View
 Response index() {public

 {try
 ...
 } (IOException e) {catch
 Response.error(e);return
 }
}

An error response can also be generated by the controller method by declaring the exception in its
throw clause, so the previous example is equivalent to:

@View
 Response index() IOException {public throws

 ...
}

Page 26 of 69

5
Bridges

The bridge is the runtime in which Juzu executes, until now Juzu provides two bridges:

The servlet bridge executes a Juzu application in a servlet container like Tomcat

The portlet bridge executes a Juzu application in a portlet container inside a portal

5.1. Servlet bridge
The servlet bridge exposes a Juzu application as a servlet in a Servlet Container.

5.1.1. Juzu servlet

The first step for using the servlet bridge is to configure the
 servlet for the application. There is a one to onejuzu.bridge.servlet.JuzuServlet

mapping between a Juzu application and a Juzu servlet. Therefore if you project contains several
applications, you should configure a Juzu servlet for each.

5.1.2. Servlet configuration

Declaring a Juzu servlet is done in the file of the web application:web.xml

Example 5.1. The Juzu servlet configuration

<servlet>
 JuzuServlet<servlet-name> </servlet-name>
 juzu.bridge.servlet.JuzuServlet<servlet-class> </servlet-class>
 <init-param>
 juzu.app_name><param-name> </param-name>
 my.application<param-value> </param-value>
 </init-param>
</servlet>
<servlet-mapping>
 JuzuServlet<servlet-name> </servlet-name>
 /<url-pattern> </url-pattern>
</servlet-mapping>

The init parameter tells Juzu the package of the application to use. The servlet isjuzu.app_name
bound on the / pattern as the default servlet of the web application.

Page 27 of 69

In case of several applications, each can be configured with a in addition of thepath mapping
default servlet:

Example 5.2. Path mapping configuration

<servlet-mapping>
 JuzuServlet<servlet-name> </servlet-name>
 /myapplication/*<url-pattern> </url-pattern>
</servlet-mapping>

Any other kind of than the default servlet (/) or path mapping is not supported andurl-pattern
will raise an error during startup

5.2. Portlet bridge
The portlet bridge exposes a Juzu application as a portlet in a Portlet Container.

5.2.1. Juzu portlet

The first step for using the portlet bridge is to configure the
 portlet for the application. There is a one to onejuzu.bridge.portlet.JuzuPortlet

mapping between a Juzu application and a Juzu portlet. Therefore if you project contains several
applications, you should configure a Juzu portlet for each.

5.2.2. Portlet configuration

Declaring a Juzu portlet is done in the file of the portlet application:portlet.xml

Example 5.3. The Juzu portlet configuration

<portlet>
 JuzuPortlet<portlet-name> </portlet-name>
 = Juzu Portlet Application<display-name xml:lang "EN"> </display-name>
 juzu.bridge.portlet.PortletBridge<portlet-class> </portlet-class>
 <init-param>
 juzu.app_name<param-name> </param-name>
 my.application<param-value> </param-value>
 </init-param>
 <supports>
 text/html<mime-type> </mime-type>
 </supports>
 <portlet-info>
 Portlet Application<title> </title>
 </portlet-info>
</portlet>

The init parameter tells Juzu the package of the application to use.juzu.app_name

Page 28 of 69

6
Inversion of Control

Juzu provides native support for Injection of Control (known as) and relies on the specification IOC
 (known as).JSR 330 @Inject

Although the JSR-330 is quite small it provides the necessary ground for building Juzu
applications. Juzu relies on the injection container for wiring the entire Juzu runtime (controllers,
templates, plugins, etc...).

We will explain how Juzu uses IOC for its runtime, we suppose the reader is familliar with IOC and
with the specification, in particular the notion of injection, scope and qualifier should be@Inject

familliar.

6.1. Containers
At the moment Juzu supports three containers implementing the JSR 330:

Spring Core 3

Context and Dependency Injection also know as implemented by the projectCDI Weld

Google Guice 3

CDI is a specification that extends the specification: CDI provides more features than@Inject
@Inject, however this specification is only implemented by Weld. Nevertheless if your choice
is to use CDI you will be leverage its specific features in your Juzu application

Juzu can run with any of those implementation and leaves you the choice of the IOC
implementation you want to use. The container to selection is done via the servlet context
parameter :juzu.inject

 for Google Guiceguice

 for Springspring

 for JBoss Weldweld

http://docs.oracle.com/javaee/6/api/javax/inject/package-summary.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://seamframework.org/Weld
http://code.google.com/p/google-guice/wiki/Guice30

Page 29 of 69

Example 6.1. Configuring the Spring container in web.xml

<context-param>
 juzu.inject<param-name> </param-name>
 spring<param-value> </param-value>
</context-param>

When no IOC container is specified the Guice container will be used

6.2. Inversion Of Control

6.2.1. Beans

Beans are simply object managed by the IOC container, any bean can be injected other beans:

@java.inject.Inject
Service service;

6.2.2. Scopes

Scopes define how a instances of a bean are managed by the IOC container: for a given bean,
shall it be instantiated only one time and shared or shall it instantiated everty time it is required ?
that's the kind of question that scope answers.

