
Juzu Web Framework

0.5.0
Reference

Julien Viet

eXo Platform
Copyright © 2012 eXo Platform SAS

Table of Contents

Preface

1. Build and deploy
1.1. Build
1.2. Deploy

2. Request
2.1. Phases
2.2. Interactions
2.3. Mapping onto HTTP

3. Responses
3.1. Content responses
3.2. Render response
3.3. Update response
3.4. Redirect response

4. Controllers
4.1. Overview
4.2. Controller phases
4.3. Controller classes

5. Inversion of Control
5.1. Juzu IOC
5.2. Beans in action

6. Templating
6.1. The templating engines
6.2. Using templates

7. Templating SPI
7.1. Compiling a Groovy template
7.2. Type safe URL resolution
7.3. Template Service Provider Interface
7.4. Template at work

8. Taglib
8.1. Taglib syntax
8.2. Include tag
8.3. Decorate / Insert tag
8.4. Title tag
8.5. Param tag

9. Assets
9.1. Asset serving
9.2. Declaring assets programmatically
9.3. Asset plugin
9.4. Less plugin

10. Less plugin
10.1. Usage
10.2. Building

11. Portlet plugin
11.1. Portlet class generation
11.2. Portlet preferences injection
11.3. Building

List of Examples

6.1. Controller URL syntax
6.2. Controller URL with parameters
6.3. Explicit controller URL
6.4. Using a template
6.5. Returning the generated juzu.Response.Render
6.6. Native template parameter declaration
6.7. Mustache template parameter declaration
6.8. Named bean
6.9. Template parameters
6.10. Named bean
6.11. Template parameters
8.1. Start and end tag syntax
8.2. Empty tag syntax
8.3. The include tag
8.4. The wrapped template
8.5. The decoraring template
8.6. Setting the title
8.7. Declaring a template parameter
8.8. Using the template parameter
9.1. JQuery UI declarative asset configuration
9.2. Declarative relative server asset configuration
9.3. Declarative relative classpath asset configuration
9.4. External classpath asset configuration
9.5. Transforming and declaring Less assets
10.1. Annotating an application package for processing LESS files
10.2. LESS and Asset plugins in action
11.1. Injecting portlet preferences

Preface
Juzu is a web framework based on MVC concepts for developing Portlet applications. Juzu is an
open source project developed on GitHub licensed under the license.project LGPL 2.1

https://github.com/juzu/juzu
http://www.gnu.org/licenses/lgpl-2.1.html

Page 5 of 50

1.

1
Build and deploy

We will see in this chapter how to build and deploy a Juzu application.

1.1. Build
Building a Juzu application is usually done in two steps

Compile the application to its binary representation

Package the application as a war file

Compiling an application requires a few jars to be present on the compilation classpath:

The Juzu core jar for the Juzu API

The JSR-330 jar for the @Inject API

Any Juzu extension jar such as plugins or additinal template engines

After compilation, classes need to be packaged as a web application archive () and thenwar
deployed in a server. We will show several ways to package a Juzu application.

At the moment Juzu focuses on Maven because it is built with Maven, however that does not
mean that Juzu is coupled to Maven, in the future we will provide additional examples or
quickstart for alternative build systems.

1.1.1. With Maven

Juzu libraries are deployed in the , compiling an application with require aMaven Central repository
few dependencies to find the correct jars.

1.1.1.1. Using the Juzu Maven builder

The is a Juzu artifact that serves the purpose of building and packaging an application:builder

provide a set of dependencies that will be sufficient for compiling the application using its
Maven transitive dependencies

http://search.maven.org/

Page 6 of 50

2.

1.

2.

3.

1.

2.

provide a predefined assembly descriptor that creates a war file containing the application
classes, resources and libraries

To achieve the first step, we simply declare the following dependency in a Maven artifact:

<dependency>
 org.juzu<groupId> </groupId>
 juzu-packager<artifactId> </artifactId>
 0.5.0<version> </version>
</dependency>

Assembling the application requires more XML but is very straightforward:

<build>
 <plugins>
 <plugin>
 maven-assembly-plugin<artifactId> </artifactId>
 2.3<version> </version>
 <dependencies>
 <dependency>
 org.juzu<groupId> </groupId>
 juzu-packager<artifactId> </artifactId>
 0.5.0<version> </version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 gatein<id> </id>
 <goals>
 single<goal> </goal>
 </goals>
 package<phase> </phase>
 <configuration>
 gatein<classifier> </classifier>
 <descriptorRefs>
 gatein<descriptorRef> </descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

The plugin takes care of packaging the application:assembly

The plugin dependency declares on the artifact because it contains thejuzu-packager
predefined descriptors such as the descriptorgatein

The goal of the assembly plugin is executed on the phasesingle package

The predefined descriptor packages the applicationgatein

Any dependency on the application is packaged in WEB-INF/lib

Page 7 of 50

3.

