Juzu Web Framework
0.5.0

Reference

Julien Viet

eXo Platform
Copyright © 2012 eXo Platform SAS

Table of Contents

Preface

1. Build and deploy
1.1. Build

2.2. Interactions
2.3. Mapping onto HTTP

3. Responses
3.1. Content responses
3.2. Render response
3.3. Update response

3.4. Redirect response

4. Controllers

4.2. Controller phases
4.3. Controller classes

5. Inversion of Control
5.1. Juzu 10C

5.2. Beans in action

6. Templating

6.1. The templating engines
6.2. Using templates

7. Templating SPI
7.1. Compiling a Groovy template
7.2. Type safe URL resolution
7.3. Template Service Provider Interface

7.4. Template at work

8.1. Taglib syntax

8.2. Include tag

8.3. Decorate / Insert tag
8.4. Title tag

9.1. Asset serving

9.2. Declaring assets programmatically
9.3. Asset plugin

9.4. Less plugin

10. Less plugin
10.1. Usage

11. Portlet plugin
11.1. Portlet class generation
11.2. Portlet preferences injection
11.3. Building

List of Examples

6.1. Controller URL syntax

6.2. Controller URL with parameters

6.3. Explicit controller URL

6.4. Using a template

6.5. Returning the generated juzu.Response.Render
6.6. Native template parameter declaration

6.7. Mustache template parameter declaration

6.8. Named bean

6.9. Template parameters

6.10. Named bean

6.11. Template parameters

8.1. Start and end tag syntax

8.2. Empty tag syntax

8.3. The include tag

8.4. The wrapped template

8.5. The decoraring template

8.6. Setting the title

8.7. Declaring a template parameter

8.8. Using the template parameter

9.1. JQuery Ul declarative asset configuration

9.2. Declarative relative server asset configuration
9.3. Declarative relative classpath asset configuration
9.4. External classpath asset configuration

9.5. Transforming and declaring Less assets

10.1. Annotating an application package for processing LESS files
10.2. LESS and Asset plugins in action

11.1. Injecting portlet preferences

Preface

Juzu is a web framework based on MVC concepts for developing Portlet applications. Juzu is an
open source project developed on GitHub project licensed under the LGPL 2.1 license.

https://github.com/juzu/juzu
http://www.gnu.org/licenses/lgpl-2.1.html

1
Build and deploy

We will see in this chapter how to build and deploy a Juzu application.

1.1. Build

Building a Juzu application is usually done in two steps
* Compile the application to its binary representation
®* Package the application as a war file
Compiling an application requires a few jars to be present on the compilation classpath:
® The Juzu core jar for the Juzu API
®* The JSR-330 jar for the @Inject API
® Any Juzu extension jar such as plugins or additinal template engines
After compilation, classes need to be packaged as a web application archive (war) and then

deployed in a server. We will show several ways to package a Juzu application.

At the moment Juzu focuses on Maven because it is built with Maven, however that does not
mean that Juzu is coupled to Maven, in the future we will provide additional examples or
quickstart for alternative build systems.

1.1.1. With Maven

Juzu libraries are deployed in the Maven Central repository, compiling an application with require a
few dependencies to find the correct jars.

1.1.1.1. Using the Juzu Maven builder
The builder is a Juzu artifact that serves the purpose of building and packaging an application:

1. provide a set of dependencies that will be sufficient for compiling the application using its
Maven transitive dependencies

Page 5 of 50

http://search.maven.org/

2. provide a predefined assembly descriptor that creates a war file containing the application
classes, resources and libraries

To achieve the first step, we simply declare the following dependency in a Maven artifact:

<dependency>
<gr oupl d>or g. j uzu</ groupl d>
<artifactld>j uzu- packager</artifactld>
<ver si on>0. 5. 0</ ver si on>

</ dependency>

Assembling the application requires more XML but is very straightforward:

<bui | d>
<pl ugi ns>
<pl ugi n>

<artifactld>maven-assenbl y-plugi n</artifactld>
<ver si on>2. 3</versi on>
<dependenci es>
<dependency>
<gr oupl d>or g. j uzu</ groupl d>
<artifactld>j uzu- packager</artifactld>
<versi on>0. 5. 0</ ver si on>
</ dependency>
</ dependenci es>
<executions>
<executi on>
<i d>gat ei n</i d>
<goal s>
<goal >si ngl e</ goal >
</ goal s>
<phase>package</ phase>
<configuration>
<cl assifier>gatein</classifier>
<descri pt or Ref s>
<descri pt or Ref >gat ei n</ descri pt or Ref >
</ descri pt or Ref s>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

The assembly plugin takes care of packaging the application:

1. The plugin dependency declares on the juzu-packager artifact because it contains the
predefined descriptors such as the gat ei n descriptor

2. The goal single of the assembly plugin is executed on the package phase
3. The predefined descriptor gatein packages the application

1. Any dependency on the application is packaged in WEB-INF/lib

Page 6 of 50

2. The application classes are copied in WEB-INF/classes
3. The web application src/main/webapp files are copied to the root of the archive

4. Specific deployment descriptors may be copied in the war file depending on the
predefined descriptor

In this example we used the gatein predefined descriptor, the same descriptor for the Liferay Portal
server can also be used with the name liferay.

The builder relies p, the Maven Assembly plugin: Juzu provides the predefined assembly

The predefined assembly descriptor does a similar job to the Maven war packaging but with
more flexibility. To achieve the same result, the usage of a war packaging with the overlay
feature.

1.1.1.2. Juzu archetype
The following produces a base Juzu application:

mv/n archetype: generate \
- Dar chet ypeG oupl d=org. juzu \
-DarchetypeArtifactld=juzu-archetype \
- Dar chet ypeVer si on=0. 5.0 \
- Dgr oupl d=or g. exanpl e \
-Dartifactld=nyapp \
- DpackageNane=or g. exanpl e. myapp \
- Dver si on=1. 0. 0- SNAPSHOT

The generated application is a quickstart ready to can be customzed for developing more complex
applications. The archetype uses the packager described in the previous section.

1.1.2. Using a prepackaged application

The Juzu distribution contains the Booking and Tutorial applications for Gateln and Liferay servers.
They can be used as basis to create applications.

1.1.3. Using an IDE

Juzu uses Annotation Processing Tool to perform many tasks at compilation time. APT is a
standard extension of a Java compiler. All Java IDE (Eclipse, Intellij and Netbeans) provide good
support for APT, we will show in the section how to configure and uses APT within those IDEs.

IDEs provide also Maven support, we will focus in this section on using APT without the Maven
support. Indeed the APT support may work differently when using Maven in your project, the
Maven and APT support within IDEs has a dedicated section.

1.1.3.1. Intellij support
todo

Page 7 of 50

http://maven.apache.org/plugins/maven-assembly-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html
http://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html

1.1.3.2. Eclipse support
todo

1.1.3.3. Netbeans support
todo

1.2. Deploy

At the moment the supported (i.e tested) portal servers are
® Gateln 3.2/ Gateln 3.3
® Liferay 6.1
Other server may work but we are not aware of that as it was not tested in other environments.