Juzu provides 4 scopes to use within your application:

 scope: a single bean instance is the same for the whole@javax.inject.Singleton

application

 scope: the bean is instantiated once per request@juzu.RequestScoped

 scope: the bean is instantiated once per session@juzu.SessionScoped

 scope: the bean is instantiated once per request but is reused if it@juzu.FlashScoped

was instantiated during an action request in the next render request and only in the first one

6.2.3. Qualifiers

Qualifier are designed to distinguish several instances of a same bean. How does a bean differ
from another bean ? it's not really possible to tell, qualifiers simply answer this question, allowing
to:

distinguish beans based upon the qualifier members

configure the bean instance for a particular usage

The JSR-330 specification provides the qualifier whose purpose is to give a name to a@Named

bean, for instance

Page 30 of 69

@Named("john")
 Person john;@Inject

@Named("peter")
 Person peter;@Inject

6.3. Beans in action
Beans are simply the objects managed by the IOC engine. In a Juzu applications we have several
kind of beans:

Controllers

Template

Application beans

Plugin beans

6.3.1. Template beans

Every template has a corresponding class at runtime. The templatejuzu.template.Template

class allows applications to interact with templates, most of the time for rendering purpose:

template.render();

A template bean is always qualified by the qualifier. The path qualifier is simply the value of@Path

the path relative to the package, for instance is a valid qualifier value. Thetemplates index.gtmpl
qualifier allows to have several instances and distinguish them.Template

Templates have the scope: a single instance of the template object is created and@Singleton

shared in the IOC container.

6.3.2. Controller beans

Each controller class is turned into a bean, that's how controllers can be injected with other beans.
As soon as Juzu finds a class annotated by , or , it is automatically@View @Action @Resource

turned into a bean.

Controller have the scope by default: every time a controller instance is required it will beRequest

created for the duration of the request. It is possible to change the scope of a controller by
annotating it with another scope annotation managed by Juzu:

@SessionScoped
 Controller {public class

 @View
 index() { }public void
}

Page 31 of 69

6.3.2.1. Injection a template into a controller

Injecting a template bean into a controller bean is probably the most common Juzu pattern:

@Inject
@Path("index.gtmpl")
Template index;

The template can then be used for rendering purposes:

@View
 index() {public void

 index.render();
}

6.3.3. Application beans

Application beans model the custom logic of an application, they are normally injected in controller
beans that use them when they process requests. The plugin allows an application tobinding
declare custom beans that can be used in the application.

6.3.3.1. POJO bean binding

Binding a Plain Old Java Object (POJO) is a very simple task to accomplish:

@Bindings(@Binding(Mailer.class))
 myapplication;package

The bean will be entirely managed by the IOC container, the binding plugin will just declare it in the
IOC container. The POJO will be created when needed, for instance when it is inserted in a
controller.

public MyController {class
 Mailer mailer;@Inject
 @Action
 sendMail(String recipient, String subject, String message) {public void
 mail.send(recipient, subject, message);
 }
}

6.3.3.2. Abstract bean binding

Binding an abstract class or an interface type is also possible with the memberimplementation

of the annotation:@Binding

@Bindings(@Binding(value=Mailer.class,implementation=MailerImpl.class))
 myapplication;package

Page 32 of 69

6.3.3.3. Binding with a provider

Sometimes the implementation cannot be created by the IOC container, for instance it may not
have a correct constructor, it can only be retrieved using a factory or it should be configured before
being used. For such scenarios the implementation can specify a class implementing the

 interface.javax.inject.Provider

public ConfiguredMailerProvider javax.inject.Provider<Mailer> {class implements

 String emailprivate
 String password;private

 ConfiguredMailerProvider() {public
 .email = System.getProperty();this "mailer.email"
 .password = System.getProperty();this "mailer.password"
 }

 Mailer get() {public
 MailerImpl(email, password);return new
 }
}

Thanks to the provider, we have a provider that returns a configured beforeMailer MailerImpl

usage.

6.3.3.4. Scoped binding

The annotation provides room for declaring a bean scope:@Binding

@Bindings(@Binding(value=Mailer. ,scope=Scope.SINGLETON))class

When the scope is not specified, the scope is determined from the bean or implementation that
should be annotated with a scope annotation. When it is specified, it overrides the annotation
scope the bean could declare.

6.3.3.5. Qualifying provider

A provider implementation can declare qualifiers on the method they implement in order to setget

the qualifiers of the returned bean:

public MailerProvider Provider<Mailer> {class implements
 @Named("mailer")
 Mailer get() {public
 MailerImpl();return new
 }
}

This is useful for declaring qualifiers on a class that is not annotated by qualifiers, because it is not
possible to declare qualifiers in an annotation due to limitations of the Java language.@Binding

Page 33 of 69

6.4. Provider factories
Provider factories provides plugability for integrating beans that are not managed by the IOC
container. The provider factory is a factory for whose purpose is tojavax.inject.Provider

return a provider for a specific class. Usually provider factories will lookup the service in a registry
(like another IOC container) and returns a provider that return them lazily or not.

The provider factory defines the method:getProvider

 /**
 * Returns a provider for a specific type or null if it cannot be produced.
 *
 * @param implementationType the implementation class object
 * @param <T> the implementation generic type
 * @return a provider for this class or null
 * @throws Exception any exception that would prevent to obtain the provider
 */
 <T> Provider<? T> getProvider(Class<T> implementationType)extends
 Exception;throws

The factory implementation must provide a public zero argument constructor and it will be
instantiated during the application boostrap by Juzu to obtain the provider. The returned providers
will then be bound into the IOC container.

The IOC container uses the discovery mechanism for findingjava.util.ServiceLoader

provider factories when injection occurs.

Let's study a simple example with a provider for the current time:

Example 6.2. Time provider factory

package my;

 TimeProviderFactory java.inject.ProviderFactory {public class implements
 <T> Provider<? T> getProvider(Class<T> implementationType) Exception {public extends final throws
 (implementationType == java.util.Date.) {if class
 Provider<T>() {return new
 T get() {public
 implementationType.cast(java.util.Date());return new
 }
 };
 }
 {else
 null;return
 }
 }
}

This provider should be declared in the file:META-INF/services/juzu.inject.ProviderFactory

Page 34 of 69

Example 6.3. Time provider configuration

my.TimeProvider

Page 35 of 69

7
Templating

Templating is the part of a Model View Controlle architecture. We will study in this chapterView
how the templating system interacts with the Juzu, at compilation time and at runtime, both aspects
are very important.