2.

3.

4.

The application classes are copied in WEB-INF/classes

The web application files are copied to the root of the archivesrc/main/webapp

Specific deployment descriptors may be copied in the war file depending on the
predefined descriptor

In this example we used the predefined descriptor, the same descriptor for the Liferay Portalgatein
server can also be used with the name .liferay

The builder relies p, the : Juzu provides the Maven Assembly plugin predefined assembly
 and that makes easy to package a Juzu application.descriptors gatein liferay

The predefined assembly descriptor does a similar job to the Maven packaging but withwar
more flexibility. To achieve the same result, the usage of a war packaging with the overlay
feature.

1.1.1.2. Juzu archetype

The following produces a base Juzu application:

mvn archetype:generate \
 -DarchetypeGroupId=org.juzu \
 -DarchetypeArtifactId=juzu-archetype \
 -DarchetypeVersion=0.5.0 \
 -DgroupId=org.example \
 -DartifactId=myapp \
 -DpackageName=org.example.myapp \
 -Dversion=1.0.0-SNAPSHOT

The generated application is a quickstart ready to can be customzed for developing more complex
applications. The archetype uses the packager described in the previous section.

1.1.2. Using a prepackaged application

The Juzu distribution contains the Booking and Tutorial applications for GateIn and Liferay servers.
They can be used as basis to create applications.

1.1.3. Using an IDE

Juzu uses Annotation Processing Tool to perform many tasks at compilation time. APT is a
standard extension of a Java compiler. All Java IDE (Eclipse, Intellij and Netbeans) provide good
support for APT, we will show in the section how to configure and uses APT within those IDEs.

IDEs provide also Maven support, we will focus in this section on using APT without the Maven
support. Indeed the APT support may work differently when using Maven in your project, the
Maven and APT support within IDEs has a dedicated section.

1.1.3.1. Intellij support

todo

http://maven.apache.org/plugins/maven-assembly-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html
http://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html

Page 8 of 50

1.1.3.2. Eclipse support

todo

1.1.3.3. Netbeans support

todo

1.2. Deploy
At the moment the supported (i.e tested) portal servers are

GateIn 3.2 / GateIn 3.3

Liferay 6.1

Other server may work but we are not aware of that as it was not tested in other environments.

1.2.1. GateIn

1.2.1.1. GateIn on Tomcat 6/7

No specific deployment instruction.

1.2.1.2. GateIn on JBoss AS 7

GateIn on JBoss AS7 requires a little modification to do:

Open the file and add modules/javax/api/main/module.xml <path
among the declaration: name="javax/annotation/processing"/> paths

<module = =xmlns "urn:jboss:module:1.1" name "javax.api">
 <dependencies>
 =<system export "true">
 <paths>
 =<path name "javax/annotation/processing"/>
 ...
 </paths>
 </system>
 </dependencies>
</module>

This configuration exposes the package to the classes seenjavax.annotation.processing

by Juzu.

1.2.2. Liferay

Liferay has been tested extensively with the Tomcat version, no specific deployment instruction is
required.

Page 9 of 50

2
Request

Applications are build to process request, this concept deserves an entire chapter that explains
how Juzu process http request. Request life cycle is the most important concept to get right when
developping a web application, whether it is a Juzu application or not.

2.1. Phases
Juzu request life cycle is composed of four phases, we will explain three of them in this chapter,
the last one will be explained in another chapter of this guide.

The view phase : invoke the application to produce markup output aggregated within a page

The action phase : invoke the application to process an action

The resource phase : invoke the application to produce any kind of output as a full response
(i.e not in a page)

During the execution of a phase, parameters are provided by Juzu to execute the phase. Those
parameters are set by the application itself, for instance when it creates a link. The scope of the
parameters (i.e when the validity of the parameters) depends on the phase.

2.1.1. View phase

The view phase invokes the application for the purpose of creating markup. This phase is
indempotent, it means that repeated invocation of the same phase with the same parameters
should produce the same markup (supposing than the application does not depend on some other
state, like a database that could change over time).