1.2.1. Gateln

1.2.1.1. Gateln on Tomcat 6/7
No specific deployment instruction.

1.2.1.2. Gateln on JBoss AS 7
Gateln on JBoss AS7 requires a little modification to do:

Open the file modules/javax/api/main/module.xml and add <path
name="javax/annotation/processing"/> among the paths declaration:

<nodul e xm ns="urn:jboss: nodul e: 1. 1" name="j avax. api ">
<dependenci es>
<system export="true">
<pat hs>
<pat h nane="j avax/ annot ati on/ processi ng"/ >

</ pat hs>
</ systenr

</ dependenci es>
</ nodul e>

This configuration exposes the j avax. annot ati on. processi ng package to the classes seen
by Juzu.

1.2.2. Liferay

Liferay has been tested extensively with the Tomcat version, no specific deployment instruction is
required.

Page 8 of 50

2
Request

Applications are build to process request, this concept deserves an entire chapter that explains
how Juzu process http request. Request life cycle is the most important concept to get right when
developping a web application, whether it is a Juzu application or not.

2.1. Phases

Juzu request life cycle is composed of four phases, we will explain three of them in this chapter,
the last one will be explained in another chapter of this guide.

®* The view phase : invoke the application to produce markup output aggregated within a page
®* The action phase : invoke the application to process an action

®* The resource phase : invoke the application to produce any kind of output as a full response
(i.e notin a page)

During the execution of a phase, parameters are provided by Juzu to execute the phase. Those
parameters are set by the application itself, for instance when it creates a link. The scope of the
parameters (i.e when the validity of the parameters) depends on the phase.

2.1.1. View phase

The view phase invokes the application for the purpose of creating markup. This phase is
indempotent, it means that repeated invocation of the same phase with the same parameters
should produce the same markup (supposing than the application does not depend on some other
state, like a database that could change over time).

View parameters are associated with the current URL, it means that they are somehow persistent.
For instance you interact with an application to change its view parameters on each request and
then you interact with another application on the same page: the view parameters will remain the
same accross the invocation of the view phase of the application when the second application is
used.

Page 9 of 50

2.1.2. Action phase

The action phase invokes the application for processing an action. During the invocation, action
parameters are provided and their validity is limited to the current action phase being executed,
after they will not be anymore available.

The action phase is not idempotent, invoking several times an action phase could have side effects
such as inserting several times the same data in a database.

Juzu does not expect markup returned during this phase, however it provides the opportunity to
configure the view parameters of the next view phase.

2.1.3. Resource phase

The resource phase allows the application to produce a web resource such as an image or a full
page. When this phase is invoked, a set of resources parameters are provided in the URL
producing the resource.

2.2. Interactions

Now that we have an overview of the phase, it is time to connect them and explain the interactions
between the phases.

Figure 2.1. Interaction between phases

o

N

View phase Action phase

o e

(2]
Resource phase

1. An action phase is invoked by an URL produced during a view phase, this URL contains the
action parameters

2. After an action phase a view phase is executed and the view parameters are updated

3. Aresource phase is invoked by anURL produced during a view phase, this URL contains the
resource parameters

2.3. Mapping onto HTTP

As said before, phases and interactions have a natural mapping with the HTTP protocol. It is
worthy to explain it because it will help you to understand fully the interations managed by Juzu.

Page 10 of 50

2.3.1. View phase
View phases are mapped on GET requests:

®* The view phase is idempotent like GET

* View parameters are identified to query parameters

®* The response returned by a GET request should remain identical for the same parameters
During a view phase, the application produces URL which can invoke any application phase.

Figure 2.2. View phase

GET http://...2color=red

View phase

v

color=red

In this example the view phase produce markup parameterized by the col or parameter having
the red value.

2.3.2. Action phase

Action phase are created from view phase by processing a link that was found in the markup
response. The action phase is mapped on POST requests:

® Both action phases and POST request are not idempotent
® Action parameters are identified to form parameters

® Action phase and POST requests should not be invoked more than one time

Figure 2.3. Action phase
color=red
<form action=~._"

method=“post”>...</
form>

POST http://...

Action phase

Now let's update our example and suppose that the application returns markup with a form that
invokes an action phase. When the user submits the form it triggers the action phase, which in
returns updates the col or view parameter of the next view phase to the value blue.

Page 11 of 50

Figure 2.4. View phase after action phase

Action phase

{

Redirect to http://
..?color=blue

GET http://...2color=blue

View phase

+

color=blue

The HTTP redirection will update the browser to show the next view phase with the expected view
parameters.

During the action phase, the application configures the parameters of the next view phase. When
the invocation of the phase is over, the server redirects the browser (with an HTTP temporary
redirection) to the next view phase URL. This URL contains the view parameters. This mechanism
is well known as Redirect After Post pattern and is often used to ensure that a POST request is not
triggered several times when the refresh button of the browser is used.

2.3.3. Resource phase

Resource phases are trivially mapped on GET request pretty much like a view phase. The main
difference is that the resource phase is responsible for managing the entire response instead of
just a fragment of the response.

Page 12 of 50

http://fr.wikipedia.org/wiki/Post-Redirect-Get

3

Responses

Each request produces a response object: a subclass of the j uzu. Response class.

Response objects are returned by method processing requests, the class of the object determines
the kind of response sent to the client. A response object may carry a additional objects such as
assets (css or script).

Response object are created thanks to the static factory methods of the j uzu. Response class.
The Response class is abstract and it has several subclasses that form a possible hierarchy of
response adapted to the phase being processed.

3.1. Content responses

A content response is a markup or binary data, it can be created with the ok static method:

public static Response. Content<Stream Char> ok(Char Sequence content) { ... }

It can be used during a view or resource phase to return markup:

@4 ew
publ i ¢ Response. Content index() {
return Response.ok("Hello World");

}

3.2. Render response

A render response extends a content response, it specializes it for aggregated markup, i.e a
response where the application manages only one portion of the full page such as a portal:

@/ ew
publ i ¢ Response. Render index() {
return Response.render("Hello Wrld").withTitle("The Hello");

}

Page 13 of 50

3.3. Update response

Update responses are returned during an action phase to configure the next view phase. Usually
update responses are not created using static methods, instead they are created using controller
companion static methods, this will be explained in the controller chapter.

3.4. Redirect response

Redirect responses are returned during an action phase to redirect the user agent to an URL, its
usage is simple:

@\ct i on
publ i c Response. Redi rect process() {
return Response.redirect("http://ww. host.conl");

}

Page 14 of 50

Controllers

Controllers play an essential role in a Juzu application: they contain the code executed when Juzu
processes a request, this chapter provides an in depth study of Juzu controllers.