7.1. The templating engines
Juzu can use several templating engines, it provides a native template engine as well as the
Mustache templating engine. Those engines are not competing, instead they should be seen as
alternatives: the native Groovy engine provides the goodness of the Groovy languages, however
sometimes some people prefer logic-less templates and is a template engine theyMustache
should use. Let's introduce them briefly.

7.1.1. The native template engine

The native template engine extends the : it can include snippet ofGroovy templating system
Groovy code or resolve Groovy expressions:

7.1.1.1. Expressions

Expressions are simply Groovy expressions wrapped with the syntax:${...}

The sky is ${color}

7.1.1.2. Scriplets

Groovy code can also literaly be used with the syntax: . Within a scriptlet the scriplet <% ... %>

 implicit object can be used for outputting markup:out

<% ["red","green","blue"].each({ color -> out.print("The sky is " + color + "") }) %>

The scriplet syntax can also be used:<%= ... %>

The sky is <%= color %>

http://mustache.github.com/
http://groovy.codehaus.org/Groovy+Templates

Page 36 of 69

7.1.1.3. Controller urls

Controller urls is natively supported by the engine, it allows to create controller URL with a short
and compact syntax :@{...}

Example 7.1. Controller URL syntax

Home

URL expressions can contain parameters and they must be named:

Example 7.2. Controller URL with parameters

Purchase

The method refers to a controller method, when the application has several controllers,purchase
the controller name can be used to prefix the url expression and remove the ambiguity:

Example 7.3. Explicit controller URL

Purchase

Under the hood the controller URL syntax uses the controller compagnion for creating the URL: the
 will uses the controller compagnion Controller.purchase(product=1)

.Controller_#purchase(String product)

7.1.1.4. Messages

You can resolve a message in resource bundles in a template with the syntax:&{...}

Example 7.4. Message syntax

<label>&{color}</label>
<input type="text" name="color">

When the message is not found, no output will be done. The resource bundle is resolved with the
current user locale.

This feature at the moment only works with portlets that supports resource bundle declaration
natively

7.1.1.5. Taglib

The native engine provides taglib support using the or syntax:#{tag}...#{/tag}} #{tag/}

Page 37 of 69

#{title value=Hello/}

Available tags are explained in the .taglib chapter

7.1.2. The Mustache template engine

The Mustache template engine uses templates based on the Java port oflogic-less Mustache.java
Mustache. Mustache is very easy to use, you can read the , however we will have adocumentation
quick overview of how it can be used in Juzu:

7.1.2.1. Variables

Variables uses the syntax, they are resolved against template parameters or beans.{{...}}

The sky is {{color}}

7.1.2.2. Sections

Mustache sections allows to iterate expressions that are multivalued.

todo

7.2. Using templates
A template as seen by an application is a bean managed by the IOC container.

7.2.1. Template declaration

Applications use a template by injecting a object in its controllersjuzu.template.Template

qualified by the annotation:juzu.Path

Example 7.5. Using a template

public Controller {class

 @Inject
 @Path("index.gtmpl")
 Template index;

 @View
 index() {public void
 index.render();
 }
}

Declares the template path

Renders the template and send the markup to the response

https://github.com/spullara/mustache.java
http://mustache.github.com/mustache.5.html

Page 38 of 69

The annotation is a qualifier annotation managed by the IOC container. It is veryjuzu.Path

similar to the qualifier, but it has a special meaning for Juzu for declaring@javax.inject.Named

the template.

The method of a template returns a response which can alsorender juzu.Response.Content

be returned by the controller method. This is equivalent to the previous example.

Example 7.6. Returning the generated juzu.Response.Content

 @View
 Response.Content index() {public
 index.render();return
 }

7.2.2. Type safe parameters

Template type safe parameters brings more type safety in your applications. Templates can
declare parameters and they are made available on a subclass of the

 class.juzu.template.Template

Parameters are declared using the taglib support of the native template engine

Example 7.7. Native template parameter declaration

#{param name=color/}
The sky is ${color}.

or the pragma support of the Mustache engine

Example 7.8. Mustache template parameter declaration

{{%param color}}
The sky is {{color}}.

When the template is declared in a controller, a subclass of can bejuzu.template.Template

used:

Page 39 of 69

package weather;

 Controller {public class

 @Inject
 @Path("sky.gtmpl")
 weather.templates.sky sky;

 @View
 index() {public void
 sky.with().color().render(); "blue"
 }
}

The typed template classweather.templates.sky

Use the template parametersky color

The class does not exist in the original source but it is available whenweather.templates.sky

the application is compiled because it will be generated by Juzu compiler integration. The sky
templates provides a syntax to bind parameters: f luent

.sky.with().color("blue").render()

7.2.3. Expression resolution

When we studied the templating engine syntax but we did not mentioned exactly how expression
are resolved.

7.2.3.1. Single name expressions

Both templating system provides a syntax for resolving single name expressions:

 for Groovy${...}

 for Mustache{{...}}

Resolution is performed against template parameters or bean named with the
 qualifier.javax.inject.Named

Example 7.9. Named bean

@javax.inject.Named("color")
 Color {public class

 String toString() {public
 ;return "red"
 }
}

Page 40 of 69

Example 7.10. Template parameters

index.with().set(,).render(); "color" "red"
index.with().color().render(); "red"

Detyped version

Type safe version

7.2.3.2. Compound expressions

Compound expressions are resolved the same way for the first name and the expression resolve
will attempt to navigate the rest of the expressions from this object:

 for Groovy${weather.color}

 for Mustache{{#weather}}{{color}}{{/weather}}

Example 7.11. Named bean

@javax.inject.Named("weather")
 Weather {public class

 String color;private

 Weather(String color) {public
 .color = color;this
 }

 Weather() {public
 .color = ;this "red"
 }

 String getColor() {public
 color;return
 }
}

Example 7.12. Template parameters

index.with().set(, Weather()).render(); "weather" new "blue"
index.with().color(Weather()).render(); new "blue"

Detyped version

Type safe version

}}}

Page 41 of 69

8
Templating SPI

This chapter dives into the template life cycle from the compilation time to the run time. We will
describe the template Service Provider Interface (SPI), the SPI is designed to make Juzu
templating extensible and integrating template engines in Juzu. This chapter is optional is you are
only writing ab application with Juzu, however it is a must read if you want to know more Juzu
internals or if you want to understand how to integrate a template engine in Juzu.