View parameters are associated with the current URL, it means that they are somehow persistent.
For instance you interact with an application to change its view parameters on each request and
then you interact with another application on the same page: the view parameters will remain the
same accross the invocation of the view phase of the application when the second application is
used.

Page 10 of 50

1.

2.

3.

2.1.2. Action phase

The action phase invokes the application for processing an action. During the invocation, action
parameters are provided and their validity is limited to the current action phase being executed,
after they will not be anymore available.

The action phase is not idempotent, invoking several times an action phase could have side effects
such as inserting several times the same data in a database.

Juzu does not expect markup returned during this phase, however it provides the opportunity to
configure the view parameters of the next view phase.

2.1.3. Resource phase

The resource phase allows the application to produce a web resource such as an image or a full
page. When this phase is invoked, a set of resources parameters are provided in the URL
producing the resource.

2.2. Interactions
Now that we have an overview of the phase, it is time to connect them and explain the interactions
between the phases.

Figure 2.1. Interaction between phases

An action phase is invoked by an URL produced during a view phase, this URL contains the
action parameters

After an action phase a view phase is executed and the view parameters are updated

A resource phase is invoked by anURL produced during a view phase, this URL contains the
resource parameters

2.3. Mapping onto HTTP
As said before, phases and interactions have a natural mapping with the HTTP protocol. It is
worthy to explain it because it will help you to understand fully the interations managed by Juzu.

Page 11 of 50

2.3.1. View phase

View phases are mapped on requests:GET

The view phase is idempotent like GET

View parameters are identified to query parameters

The response returned by a GET request should remain identical for the same parameters

During a view phase, the application produces URL which can invoke any application phase.

Figure 2.2. View phase

In this example the view phase produce markup parameterized by the parameter havingcolor

the value.red

2.3.2. Action phase

Action phase are created from view phase by processing a link that was found in the markup
response. The action phase is mapped on requests:POST

Both action phases and POST request are not idempotent

Action parameters are identified to form parameters

Action phase and POST requests should not be invoked more than one time

Figure 2.3. Action phase

Now let's update our example and suppose that the application returns markup with a form that
invokes an action phase. When the user submits the form it triggers the action phase, which in
returns updates the view parameter of the next view phase to the value .color blue

Page 12 of 50

Figure 2.4. View phase after action phase

The HTTP redirection will update the browser to show the next view phase with the expected view
parameters.

During the action phase, the application configures the parameters of the next view phase. When
the invocation of the phase is over, the server redirects the browser (with an HTTP temporary
redirection) to the next view phase URL. This URL contains the view parameters. This mechanism
is well known as pattern and is often used to ensure that a POST request is not Redirect After Post
triggered several times when the refresh button of the browser is used.

2.3.3. Resource phase

Resource phases are trivially mapped on request pretty much like a view phase. The mainGET
difference is that the resource phase is responsible for managing the entire response instead of
just a fragment of the response.

http://fr.wikipedia.org/wiki/Post-Redirect-Get

Page 13 of 50

3
Responses

Each request produces a response object: a subclass of the class.juzu.Response

Response objects are returned by method processing requests, the class of the object determines
the kind of response sent to the client. A response object may carry a additional objects such as
assets (css or script).

Response object are created thanks to the static factory methods of the class.juzu.Response

The class is abstract and it has several subclasses that form a possible hierarchy ofResponse

response adapted to the phase being processed.

3.1. Content responses
A response is a markup or binary data, it can be created with the static method:content ok

 Response.Content<Stream.Char> ok(CharSequence content) { ... }public static

It can be used during a or phase to return markup:view resource

@View
 Response.Content index() {public

 Response.ok();return "Hello World"
}

3.2. Render response
A response extends a response, it specializes it for aggregated markup, i.e arender content
response where the application manages only one portion of the full page such as a portal:

@View
 Response.Render index() {public

 Response.render().withTitle();return "Hello World" "The Hello"
}

Page 14 of 50

3.3. Update response
 responses are returned during an phase to configure the next phase. UsuallyUpdate action view

update responses are not created using static methods, instead they are created using controller
companion static methods, this will be in the controller chapter.explained

3.4. Redirect response
 responses are returned during an phase to redirect the user agent to an URL, itsRedirect action

usage is simple:

@Action
 Response.Redirect process() {public

 Response.redirect();return "http://www.host.com/"
}

Page 15 of 50

4
Controllers

Controllers play an essential role in a Juzu application: they contain the code executed when Juzu
processes a request, this chapter provides an in depth study of Juzu controllers.