4.1. Overview

Juzu controllers are simply annotated methods of the application, here is the most basic controller
declaration:

public class Controller {
@/i ew public Response. Content index() {
return Response.render("hello world");
}

H}

The annotation @ uzu. Vi ew declares a view controller, the name i ndex has a special meaning
as it will be used when no other controller is specifed in a Juzu request.

Controller methods can declare parameters for receiving request parameters:

public class Controller {
@/l ew public Response. Content index(String person) ({
return Response.render("Hello " + person == null ? "world" : person);
}

}

Like previously, the i ndex controller returns the hello world value when it is called the first time.
When the controller is called with the per son parameter it returns the hello string personalized
with the corresponding parameter value: Juzu use the declared method parameter name to match
against the request parameters, in our case the per son request parameter.

Any controller class (any class containing at least one controller method) generates a companion
class during the compilation of the project. Such companion class extends the original controller
class to provider companion methods for the controller method. The companion class has the
same name than the original class appended with the _ character:

Page 15 of 50

public class Controller_ {
public static URLBuil der indexURL() { }
public static URLBuil der indexURL(String person) { }

}

Each i ndex methods generated a corresponding i ndexURL url companion. When any i ndexURL
method is invoked it returns an URLBui | der object that represents the URL invoking the
corresponding phase. When parameters are provided they are already encoded in the returned
URL. Calling thet oSt ri ng() method of the URLBuilder returns the URL.

@/i ew public Response. Content index() {
return Response.render("Hello word. <a href="" + Controller_.index("Juzu") +
}

URL companion methods have the name of the originating method appended with the URL suffix.
The method parameter types are the same.

4.2. Controller phases

There are several kinds of controllers bound to a request phase studied in the ??7?:

® View controllers annoted with the @ uzu. Vi ewannotation
® Action controllers annotated with the @ uzu. Act i on annotation
® Resource controllers annotated with the @ uzu. Resour ce annotation

® Event controllers annotated with the @ uzu. Event annotation (not yet implemented)

4.2.1. View controllers

A view controller method produces aggregated markup for the application, the invocation of the
method should produce markup that will be aggregated in larger page, therefore it should not care
about the overall HTML structure.

View parameters describe the current parameters of the view, they are often used for navigation
purpose in the application. Juzu supports simple data types such as string and structured data
types modelled by Java objects.

®* Simple data types can be the following types Stri ng, List<String> and String[].
Later this will be expanded to more simple types such as number, etc..

® Structured data types : todo

View controller method should return a j uzu. Response object that is the content produced by the
method. To be more precise it should return a Response. Cont ent or Response. Render object
(the latter being a subclass of the former) that contains everything Juzu needs to display the
application.

Response. Cont ent is a base class for content, it defines the send method. Juzu invokes this

Page 16 of 50

method when it needs to render the response produced by the view method. The invocation of the
send method will be performed after the view method is invoked.

public void send(S strean) throws | COException {
streamabl e. send(strean;

}

During the view phase a controller can generate URLS to other phases (except the event phase) by
using companion url methods. Companion url methods returns a j uzu. URLBui | der object to
represent the URL. The final URL is returned by the t oSt ri ng() method of the builder.

4.2.2. Action controllers

Action controller are executed during the action phase of a Juzu application. Usually action
methods perform two tasks

* implement the logic of the application processing, for instance inserting an entity in the
database

® configure the next view phase: setting the next view controller to display and configuring its
view parameters of the method when they exist

In the following example, the controller method cr eat eUser creates a user and returns a
Response. Updat e object that will tell Juzu to use the showUser view controller during the next
view phase:

@\ction

publ i ¢ Response. Update addUser (String userName, String password) {
orgServi ce. creat eUser (user Name, password);
return Controller_.showlUser(user Nane);

}

showUser is a companion update method that creates a Response. Updat e object configured
with the controller and arguments to use. Like url companion methods, update companion methods
are generated during the compilation of the project by Juzu.

4.2.3. Resource controllers

Resource controllers are similar to view controllers, however the resource has full control over the
target page. It means that a resource controller must produce the entire resource and it can also
chose the mime type returned. Resource controllers have several use cases:

* Implement ajax resource serving

®* Produce an application resource, such as an image, a script, etc...

4.2.4. Event controllers
not yet implemented

Page 17 of 50

4.3. Controller classes

Controller methods belongs to Java classes known as controller classes. Controller classes are
ordinary java classes, any class can be turned into a controller by declaring a controller method.
Controller classes are registered in the IOC container of the Juzu application, we will study later
the benefits.

4.3.1. Controller life cycle

We will study in this section the complete life cycle of a controller object. Juzu relies on the I0C
container for managing the life cycle of controller objects, based on the @ avax. i nj ect . | nj ect
annotation. If the controller desires, it can receive life cycle callbacks thanks to the
@ avax. annot at i on. Post Const ruct and @ avax. annot ati on. PreDest r oy annotations.

Let's have a look at the complete life cycle of a controller object during a Juzu request:

Figure 4.1. Life cycle of a controller object

Begin request
Instantiate controller

Inject dependencies 10C Container

Call @PostConstruct
Juzu

Invoke method

(all @PreDestroy
|0C Container
Release controller

End request

1. Juzu begins the request, it will need an controller instance for the request and asks the 10C
container an instance

2. The IOC container creates a fully operational controller instance in several stesp

1. It gets a controller object instance either by creating a new instance by using the
default constructor or the constructor annotated with @ nj ect

Page 18 of 50

2. Itinjects the controller declared dependencies by the @ nj ect annotation
3. It invokes any method annotated with @ost Const r uct
. Juzu obtains a valid controller instance and simply invokes the controller method

. After the invocation, Juzu releases the controller instance and delegates it to the 10C
container again

1. It invokes any method annotated with @r eDest r oy
2. It makes the instance available to the garbage collector

. Juzu ends the request and use the Response objet returned by the controller method

Page 19 of 50

5

Inversion of Control

Juzu provides native support for Injection of Control (known as IOC) and relies on the specification
JSR-330 (known as @Inject) for providing implementation free 10C.

Although the JSR-330 is quite small it provides the necessary ground for building Juzu
applications. Juzu itself relies on the injection container for wiring the entire Juzu runtime
(controllers, templates, plugins, etc...).

We will explain how Juzu uses I0C for its runtime, we will suppose that the reader is familliar with
IOC and with the @Inject specification, in particular the notion of injection, scope and qualifier
should be familliar.

5.1. Juzu IOC

5.1.1. I0C containers

The JSR-330 is implemented by several projects, we refer to them as I0C containers, they are
implementations of the JSR-330 specification:

® Spring Core 3

® Google Guice 3

Juzu is able to run with any of those implementation and leaves you the choice of the 10C
implementation you want to use.