When a Juzu application is compiled, the Juzu annotation processor detects the @Path
annotations and triggers the compilation of the related templates. The template compilation can be
split in two parts:

Generating the template companion class that inherits the juzu.template.Template
class. This part is generic and works with any templating system, it is entirely managed by
Juzu.

Processing the template file, this task is delegated to the interface andTemplateProvider

is extensible. The provider allows to have several templating system in Juzu and decouples
the template compilation process from the details of the templating engine.

8.1. Compiling a Groovy template
Let's study an example with the Groovy template at compilation time.

Page 42 of 69

1.

2.

1.

2.

3.

4.

Figure 8.1. Compiling a Groovy template

When the Java compiler is invoked, the following steps are executed

The Java compiler triggers the Juzu annotation processor when it finds the @Path
annotation

Juzu resolves the relative path to the package of the applicationtemplates

When the template cannot be resolved a compilation error is triggered

Otherwise the template is loaded

The template provider is looked up according to the file name extension, it generates the
 source fileindex_.groovy

Juzu creates the class that extends the classindex juzu.template.Template

annotated by the annotation@Path("index.gtmpl")

After that the only remaining part is to compile the source to a class. It can beindex_.groovy
achieved either at build time using the compiler or at load time when the templategroovyc index

is loaded using a . The former approach makes the build a bit moreGroovyClassLoader

complex (but not much as Groovy compilation is fairly well supported in build systems or IDEs) as
it requires to run a Groovy compilation but it will perform additional validation of the template as
well as reduce the load time of the template. The later approach will detect any compilation error
(such as Groovy syntax error) at runtime and the compilation will take a fewindex_.groovy
milliseconds.

This flexibility allows to use the lazy approach during development and when the application is
released then the Groovy compiler can be used to compile the .index_.groovy

Page 43 of 69

8.2. Type safe URL resolution
Groovy templates provides the syntax for generating URL from the application controllers.@{...}

This section gives an overview of the underlying resolution mechanism.

Figure 8.2. Template URL resolution during compilation

Parse: the template is parsed into its model representation

Resolve: the link is resolved againt the controller meta modelindex

Validate: the link is validatedindex

Emit: the corresponding file is emitted and save on the class outputindex_.groovy

Compile: the Groovy source is compiled into a class by the compiler (this part isgroovyc
done after)javac

8.3. Template Service Provider Interface
Juzu provides a Service Provider Interface (SPI) for integrating thirdparty template engine. Actually
all template system are integrated with the SPI. We will study briefly the integration points so you
can integrate a template engine of your choice in Juzu.

8.3.1. Template providers

The is the main entry point when ajuzu.impl.template.spi.TemplateProvider

templating system is integrated. The provider is triggered during the compilation phase by the APT
system built into the Java compiler.

Page 44 of 69

/**
 * A provider for templating system.
 *
 * @author Julien Viet
 * @param <M> the template model
 */

 TemplateProvider<M Serializable> {public abstract class extends
 ...
}

The provider must declare the template model generic type, this type must be a serializable as<M>

Juzu will sometimes write template models on the disk during the compilation. This usually
happens only in Eclipse due its incremental compiler architecture. The type specified by the
provider is privately managed (i.e it is opaque for Juzu) and it symbolizes an internal
representation of the parsed source (usually an Abstract Syntax Tree), it will be used in various
methods of the provider.

Let's have a review of the methods of this class to have a better understanding.

 String getSourceExtension();public abstract

The method is used to determine what file extension the provider cangetSourceExtension()

compile. The implementation should return a constant value, for instance the Groovy provide
simply returns the value.gtmpl

 M parse(public abstract
 ParseContext context,
 CharSequence source) TemplateException;throws

 process(public abstract void
 ProcessContext context,
 Template<M> template) TemplateException;throws

 emit(public abstract void
 EmitContext context,
 Template<M> template) TemplateException, IOException;throws

The , and methods care about transforming the template source to its finalparse process emit

representation: the compiled template.

The method is invoked with the content of the template and returns a template model.parse

The representation returned by the parse method is a parsed representation of the template
source. If a parsing error occurs the method can throw a .TemplateException

The method is invoked after the template is parsed with the necessary context forprocess

performing further processing of the template, for instance the Groovy templating engine
performs the resolution of type safe URLs or type safe parameters declaration at this
moment. During the process:

The provider can resolve other templates using the , if the templateProcessContext

Page 45 of 69

to resolve is not yet loaded it will trigger the / / lifecycle, it if wasparse process emit

already processed the template is simply returned

The implementation can resolve controller methods and translate them into method
invocation, this is used for checking type safe URL and translating them into controller
companion invocation

The argument represents the template, itjuzu.impl.template.spi.Template

has several fields such as the template model or the template path

The implementation can declare type safe parameters using the
 method. The declared parameters will beTemplate#addParameter(String)

generated on the subclassjuzu.template.Template

The method is invoked when the template processing is over. The emit EmitContext

interface can be used to create resources during this round.