CDl is a specification that extends the @Inject specification: CDI provides more features than
@Inject, however this specification is only implemented by Weld. Nevertheless if your choice
is to use CDI you will be leverage its specific features in your Juzu application

5.1.2. Beans

Beans are simply object managed by the IOC container, any bean can be injected other beans:

Page 20 of 50

http://docs.oracle.com/javaee/6/api/javax/inject/package-summary.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://seamframework.org/Weld
http://code.google.com/p/google-guice/wiki/Guice30

@ ava. i nject.|nject
Servi ce service;

5.1.3. Scopes

Scopes define how a instances of a bean are managed by the I0C container: for a given bean,
shall it be instantiated only one time and shared or shall it instantiated everty time it is required ?
that's the kind of question that scope answers.

Juzu provides 4 scopes to use within your application:

@ avax. i nj ect. Si ngl et on scope: a single bean instance is the same for the whole
application

@ uzu. Request Scoped scope: the bean is instantiated once per request
@ uzu. Sessi onScoped scope: the bean is instantiated once per session

@ uzu. Fl ashScoped scope: the bean is instantiated once per request but is reused if it
was instantiated during an action request in the next render request and only in the first one

5.1.4. Qualifiers

Qualifier are designed to distinguish several instances of a same bean. How does a bean differ
from another bean ? it's not really possible to tell, qualifiers simply answer this question, allowing

to:

distinguish beans based upon the qualifier members

configure the bean instance for a particular usage

The JSR-330 specification provides the @Named qualifier whose purpose is to give a name to a
bean, for instance

@\amed("j ohn")
@nj ect Person john;

@Nanmed(" peter")
@ nj ect Person peter;

5.2. Beans in action

Beans are simply the objects managed by the 10C engine. In a Juzu applications we have several
kind of beans:

® Controllers

* Template

® Application beans

Page 21 of 50

® Plugin beans

5.2.1. Template beans

Every template has a corresponding j uzu. t enpl at e. Tenpl at e class at runtime. The template
class allows applications to interact with templates, most of the time for rendering purpose:

tenpl ate.render ();

A template bean is always qualified by the @at h qualifier. The path qualifier is simply the value of
the path relative to the templates package, for instance index.gtmpl is a valid qualifier value. The
gualifier allows to have several Tenpl at e instances and distinguish them.

Templates have the @i ngl et on scope: a single instance of the template object is created and
shared in the I0C container.

5.2.2. Controller beans

Each controller class is turned into a bean, that's how controllers can be injected with other beans.
As soon as Juzu finds a class annotated by @/i ew, @\cti on or @Resour ce, it is automatically
turned into a bean.

Controller have the Request scope by default: every time a controller instance is required it will be
created for the duration of the request. It is possible to change the scope of a controller by
annotating it with another scope annotation managed by Juzu:

@sessi onScoped

public class Controller {
@/ ew
public void index() { }

5.2.2.1. Injection a template into a controller
Injecting a template bean into a controller bean is probably the most common Juzu pattern:

@ nj ect
@at h("i ndex. gt npl ")
Tenpl at e i ndex;

The template can then be used for rendering purposes:

@h ew

public void index() {
i ndex. render ();

}

Page 22 of 50

5.2.3. Application beans

Application beans model the custom logic of an application, they are normally injected in controller
beans that use them when they process requests. The binding plugin allows an application to
declare custom beans that can be used in the application.

5.2.3.1. POJO bean bhinding
Binding a Plain Old Java Object (POJO) is a very simple task to accomplish:

@i ndi ngs(@i ndi ng(Mai | er. cl ass))
package nyapplication;

The bean will be entirely managed by the IOC container, the binding plugin will just declare it in the
I0OC container. The POJO will be created when needed, for instance when it is inserted in a
controller.

public class MyController {
@nject Mailer mailer;
@\cti on
public void sendMail (String recipient, String subject, String nessage) {
mai | . send(reci pi ent, subject, nmessage);

}

5.2.3.2. Abstract bean binding

Binding an abstract class or an interface type is also possible with the i npl enment at i on member
of the @i ndi ng annotation:

@i ndi ngs(@i ndi ng(val ue=Mai | er. cl ass, i npl enentati on=Mai |l erl npl . cl ass))
package nyapplication;

5.2.3.3. Binding with a provider

Sometimes the implementation cannot be created by the IOC container, for instance it may not
have a correct constructor, it can only be retrieved using a factory or it should be configured before
being used. For such scenarios the implementation can specify a class implementing the
j avax.inject. Provider interface.

Page 23 of 50

public class ConfiguredMil erProvider inplenents javax.inject.Provider<Miler>

private String email
private String password;

publ i ¢ Confi guredMail erProvider() {
this.email = SystemgetProperty("nuiler.email");
t hi s. password = System get Property("nuil er.password");

}
public Mailer get() {

return new Mailerlnpl (enmail, password);
}

Thanks to the provider, we have a Mai | er provider that returns a Mai | er | npl configured before
usage.

5.2.3.4. Beyond the provider

The implementation class can also be an instance of j uzu. i nj ect. Provi der Factory. The
provider factory is a factory for providers whose purpose is to return a Provi der for a specific
class. The provider factory has the method:

<T> Provi der<? extends T> getProvider(d ass<T> i npl enent ati onType)
throws Excepti on;

The provider factory implementation must provide a public zero argument constructor and it will be
instantiated during the application boostrap by Juzu to obtain the provider. The returned providers
will then be bound into the 10C container.

Usually provider factories will lookup the service in a registry (like another IOC container) and
returns a provider that return them lazily or not.

5.2.3.5. Scoped binding
The @i ndi ng annotation provides room for declaring a bean scope:

@i ndi ngs(@i ndi ng(val ue=Mi | er. cl ass, scope=Scope. SI NGLETON))
When the scope is not specified, the scope is determined from the bean or implementation that

should be annotated with a scope annotation. When it is specified, it overrides the annotation
scope the bean could declare.

Page 24 of 50

5.2.3.6. Qualifying provider

A provider implementation can declare qualifiers on the get method they implement in order to set
the qualifiers of the returned bean:

public class MailerProvider inplenments Provider<Miler> {
@Naned("mai |l er")
public Mailer get() {
return new Mailerlnpl ();
}

This is useful for declaring qualifiers on a class that is not annotated by qualifiers, because it is not
possible to declare qualifiers in an @i ndi ng annotation due to limitations of the Java language.

Page 25 of 50

6
Templating

Templating is the View part of a Model View Controlle architecture. We will study in this chapter
how the templating system interacts with the Juzu, at compilation time and at runtime, both aspects
are very important.

6.1. The templating engines

Juzu can use several templating engines, it provides a native template engine as well as the
Mustache templating engine. Those engines are not competing, instead they should be seen as
alternatives: the native Groovy engine provides the goodness of the Groovy languages, however
sometimes some people prefer logic-less templates and Mustache is a template engine they
should use. Let's introduce them briefly.

6.1.1. The native template engine

The native template engine extends the Groovy templating system: it can include snippet of
Groovy code or resolve Groovy expressions:

6.1.1.1. Expressions
Expressions are simply Groovy expressions wrapped with the ${. . . } syntax:

The sky is ${color}

6.1.1.2. Scriplets

Groovy code can also literaly be used with the scriplet syntax: <% ... %. Within a scriptlet the
out implicit object can be used for outputting markup:

<% ["red","green","blue"].each({ color -> out.print("The sky is " + color -
</ ul >

The scriplet syntax <% ... % can also be used:

The sky is <% col or %

Page 26 of 50

http://mustache.github.com/
http://groovy.codehaus.org/Groovy+Templates

6.1.1.3. Controller urls

Controller urls is natively supported by the engine, it allows to create controller URL with a short
and compactsyntax @ . . . }:

Example 6.1. Controller URL syntax

Hone</ a>

URL expressions can contain parameters and they must be named:

Example 6.2. Controller URL with parameters

Purchase</ a>

The purchase method refers to a controller method, when the application has several controllers,
the controller name can be used to prefix the url expression and remove the ambiguity:

Example 6.3. Explicit controller URL

Pur chase</ a>

Under the hood the controller URL syntax uses the controller compagnion for creating the URL: the
Control |l er. purchase(product =1) will uses the controller compagnion
Control |l er_#purchase(String product).

6.1.1.4. Taglib
The native engine provides taglib support using the #{tag}. .. #{/tag}} or#{tag/} syntax:

#{title val ue=Hel |l o/}

Available tags are explained in the taglib chapter.

6.1.2. The Mustache template engine
The Mustache template engine uses logic-less templates based on Mustache.java the Java port of

quick overview of how it can be used in Juzu:

6.1.2.1. Variables
Variables uses the {{. . . }} syntax, they are resolved against template parameters or beans.

The sky is {{color}}

Page 27 of 50

https://github.com/spullara/mustache.java
http://mustache.github.com/mustache.5.html

6.1.2.2. Sections
Mustache sections allows to iterate expressions that are multivalued.

t odo

6.2. Using templates

A template as seen by an application is a bean managed by the IOC container.

6.2.1. Template declaration

Applications use a template by injecting a j uzu. t enpl at e. Tenpl at e object in its controllers
gualified by the j uzu. Pat h annotation:

Example 6.4. Using a template

public class Controller {

@ nj ect
@at h("index. gtnpl ") @
Tenpl at e i ndex;

@/ ew
public void index() {
i ndex. render(); @

}
}

@ Declares the template path

@ Renders the template and send the markup to the response

The j uzu. Pat h annotation is a qualifier annotation managed by the 10C container. It is very
similar to the @ avax. i nj ect. Naned qualifier, but it has a special meaning for Juzu for declaring
the template.

The r ender method of a template returns a j uzu. Response. Render response which can also
be returned by the controller method. This is equivalent to the previous example.

Example 6.5. Returning the generated juzu.Response.Render

@/ ew
publ i ¢ Response. Render index() {
return index.render();

}

Page 28 of 50

6.2.2. Type safe parameters

Template type safe parameters brings more type safety in your applications. Templates can
declare parameters and they are made available on a subclass of the
juzu.tenpl at e. Tenpl at e class.

Parameters are declared using the taglib support of the native template engine

Example 6.6. Native template parameter declaration

#{ par am name=col or/}
The sky is ${color}.

or the pragma support of the Mustache engine

Example 6.7. Mustache template parameter declaration

{{%aram col or}}
The sky is {{color}}.

When the template is declared in a controller, a subclass of j uzu. t enpl at e. Tenpl at e can be
used:

package weat her;
public class Controller {

@ nj ect
@at h("sky. gtnpl")
weat her . t enpl at es. sky sky; @

@h ew
public void index() {
sky.with().color("blue").render(); @

}
}

@ Theweather.tenpl at es. sky typed template class

@ Use the sky template col or parameter
The weat her . t enpl at es. sky class does not exist in the original source but it is available when
the application is compiled because it will be generated by Juzu compiler integration. The sky

templates provides a fluent syntax to bind parameters:
sky.with().color("blue").render().

Page 29 of 50

6.2.3. Expression resolution

When we studied the templating engine syntax but we did not mentioned exactly how expression
are resolved.

6.2.3.1. Single name expressions
Both templating system provides a syntax for resolving single name expressions:

* ${...} for Groovy
e {{...}} for Mustache

Resolution is performed against template parameters or bean named with the
j avax. i nj ect . Naned qualifier.

Example 6.8. Named bean

@ avax. i nject. Named("col or")
public class Color {
public String toString() {
return "red";

}
}

Example 6.9. Template parameters

i ndex.with().set("color", "red").render(); @
i ndex.with().color("red").render(); @

@ Detyped version

@ Type safe version

6.2.3.2. Compound expressions

Compound expressions are resolved the same way for the first name and the expression resolve
will attempt to navigate the rest of the expressions from this object:

* ${weat her. col or} for Groovy

e {{#weat her}}{{color}}{{/weather}} for Mustache

Page 30 of 50

Example 6.10. Named bean

@ avax. i nj ect. Nanmed(" weat her")
public class Wat her {

private String col or;

public Weather(String color) {
this.color = color;

}

public Weather() {
this.color = "red";

}

public String getColor() {
return color;

}
}

Example 6.11. Template parameters

i ndex. wi th().set("weather", new Weather("blue")).render(); @
i ndex. wi th(). col or (new Weat her ("bl ue")).render(); @

@ Detyped version

@ Type safe version

i

Page 31 of 50

7
Templating SPI

This chapter dives into the template life cycle from compilation time to run time. We will describe
the template Service Provider Interface (SPI), the SPI is designed to make Juzu templating
extensible and integrating new template engines in Juzu. This chapter is optional is you are writing
application with Juzu, however it is a must read if you want to know more Juzu internals or if you
want to understand how to integrate a template engine in Juzu.

When a Juzu application is compiled, the Juzu annotation processor detects the @Pat h

annotations and triggers the compilation of the related templates. The template compilation can be
split in two parts:

® Generating the template companion class that inherits the j uzu. t enpl at e. Tenpl at e

class. This part is generic and works with any templating system, it is entirely managed by
Juzu.

®* Compiling the template file, this task is delegated to the Tenpl at eProvi der and is
extensible. The provider allows to have several templating system in Juzu and decouples the
template compilation process from the details of the templating engine.

7.1. Compiling a Groovy template

Let's study an example with the Groovy template at compilation time.