 Class<? TemplateStub> getTemplateStubType();public abstract extends

Finally the returns the type of a java class that will be used forgetTemplateStubType()

creating a template stub. For each template, a stub is created, the stub is responsible for loading
the template at runtime, i.e the original template or the compiled template that may have been
generated during compilation during the callback.emit

8.3.2. Template stub

Template stubs are java classes created by Juzu for managing a template at runtime on behalf of
the provider. Each provider provides its own stub implementation as a

 subclass.juzu.impl.template.spi.TemplateStub

A stub must provide a public constructor accepting a argument: the templatejava.lang.String

id. The template id if the class name of the generated template. In addition, a stub must implement
two abstract methods:

 doInit(ClassLoader loader);protected abstract void

 doRender(TemplateRenderContext renderContext)protected abstract void
 TemplateExecutionException, IOException;throws

The method loads the template using the provided , it will be call only oncedoInit ClassLoader

before the template is rendered. Usually it uses the template id provided during the construction of
the template to locate the template on the disk, in its original form or in its compiled form.

The method renders the template using the provided . ThedoRender TemplateRenderContext

render context provides the necessary hooks such as:

Producing markup

Setting the title

Page 46 of 69

Obtaining the locale

Accessing parameters or application beans for resolving expressions

8.4. Template at work
After having described the various pieces of the templating SPI, let's look at how the template
generated stubs are used by Juzu templating system at runtime.

When the controller declares the template the compiler produces three artifactsindex.gtmpl

the class template inherits : it is the only class visibleindex juzu.template.Template

from the controller and the whole application

the Groovy template is the effective template code: it produces the markup,index_.groovy
resolve expressions, etc...

Figure 8.3. index groovy at work

When a controller is instantiated, the template instance is injected into the controller, the index

 annotation plays an essential role because it's a qualifier and that qualifier is used to@Path

distinguish the correct subclass to inject in the controller.

When the template is created, the corresponding template stub is instantiated. When the template
needs to be rendered, the method of the stub is invoked. At this momentdoInit(ClassLoader)

the Groovy class is loaded from the class loader, when the class is not found, the index_

 is loaded and it is compiled on the fly.index_.groovy

Page 47 of 69

8.5. Qualified template class
Controller can be injected with the class, however they can also bejuzu.template.Template

injected with the template subclass that was genereted by Juzu: instead of using the qualified
template injection, the controller declares the template subclass. This approach cab be usedindex
when type safe parameters are used as only the type declares the fluent API.index

For instance if the declares the parameter the class will look like:index.gtmpl color index

@Path("index.gtmpl")
 index Template {public class extends

 ...

 index with() {public
 index.Builder();return new
 }

 Builder Template.Builder {public class extends

 Builder color(String color) {public
 // Generated code
 }
 }
}

The controller can then use the fluent API:

public Controller {class

 @Inject
 @Path("index.gtmpl")
 Template index;

 @View
 index() {public void
 index.with().color().render();"red"
 }
}

Page 48 of 69

9
Taglib

A tag library is an essential component of a templating system, allowing to enrich a templating with
encapsulated programmable logic.

Juzu does not yet allow application to define their own tags, it will be added a a new feature
in a future version.

9.1. Taglib syntax
Like most taglib syntaxes, Juzu provides two syntaxes for invoking a tag:

Example 9.1. Start and end tag syntax

#{foo}bar#{/foo}

The start/end syntax opens the tag with and ends it with .#{foo} #{/foo}

A tag can also be empty:

Example 9.2. Empty tag syntax

#{foo/}

A tag can also be invoked empty with the syntax.#{foo/}

9.2. Include tag
The tag simply includes a template inside the current template. The inclusion is dynamicinclude
and not static, meaning that the content of the included template is not in the callinginserted
template, instead when inclusion is performed the control is passed to the included template.

Page 49 of 69

Example 9.3. The include tag

#{include path=dispatched.gtmpl/}

The attribute determines the template to include, the path value is relative to the templatespath
package.

9.3. Decorate / Insert tag
The tag allows the content of the decorating template to wrap the content of the templatedecorate
invoking the tag. The tag should be used in the decorating template to specify the placeinsert
where to insert the markup produced by the template to decorate.

Example 9.4. The wrapped template

#{decorate path=box.gtmpl/}

Example 9.5. The decoraring template

<div style="border: 1px solid black">
#{insert/}
</div>

9.4. Title tag
The tag specifies a title to insert in the object the template willtitle juzu.Response.Content

produce.

Example 9.6. Setting the title

#{title value=Home/}

9.5. Param tag
The tag enhances the type safety of templates, allowing to declare parameters for executingparam
a template. When such a parameter is declared, the generated template class companion will have
a fluent parameter for setting the value of the parameter:

Example 9.7. Declaring a template parameter

#{param name=color/}

Page 50 of 69

Example 9.8. Using the template parameter

@Inject my.templates.index index;

@View
 index() {public void

 index.with().color().render();"red"
}

Page 51 of 69

10
Assets

Web assets are resources used over the web such as stylesheet and script files.

10.1. Asset serving
Assets are declared by the application with the following attributes:

an to reference itid

a defining where to find the assetlocation

a for locating the assetsource

a list of referencing other assets specifying the assets that needs to be serveddependencies
before the declaration

When an application is deployed, assets are registered with the . The assetasset manager
manager has several responsibilities:

manage asset dependencies: the order in which assets are literaly declared when they are
served. For instance the asset depends on the asset because the jqueryjquery-ui jquery
script must be loaded before the script.jquery-ui

resolve asset references: each asset reference must be resolved and produce a final web url
that will produce the resource when it is resolved by the web browsers

During a request, asset identifiers are added to the response. At the end of the request, the
runtime uses the asset manager to translate the response assets into a list of uri to add to the
page.

Page 52 of 69

Figure 10.1. Using assets in a request

An asset reference is a link to an asset value that is configured externally, thus an asset of any
kind will always resolve to a location and an uri. Let's examine the different possible asset location:

: the value is opaque to Juzu, for instance the a CDN hosted scriptAssetLocation.URL

such as .https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js

: the asset is served by the same web server in which Juzu isAssetLocation.SERVER

deployed. If the asset value is relative, the final uri will resolve relatively to the web archive
context address.

: the asset is served by Juzu (a servletAssetLocation.APPLICATION asset server
configured in the web application) and the resource is located on the classpath.

10.2. Asset server
For serving classpath assets, Juzu requires the configuration of the asset server as a servlet
declaration:

<servlet>
 AssetServlet<servlet-name> </servlet-name>
 juzu.impl.asset.AssetServlet<servlet-class> </servlet-class>
 0<load-on-startup> </load-on-startup>
</servlet>
<servlet-mapping>
 AssetServlet<servlet-name> </servlet-name>
 /assets/*<url-pattern> </url-pattern>
</servlet-mapping>

This declaration should be in the of the application whether it is a servlet or a portletweb.xml
application.

If you are using Servlet 3.0, this declaration is not necessary

Page 53 of 69

10.3. Asset plugin
The asset plugin provides declarative asset configuration, it will take care of registering assets on
the asset manager. The annotation declares a list of assets used by the an application.@Assets

Example 10.1. JQuery UI declarative asset configuration

@Assets(
 scripts = {
 @Script(id = "jquery",
 src = "javascripts/jquery-1.7.1.min.js"),
 @Script(src = "javascripts/jquery-ui-1.7.2.custom.min.js",
 depends = "jquery")
 },
 stylesheets = {
 @Stylesheet(src = "ui-lightness/jquery-ui-1.7.2.custom.css")
 }
)

 my.application;package

Declares the jquery asset

Declares the jquery-ui asset

Make jquery-ui depend on jquery

The assets will be served by the asset servlet because the application location is the default when
not specified. The first annotation declares the JQuery asset reference identified by the @Script

 member as being . The second annotation declares the JQuery-UI plugin, itid jquery @Script

does not need an member because nothing refers to it, however it declares a dependency withid
the member that declares it depending on the asset. JQuery-UI requires also adepends jquery
stylesheet to be served along with the script, it is achieved thanks to the @Stylesheet
annotation.

10.3.1. Application assets

Applications assets can be located anywhere on the application classpath, they can be either
absolute or relatives. Relative assets declared by the asset plugin must be located in the assets
package of the application, for instance an application packaged under willmy.application

have its relative assets located under .my.application.assets

Example 10.2. Declarative relative application asset configuration

@Assets(scripts = @Script(
 src = "myscript.js"))

 my.application;package

The location is not declared because it is the default one.AssetLocation.APPLICATION

Page 54 of 69

10.3.2. Server assets

Server assets are served by the webserver in which the application is deployed. Relative server
assets are served from the war file containing the application.

Example 10.3. Declarative relative server asset configuration

@Assets(scripts = @Script(src = "myscript.js", location = AssetLocation.SERVER))
 my.application;package

10.3.3. External assets

External assets declares an opaque URL for Juzu.

Example 10.4. External classpath asset configuration

@Assets(scripts = @Script(
 src = "https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js",
 location = AssetLocation.CLASSPATH))

 my.application;package

10.4. Managing assets programmatically
The annotations will serve all the declared assets in and .@Assets scripts stylesheets

Sometimes it is convenient to declared assets but serve them upon application request. This can
be achieved with the and declarations:declaredScripts declaredStylesheets

@Assets(declaredScripts = @Script(
 id = "myscript",
 src = "myscript.js"))

 my.application;package

When an application requires an asset, it adds the asset to the object:Response.Content

@Inject
@Path("index.gtmpl")
Template index;

@View
 Response.Content index() {public

 Response.Content render = index.render();
 render.withScript();"myscript"
 render;return
}

The same with a fluent syntax:

Page 55 of 69

@Inject
@Path("index.gtmpl")
Template index;

@View
 Response.Content index() {public

 index.render().withScript(myscript));return ""
}

Page 56 of 69

11
Javascript modularity

The AMD plugin provides declarative support for JavaScript modules using annotations. It relies on
the specification implemented by the project.Asynchronous Module Definition RequireJS

11.1. Introduction to modules
JavaScript does not provide a natural way for namespacing, the notion of module was designed to
solve this problem. This natural lack of namespacing can be perceived as a lack, instead it should
be seen as an advantage as modules provide namespacing and more: indeed the module pattern
allows to create dependencies between modules and resolve them at runtime enabling on demand
and parallel loading of JavaScript resources.

This guide will not explain modules because we haven’t designed a module system for Juzu.
Instead Juzu uses the RequireJS library and integrates it. Therefore the best documentation you
can read about modules is the RequireJS documentation you can also read the excellent article
about modules in depth.

In the essence the notion of module can be viewed as:

An identifier

A list of dependencies on the modules required by the module to work properly

The code packaged usually expressed as a self-executing function

The product which is an object produced by the module that is usually consumed by other
modules

At runtime the dependency system defines a graph of function to execute, the product of each
module being injected in the other modules. It can be seen as a simple dependency injection
system able to load modules in an asynchronous and parallel fashion providing parallel loading,
namespacing and dependency management.

https://github.com/amdjs/amdjs-api/wiki/AMD
http://requirejs.org/
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html

Page 57 of 69

11.2. Defining a module
The and are used to declare the JavaScript which is either a canonical@Defines @Define

module as defined by the AMD specification or a simple self-executing function.