Page 32 of 50

Figure 7.1. Compiling a Groovy template

@Inject index.gtmpl
@Path(“index.gtmpl") -
Template index; Hello World!
/\ -~ Javac

@Path(“index.gtmpl”) index_.groovy

public class index extends

Template {} print(“Hello World");

. ~ Build
index_.class
Groovyc

When the Java compiler is invoked, the following steps are executed

1. The Java compiler triggers the Juzu annotation processor when it finds the @at h
annotation

2. Juzu resolves the relative path to the t enpl at es package of the application
1. When the template cannot be resolved a compilation error is triggered
2. Otherwise the template is loaded

3. The template provider is looked up according to the file name extension, it will generate the
index.groovy source file

4. Juzu creates the index class that extends the juzu.tenpl ate. Tenpl ate class
annotated by the @at h("i ndex. gt npl ") annotation

After that the only remaining part is to compile the index.groovy source to a class. It can be
achieved either at build time using the groovyc compiler or at load time when the i ndex template
is loaded using a GroovyCl assLoader. The former approach makes the build a bit more
complex (but not much as Groovy compilation is fairly well supported in build systems or IDES) as
it requires to run a Groovy compilation but it will perform additional validation of the template as
well as reduce the load time of the template. The later approach will detect any compilation error
(such as Groovy syntax error) at runtime and the index.groovy compilation will take a few
milliseconds.

This flexibility allows to use the lazy approach during development and when the application is
released then the Groovy compiler can be used to compile the index.groovy once and for all.

Page 33 of 50

7.2. Type safe URL resolution

Groovy templates provides the @ . . . } syntax for generating URL from the application controllers.
This section gives an overview of the underlying resolution mechanism.

Figure 7.2. Template URL resolution during compilation

< href="@{index()}">Home

index.gtmpl: Parse
index AST: Data: Home
Resolve
\‘ @View
Controller public void index() { ...}
Validate

out.print(Constants.s0);

: .print(Controller_.indexURL());
index.groov eIlisfefln| -
InCex.SI00VY out.print(Constants.s1); .
Emit
CAFEBABE 0000 0031000E07000C07000D...
index.class Compile

® Parse: the template is parsed into its model representation

® Resolve: the i ndex link is resolved againt the controller meta model

® Validate: the i ndex link is validated

®* Emit: the corresponding index.groovy file is emitted and save on the class output

®* Compile: the Groovy source is compiled into a class by the groovyc compiler (this part is
done after javac)

7.3. Template Service Provider Interface

Juzu provides a Service Provider Interface (SPI) for integrating thirdparty template engine. Actually
all template system are integrated with the SPI. We will study briefly the integration points so you
can integrate a template engine of your choice in Juzu.

7.3.1. Template providers

The juzu.inpl.tenpl ate.spi.Tenpl at eProvi der is the main entry point when a
templating system is integrated. The provider is triggered during the compilation phase by the APT
system built into the Java compiler.

Page 34 of 50

public abstract class Tenpl at eProvi der <M ext ends Seri al i zabl e> {

}

The provider must declare the template model <M> generic type. It must be a serializable type
because Juzu will sometimes write template models on the disk during the compilation this usually
happens only in Eclipse due its incremental compiler architecture. The type specified by the
provider is privately managed (i.e it is opaque for Juzu) and it symbolizes an internal
representation of the parsed source (usually an Abstract Syntax Tree), it will be used in various
methods of the provider.

Let's have a review of the methods of this class to have a better understanding.

public abstract String get SourceExtension();

public abstract String getTarget Ext ension();

The get Sour ceExt ensi on() method is used to determine what file extension the provider can
compile. The implementation should return a constant value, for instance the Groovy provide
simply returns the gt npl value.

The get Tar get Ext ensi on() method returns a file extension of the file that is generated by the
provider. This extension is optional and it can return null if the provider will not generate a target
file. For instance the Groovy provider returns the gr oovy value because it will emit a a Groovy file,
however the Mustache provider will return null because it won't emit any file.

public abstract M parse(
Par seCont ext cont ext,
Char Sequence source) throws Tenpl at eExcepti on;

public abstract void process(
ProcessCont ext cont ext,
Tenpl ate<M> tenpl ate) throws Tenpl at eExcepti on;

publ i c abstract Char Sequence emit (
Eni t Cont ext cont ext,
M tenpl at eModel) throws Tenpl at eExcepti on;

The par se, process and eni t methods care about transforming the template source to its final
representation : the template stub.

®* The par se method is invoked with the content of the template and returns a template model.
The representation returned by the parse method is a parsed representation of the template
source. If a parsing error occurs the method can throw a Tenpl at eExcepti on.

Page 35 of 50

®* The process method is invoked after the template is parsed with the necessary context for
performing further processing of the template, for instance the Groovy templating engine
performs the resolution of type safe URLs or type safe parameters declaration at this
moment. During the process:

®* The provider can resolve other templates using the Pr ocessCont ext , if the template
to resolve is not yet loaded it will trigger the par se/process/eni t lifecycle, it if was
already processed the template is simply returned

®* The implementation can resolve controller methods and translate them into method
invocation, this is used for checking type safe URL and translating them into controller
companion invocation

® The juzu.inpl.tenpl ate.spi. Tenpl at e argument represents the template, it
has several fields such as the template model or the template path

®* The implementation can declare type safe parameters using the
Tenpl at e#addPar anet er (Stri ng) method. The declared parameters will be
generated on the j uzu. t enpl at e. Tenpl at e subclass

®* The em t method is invoked when the template processing is over. The implementation can
return null or a Char Sequence that will be saved in a file named after the origin template file
but with the extension returned by the get Tar get Ext ensi on() method.

public abstract C ass<? extends Tenpl at eSt ub> get Tenpl at eSt ubType() ;

Finally the get Tenpl at eSt ubType() returns the type of a java class that will be used for
creating a template stub. For each template, a stub is created, the stub is responsible for loading
the template at runtime.

7.3.2. Template stub

Template stubs are java class created by the template compiler for managing the template at
runtime on behalf of the provider. Each provider provides its own stub implementation as a

juzu.inpl.tenpl ate. spi. Tenpl at eSt ub subclass, when Juzu finalizes the compilation of a
template it will create a subclass of the stub for the compiled template. A stub must implement two
abstract methods:

protected abstract void dolnit(d assLoader | oader);

protected abstract void doRender (Tenpl at eRender Cont ext render Cont ext)
t hrows Tenpl at eExecuti onExcepti on, | OExcepti on;

The dol ni t method loads the template using the provided C assLoader , it will be call only once
before the template is rendered.

The doRender method renders the template using the provided Tenpl at eRender Cont ext . The
render context provides the necessary hooks such as:

® Producing markup

Page 36 of 50

® Setting the title
® Obtaining the locale

® Accessing parameters or application beans for resolving expressions

7.4. Template at work

After having described the various pieces of the templating SPI, let's look at how the template
generated stubs are used by Juzu templating system at runtime.

Figure 7.3. index groovy at work

@Inject @Path(“index.gtmpl”) class index_ extends
@Path(“index.gtmpl”) e class index extends =) GroovyTemplateStub {
Template index; injects Template { loads

public void render(
@View TemplateRenderContext) {
public void index() { public void render() {
}index.render(); render }} W : script.run();

ldelegates

Controller Plugin Template Plugin index.groovy

When the controller declares the index.gtmpl template the compiler produces three artifacts

® the i ndex class template inherits j uzu. t enpl at e. Tenpl at e: it is the only class visible
from the controller and the whole application

* the index.groovy Groovy template is the effective template code: it produces the markup,
resolve expressions, etc...