When the javascript is self-executing function, this script is wrapped to provide the expected
RequireJS format, let's study a quick example with a module:

Example 11.1. Defining a simple module

@Defines(value={@Define(name="Foo", path="foo.js")})
 my.applicationpackage

Example 11.2. The ##foo.js## self-executing function

(function () {
 //Do something
})();

Equivalent to this declaration in the RequireJS format:

define(, function() {"Foo"
 return //Something
});

Modularity allows to define cross dependencies between modules, the annotation allows@Define

that:

Example 11.3. Defining a module with dependencies

@Defines(
 value = {
 @Define(name="Foo", path="foo.js"),
 @Define(name= , path= , dependencies={"Bar" "bar.js" @Dependency(name="Foo", alias="foo")}}
)

Example 11.4. The ##bar.js## self-executing function

(function(foo) {
 //Do something
})(foo);

Equivalent to this declaration in the RequireJS format:

define(, [], function(foo) {"Bar" "Foo"
 return //Something
});

Page 58 of 69

The Juzu AMD plugin allows to provide custom adapter for adapting the script to the expected
format. With this flexibility it is possible to declare an adapter wrapping the adapted script. The
jQuery library is a good example of how a custom adapter can be useful. Thanks to the adapter
feature we can reuse the jQuery without any change:

Example 11.5. The jQuery uses the following construct for defining itself

(function(window, undefined) {
})(window);

The main issue with this construct is that it will bind jQuery to the window but most importantly it
will not return any value as expected by the dependency system. Thanks to the custom adapter we
can integrate it easily:

@Define(
 id = ,"jquery"
 path= ,"jquery-1.7.1.js"
 adapter=)"(function() { @{include} return jQuery.noConflict(true);})();"

The adapter attribute can contains mixed content and the will perform a mere@{include}

inclusion (as a C language includes) of the original jQuery script in the resulting module:

define(, [], function() {"jquery"
 (function() {return
 (function(window, undefined) {
 })(window);
 jQuery.noConflict(true);return
 })();
});

The Juzu AMD definition adapts only the javascript located at
. The annotation must be used for other kind ofAssetLocation.APPLICATION @Require

locations.

11.3. Requiring a module
The Juzu AMD annotation only register a JavaScript module for RequireJS Loader. It@Require

does not wrap or adapt content and does not manage module dependencies.

Here is an example of using and to register the script and the @Requires @Require foo.js

 scripts that depends on .bar.js foo.js

@Requires (
 value = {
 @Require(id = "Foo", path = "foo.js"),
 @Require(id = "Bar", path = "bar.js")}
)

 my.application;package

Page 59 of 69

Example 11.6. The ##foo.js## module declaration

define(, function() {"Foo"
 {return
 text: "Hello"
 };
});

Example 11.7. The ##bar.js## module declaration

define(, [], function(foo) {"Bar" "Foo"
 {return
 text : foo.text + " World"
 };
});

Page 60 of 69

12
Juzu Servlet Plugin

The servlet plugin enhance Juzu servlet applications.

12.1. Servlet class generation
A Juzu servlet application is managed by a configured with the application name.JuzuServlet

Since Servlet 3.0, configuration can be easier thanks to servlet annotations. Juzu leverages this
capability and is able to generate a servlet for an application with the

 annotation:juzu.plugin.servlet.Servlet

Example 12.1. Juzu servlet generation

@Application
 @Servlet("/")

 my.application;package

The application url-pattern

12.2. Asset server automatic registration
The jar of the servlet plugin contains a that automatically declares the assetweb-fragment.xml
servlet simplifying further more the configuration of the application.

Page 61 of 69

13
Juzu Portlet Plugin

The portlet plugin enhance Juzu portlet applications.

13.1. Portlet class generation
A Juzu portlet application is managed by a configured with the application name.JuzuPortlet

The annotation can be used to generate a subclass of the @juzu.plugin.portlet.Portlet

 that configures the application name for you, easing the configuration of the JuzuPortlet

 corresponding section.portlet.xml

@Portlet
 my;package

<portlet>
 MyApplication<portlet-name> </portlet-name>
 = My Application<display-name xml:lang "EN"> </display-name>
 myapp.MyPortlet<portlet-class> </portlet-class>
 <supports>
 text/html<mime-type> </mime-type>
 </supports>
 <portlet-info>
 My Application<title> </title>
 </portlet-info>
</portlet>

The plugin will generate the portlet using the application name with the first letter capitalized and
the suffix. In our example the application generates the class. If you don'tPortlet my MyPortlet

like it you can change the name of the generated class in the application:

@Portlet(name "MyGreatPortlet")
 my;package

Page 62 of 69

<portlet>
 MyApplication<portlet-name> </portlet-name>
 = My Application<display-name xml:lang "EN"> </display-name>
 myapp.MyGreatPortlet<portlet-class> </portlet-class>
 <supports>
 text/html<mime-type> </mime-type>
 </supports>
 <portlet-info>
 My Application<title> </title>
 </portlet-info>
</portlet>

13.2. Portlet preferences injection
During the various phase of an application, the current portlet preferences can be injected::

Example 13.1. Injecting portlet preferences

@Inject javax.portlet.PortletPreferences preferences;

The same restriction defined in the portlet specification applies to the provided preferences
object: i.e saving preferences can only be performed during an action phase.

13.3. Resource bundle injection
During the various phase of an application, the portlet resource bundle for the current locale can be
injected:

Example 13.2. Injecting the portlet resource bundle

@Inject java.util.ResourceBundle bundle;

This is equivalent of doing:

Locale locale = request.getLocale();
ResourceBundle bundle = portlet.getConfig().getResourceBundle(locale);

This resource bundle can be configured in the deployment descriptor.portlet.xml

13.4. Building
Add the Portlet plugin jar to your compilation classpath.

In Maven it can achieved by adding the Less plugin dependency to your POM:

Page 63 of 69

<dependency>
 org.juzu<groupId> </groupId>
 juzu-plugins-portlet<artifactId> </artifactId>
 0.7.0-beta15<version> </version>
</dependency>

Page 64 of 69

14
Juzu File Upload Plugin

The file upload plugin integrates in Juzu. The plugin decodesApache Commons FileUpload
multipart requests as file objects and can inject them as controller method parameters. This plugin
works with the servlet bridge and the portlet bridge.