® the i ndex_ template stub inherits Gr oovyTenpl at eSt ub: it is the bridge between the
i ndex class and the index.groovy file, it loads the Groovy template and runs it when the
Tenpl at e need to render the template

When a controller is instantiated, the i ndex template instance is injected into the controller, the
@rat h annotation plays an essential role because it's a qualifier and that qualifier is used to
distinguish the correct subclass to inject in the controller.

Instead of using the qualified template injection, the controller could declare directly the template
index subclass it will still work. Actually this approach should be used when type safe parameters
are used as only the i ndex type declares the fluent API.

Page 37 of 50

For instance if the index.gtmpl declares the color parameter the i ndex class will look like:

@rat h("i ndex. gt npl ")
public class index extends Tenplate {

public index with() {
return new i ndex. Buil der () ;

}

public class Buil der extends Tenpl ate. Buil der {

public Builder color(String color) {

}
}
}

The controller can then use the fluent API:

public class Controller {

@ nj ect
@&at h("i ndex. gtnpl ")
Tenpl at e i ndex;

@i ew
public void index() {
i ndex.with().color("red").render();
}
}

Page 38 of 50

8
Taglib

A tag library is an essential component of a templating system, allowing to enrich a templating with
encapsulated programmable logic.

Juzu does not yet allow application to define their own tags, it will be added a a new feature
in a future version.

8.1. Taglib syntax

Like most taglib syntaxes, Juzu provides two syntaxes for invoking a tag:

Example 8.1. Start and end tag syntax

#{f oo} bar #{/ f oo}

The start/end syntax opens the tag with #{ f oo} and ends it with #{/f oo} .
A tag can also be empty:

Example 8.2. Empty tag syntax

#{fool}

A tag can also be invoked empty with the #{f oo/} syntax.

8.2. Include tag

The include tag simply includes a template inside the current template. The inclusion is dynamic
and not static, meaning that the content of the included template is not inserted in the calling
template, instead when inclusion is performed the control is passed to the included template.

Page 39 of 50

Example 8.3. The include tag

#{i ncl ude pat h=di spat ched. gt npl / }

The path attribute determines the template to include, the path value is relative to the templates
package.

8.3. Decorate / Insert tag

The decorate tag allows the content of the decorating template to wrap the content of the template
invoking the tag. The insert tag should be used in the decorating template to specify the place
where to insert the markup produced by the template to decorate.

Example 8.4. The wrapped template

#{decor at e pat h=box. gt npl /}

Example 8.5. The decoraring template

<div style="border: 1px solid black">
#{insert/}
</ di v>

8.4. Title tag

The title tag specifies a title to insert in the j uzu. Response. Render object the template will
produce.

Example 8.6. Setting the title

#{title val ue=Hone/}

8.5. Param tag

The param tag enhances the type safety of templates, allowing to declare parameters for executing
a template. When such a parameter is declared, the generated template class companion will have
a fluent parameter for setting the value of the parameter:

Example 8.7. Declaring a template parameter

#{ par am nanme=col or/}

Page 40 of 50

Example 8.8. Using the template parameter

@nject my.tenpl ates.index index;

@/ ew
public void index() {
index.with().color("red").render();

}

Page 41 of 50

9

Assets

Web assets are resources used over the web such as stylesheet and script files. Juzu provides a
few facilities for managing applications assets.

9.1. Asset serving

The class j uzu. asset . Asset represents an asset in Juzu, assets can be of two types:

®* Asset. Val ue is the coordinate of an asset, i.e how Juzu can resolve and create a valid
URL to an asset. An asset value is determined by a location and an uri. The location
determines where the asset can be resolved for instance the server location means that the
asset is served by the web server. The uri is simply the absolute or relative asset path that
resolves in the location.

®* Asset. Ref is a reference to an asset value. Asset reference are useful because they
decouple the application of the value and allow external configuration to determine the asset.
For example, an application will add to a response an asset reference to jquery instead of
adding the https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js jquery asset
address to a response.

When an application is deployed, the plugin can configure assets in the asset manager. The asset
manager has several responsibilities:

®* manage asset dependencies: the order in which assets are literaly declared when they are
served. For instance the jquery-ui asset depends on the jquery asset because the jquery
script must be loaded before the jquery-ui script.

® resolve asset references: each asset reference must be resolved and produce a final web url
that will produce the resource when it is resolved by the web browsers

During a request, assets of both kind can be added to the response. At the end of the request, the
runtime uses the asset manager to translate the response assets into a list of uri to add to the

page:

Page 42 of 50

Figure 9.1. Compiling a Groovy template

(1)

Request

Runtime Runtime
Response.Render

'3} (2]

Asset Manager

An asset reference is a link to an asset value that is configured externally, thus an asset of any
kind will always resolve to a location and an uri. Let's examine the different possible asset location:

® external: the value is opaque to Juzu, for instance the a CDN hosted script such as
https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js.

® server. the asset is served by the same web server in which Juzu is deployed. If the asset
value is relative, the final uri will resolve relatively to the web archive context address.

® classpath: the asset is served by Juzu asset server (a servlet configured in the web
application) and the resource is located on the classpath.

9.2. Declaring assets programmatically

When an application requires an asset, it adds the asset to the Response. Render object:

@ nj ect
@at h("i ndex. gtnpl ")
Tenpl at e i ndex;

@i ew
publ i ¢ Response. Render index() {
Response. Render render = index.render();

render . addScri pt (Asset.uri ("https://aj ax. googl eapi s" +
“.comajax/libs/jquery/1.7.2/jquery.mn.js"));
return render;

}

The same with a fluent syntax:

Page 43 of 50

@ nj ect
@rat h("i ndex. gt npl ")
Tenpl ate i ndex;

@h ew
publ i ¢ Response. Render index() {
return index.render().addScript(Asset.uri("https://ajax.googleapis.conl +
“lajax/libs/jquery/1l.7.2/jquery.mn.js"));

9.3. Asset plugin

The asset plugin provides declarative asset configuration. The @\sset s annotation declares a list
of assets used by the an application.

Example 9.1. JQuery Ul declarative asset configuration

@\sset s(
scripts = {
@cript(id = "jquery",
src = "public/javascripts/jquery-1.7.1.nmn.js"), @
@cript(src = "public/javascripts/jquery-ui-1.7.2.customnin.js", @
depends = "jquery") @
Ji -

styl esheets = {
@Bt yl esheet (src = "public/ui-lightness/jquery-ui-1.7.2.customcss")

}
)
package ny. appli cati on;

@ Declares the jquery asset

@ Declares the jquery-ui asset

€& Make jguery-ui depend on jquery

The assets will be served from the war file because the server location is configured by default.
The first @cr i pt annotation declares the JQuery asset reference identified by the i d member as
being jquery. The second @bcr i pt annotation declares the JQuery-Ul plugin, it does not need an
id member because nothing refers to it, however it declares a dependency with the depends
member that declares it depending on the jquery asset.

JQuery-Ul requires also a stylesheet to be served along with the script, it is achieved thanks to the
@5t yl esheet annotation.

9.3.1. Server assets

Server assets are served by the webserver in which the application is deployed. Relative server
assets are served from the war file containing the application.

Page 44 of 50

Example 9.2. Declarative relative server asset configuration

@\ssets(scripts = @cript(src = "nyscript.js"))
package ny. appli cati on;

9.3.2. Classpath assets

Classpath assets can be located anywhere on the application classpath, they can be either
absolute or relatives. Relative classpath assets declared by the asset plugin must be located in the
asset s package of the application, for instance an application packaged under imy. appl i cati on
will have its relative assets located under nmy. appl i cati on. assets.

Example 9.3. Declarative relative classpath asset configuration

@\ssets(scripts = @bcript(

src = "nyscript.js",

| ocation = Asset Locati on. CLASSPATH))
package my. application;

9.3.3. External assets
External assets declares an opaque URL for Juzu.

Example 9.4. External classpath asset configuration

@\ssets(scripts = @cri pt(
src = "https://aj ax. googl eapi s. coml aj ax/ i bs/jquery/1.7.2/jquery.mn.js",
| ocation = Asset Locati on. CLASSPATH))

package mny. application;

9.4. Less plugin

The Less plugin transform Less source files into regular CSS files. This plugin operates during
compile phase to transform Less sources into css assets that can be the served by the asset

plugin.

The Less plugin declares a set of .less files to be compiled via the @.ess package annotation.
However unlike the asset plugin, the Less plugin is not related to a specific application, it means
that the @.ess annotation can be used on any package. The . | ess files will be resolved from the
asset s child package of the annotated package:

®* When an application package is annotated the assets package will coincide with the
application asset package

®* When a regular package is annotated, application can refer to it via an absolute uri

Page 45 of 50

Example 9.5. Transforming and declaring Less assets

@ess(val ue = "bootstrap.less", mnify = true) @
@\sset s(styl esheets = "bootstrap.css") @
package ny. applicati on;

@ Transform my. application. assets. bootstrap.|less to
ny. appl i cati on. assets. boot strap. css

@ Declare ny. appl i cati on. assets. boot strap. css to be served by the application

Page 46 of 50

10
Less plugin

LESS is a dynamic stylesheet language which extends CSS with dynamic behavior such as
variables, mixins, operations and functions. LESS is easy to learn thanks to the online
documentation.

Juzu provides a LESS plugin that takes care of compiling a LESS stylesheet into a CSS stylesheet
which are then served by the Asset plugin. This chapter explains how to use LESS and combine it
with the Asset plugin.

10.1. Usage

The LESS plugin operates at compilation time only because the only task he has to do is to
transform a LESS source code into a CSS stylesheet. The runtime part is usually done by the
Asset plugin.

The @.ess annotation annotates a package containing an assets package. This assets
package should contain the LESS files to be compiled.

Example 10.1. Annotating an application package for processing LESS files

@ess("styl esheet.| ess")
@\ppl i cation
package myapp;

i mport juzu. plugin.|ess. Less;

The stylesheet.less file will be located in the nyapp. asset s package. The asset s child package
of the annotated package should contain the stylesheet, this is done on purpose to coincide exactly
with the assets package used by the Asset plugin. During the compilation phase the
stylesheet.less will be compiled to the stylesheet.css. If we want this file to be served with the
application we simply add the corresponding @Asset annotation:

Page 47 of 50

http://lesscss.org/
http://lesscss.org/

Example 10.2. LESS and Asset plugins in action

@ess("styl esheet.| ess")

@\sset s(styl esheets = @bt yl esheet (
src = "styl esheet. css"
| ocation = AssetLocati on. CLASSPATH)

)
@\ppl i cati on
package nyapp;

i mport juzu. plugin.|ess. Less;
i mport juzu.plugin.asset. Asset;
i mport juzu.plugin. asset. Styl esheet;

By default LESS will use a default formatting for the generated CSS. To achieve smaller CSS size,
a minify option can be used, this option will trim the whitespace when processing the file :
@ess(value = "styl esheet.less", mnify = true).

10.2. Building

Add the Less plugin jar to your compilation classpath.

In Maven it can achieved by adding the Less plugin dependency to your POM:

<dependency>
<gr oupl d>or g. j uzu</ groupl d>
<artifactld>juzu-plugins-less</artifactld>
<ver si on>0. 5. 0</ ver si on>

</ dependency>

Page 48 of 50

11

Portlet plugin

The portlet plugin enhance Juzu portlet applications.

11.1. Portlet class generation

A Juzu portlet application is managed by a JuzuPort | et configured with the application name.
The @uzu. pl ugi n. portlet. Portl et annotation can be used to generate a subclass of the
JuzuPort | et that configures the application name for you, easing the configuration of the
portlet.xml corresponding section.

@ortl et
package ny;

<portl et>
<portl et-nane>M/Appl i cation</portl et-nane>
<di spl ay- name xm : | ang="EN'>My Appli cati on</di spl ay- nane>
<portlet-class>nyapp. MyPortlet</portlet-class>
<support s>
<m me-type>text/htm </ m ne-type>
</ support s>
<portlet-info>
<title>My Application</title>
</portlet-info>
</portlet>

The plugin will generate the portlet using the application name with the first letter capitalized and
the Portlet suffix. In our example the my application generates the MyPort | et class. If you don't
like it you can change the name of the generated class in the application:

@ortlet(nane "MyG eatPortlet")
package ny;

Page 49 of 50

<portl et>
<portl et-nane>M/Appl i cation</portl et-nane>
<di spl ay- name xml : | ang="EN'>My Appli cati on</di spl ay- nane>
<portlet-class>nyapp. MG eat Portlet</portlet-class>
<support s>
<m me-type>text/htm </ m ne-type>
</ support s>
<portlet-info>
<title>My Application</title>
</portlet-info>
</portlet>

11.2. Portlet preferences injection

During the various phase of an application, the current portlet preferences can be injected in a
controller:

Example 11.1. Injecting portlet preferences

@nject javax.portlet.PortletPreferences preferences;

The same restriction defined in the portlet specification applies to the provided preferences
object: i.e saving preferences can only be performed during an action phase.

11.3. Building

Add the Portlet plugin jar to your compilation classpath.

In Maven it can achieved by adding the Less plugin dependency to your POM:

<dependency>
<gr oupl d>or g. j uzu</ groupl d>
<artifactld>juzu-plugins-portlet</artifactld>
<ver si on>0. 5. 0</ ver si on>

</ dependency>

Page 50 of 50