14.1. File upload in an action phase
File upload can be handled during an action of a portlet or a servlet:

@Action
@Route("/upload")

 upload(org.apache.commons.fileupload.FileItem file) {public void
 (file != null) {if
 // Handle the file upload
 }
}

The annotation is only meaningfull for the servlet bridge. In case of a portlet, the@Route

URL is managed by the portal.

14.2. File upload in a resource phase
File upload can also be handled in a resource phase.

@Resource
@Route("/upload")

 Response.Content upload(org.apache.commons.fileupload.FileItem file) {public
 (file != null) {if
 // Handle the file upload
 }
 Response.ok();return "Upload is done"
}

Handling upload in a resource phase can be used when the file is uploaded via Ajax: the
application does not want a view phase to be triggered after the upload.

http://commons.apache.org/fileupload/

Page 65 of 69

15
Juzu Less Plugin

LESS is a dynamic stylesheet language which extends CSS with dynamic behavior such as
variables, mixins, operations and functions. LESS is easy to learn thanks to the online

.documentation

Juzu provides a LESS plugin that takes care of compiling a LESS stylesheet into a CSS stylesheet
which are then served by the Asset plugin. This chapter explains how to use LESS and combine it
with the .Asset plugin

15.1. Usage
The LESS plugin operates at compilation time only because the only task he has to do is to
transform a LESS source code into a CSS stylesheet. The runtime part is usually done by the
Asset plugin.

The annotation annotates a package containing an package. This @Less assets assets

package should contain the LESS files to be compiled.

Example 15.1. Annotating an application package for processing LESS files

@Less("stylesheet.less")
@Application

 myapp;package

 juzu.plugin.less.Less;import

The file will be located in the package. The child packagestylesheet.less myapp.assets assets

of the annotated package should contain the stylesheet, this is done on purpose to coincide exactly
with the package used by the Asset plugin. During the compilation phase the assets

 will be compiled to the . If we want this file to be served with thestylesheet.less stylesheet.css
application we simply add the corresponding annotation:@Assets

http://lesscss.org/
http://lesscss.org/

Page 66 of 69

Example 15.2. LESS and Asset plugins in action

@Less("stylesheet.less")
@Assets(stylesheets = @Stylesheet(
 src = "stylesheet.css",
 location = AssetLocation.CLASSPATH)
)
@Application

 myapp;package

 juzu.Application;import
 juzu.asset.AssetLocation;import
 juzu.plugin.less.Less;import
 juzu.plugin.asset.Assets;import
 juzu.plugin.asset.Stylesheet;import

By default LESS will use a default formatting for the generated CSS. To achieve smaller CSS size,
a option can be used, this option will trim the whitespace when processing the file : minify

.@Less(value = "stylesheet.less", minify = true)

15.2. Building
Add the Less plugin jar to your compilation classpath.

In Maven it can achieved by adding the Less plugin dependency to your POM:

<dependency>
 org.juzu<groupId> </groupId>
 juzu-plugins-less<artifactId> </artifactId>
 0.7.0-beta15<version> </version>
</dependency>

Page 67 of 69

16
Juzu WebJars Plugin

 are client-side web libraries (e.g. jQuery & Bootstrap) packaged into jar files. WebJarsWebJars
allow to declaratively set the version, use a consistent version across an application, and easily
deal with transitive dependencies.

Juzu provides a WebJars plugin that copies resources in jar libraries to application assets and then
served by the plugin or the plugin.Asset AMD

16.1. Usage

Example 16.1. Annotating an application package for declaring WebJars

@Application
@WebJars("foo.js")

 myapp;package

 juzu.Application;import
 juzu.plugin.webjars.WebJars;import

<dependency>
 org.webjars<groupId> </groupId>
 foo<artifactId> </artifactId>
 1.0<version> </version>
</dependency>

The file will be located in the package.foo.js myapp.assets

If we want this file to be served with the application we simply add the corresponding @Assets
annotation:

http://www.webjars.org/

Page 68 of 69

Example 16.2. WebJars and Asset plugin in action

@Application
@WebJars("foo.js")
@Assets(scripts = {
 @Script(
 id = "foo",
 src="foo.js"
)
})

 myapp;package

 juzu.Application;import
 juzu.plugin.asset.Assets;import
 juzu.plugin.asset.Script;import
 juzu.plugin.webjars.WebJars;import

It can also be used as a JavaScript module with the plugin:AMD

Example 16.3. WebJars and AMD plugin in action

@Application
@WebJars("foo.js")
@Defines({
 @Define(
 name = "Foo",
 path="foo.js"
),
 @Define(
 name = "Bar",
 path="bar.js",
 dependencies = {@Dependency(name = "Foo")}
)

 })
 myapp;package

 juzu.Application;import
 juzu.plugin.amd.Define;import
 juzu.plugin.amd.Defines;import
 juzu.plugin.amd.Dependency;import
 juzu.plugin.webjars.WebJars;import

16.2. Building
Add the WebJars plugin jar to your compilation classpath.

In Maven it can achieved by adding the WebJars plugin dependency to your POM:

Page 69 of 69

<dependency>
 org.juzu<groupId> </groupId>
 juzu-plugins-webjars<artifactId> </artifactId>
 0.7.0-beta15<version> </version>
</dependency>