4.1. Overview
Juzu controllers are simply annotated methods of the application, here is the most basic controller
declaration:

public Controller {class
 Response.Content index() {@View public
 Response.render();return "hello world"
 }
}}

The annotation declares a controller, the name has a special meaning@juzu.View view index

as it will be used when no other controller is specifed in a Juzu request.

Controller methods can declare parameters for receiving request parameters:

public Controller {class
 Response.Content index(String person) {@View public
 Response.render(+ person == null ? : person);return "Hello " "world"
 }
}

Like previously, the controller returns the value when it is called the first time.index hello world
When the controller is called with the parameter it returns the hello string personalizedperson

with the corresponding parameter value: Juzu use the declared method parameter name to match
against the request parameters, in our case the request parameter.person

Any controller class (any class containing at least one controller method) generates a companion
class during the compilation of the project. Such companion class extends the original controller
class to provider companion methods for the controller method. The companion class has the
same name than the original class appended with the character:_

Page 16 of 50

public Controller_ {class
 URLBuilder indexURL() { }public static /* Generated code */
 URLBuilder indexURL(String person) { }public static /* Generated code */
}

Each methods generated a corresponding url companion. When any index indexURL indexURL

method is invoked it returns an object that represents the URL invoking theURLBuilder

corresponding phase. When parameters are provided they are already encoded in the returned
URL. Calling the method of the URLBuilder returns the URL.toString()

@View Response.Content index() {public
 Response.render(+ Controller_.index() + ;return "Hello word. Say hello to Juzu"
}

URL companion methods have the name of the originating method appended with the suffix.URL
The method parameter types are the same.

4.2. Controller phases
There are several kinds of controllers bound to a request phase studied in the :???

View controllers annoted with the annotation@juzu.View

Action controllers annotated with the annotation@juzu.Action

Resource controllers annotated with the annotation@juzu.Resource

Event controllers annotated with the annotation ()@juzu.Event not yet implemented

4.2.1. View controllers

A view controller method produces aggregated markup for the application, the invocation of the
method should produce markup that will be aggregated in larger page, therefore it should not care
about the overall HTML structure.

View parameters describe the current parameters of the view, they are often used for navigation
purpose in the application. Juzu supports simple data types such as string and structured data
types modelled by Java objects.

Simple data types can be the following types , and .String List<String> String[]

Later this will be expanded to more simple types such as number, etc..

Structured data types : todo

View controller method should return a object that is the content produced by thejuzu.Response

method. To be more precise it should return a or objectResponse.Content Response.Render

(the latter being a subclass of the former) that contains everything Juzu needs to display the
application.

 is a base class for content, it defines the method. Juzu invokes thisResponse.Content send

Page 17 of 50

method when it needs to render the response produced by the view method. The invocation of the
 method will be performed after the view method is invoked.send

 send(S stream) IOException {public void throws
 streamable.send(stream);
 }

During the view phase a controller can generate URLs to other phases (except the event phase) by
using companion url methods. Companion url methods returns a object tojuzu.URLBuilder

represent the URL. The final URL is returned by the method of the builder.toString()

4.2.2. Action controllers

Action controller are executed during the action phase of a Juzu application. Usually action
methods perform two tasks

implement the logic of the application processing, for instance inserting an entity in the
database

configure the next view phase: setting the next view controller to display and configuring its
view parameters of the method when they exist

In the following example, the controller method creates a user and returns a createUser

 object that will tell Juzu to use the view controller during the nextResponse.Update showUser

view phase:

@Action
 Response.Update addUser(String userName, String password) {public

 orgService.createUser(userName, password);
 Controller_.showUser(userName);return
}

 is a companion method that creates a object configuredshowUser update Response.Update

with the controller and arguments to use. Like url companion methods, update companion methods
are generated during the compilation of the project by Juzu.

4.2.3. Resource controllers

Resource controllers are similar to view controllers, however the resource has full control over the
target page. It means that a resource controller must produce the entire resource and it can also
chose the mime type returned. Resource controllers have several use cases:

Implement ajax resource serving

Produce an application resource, such as an image, a script, etc...

4.2.4. Event controllers

not yet implemented

Page 18 of 50

1.

2.

1.

2.

4.3. Controller classes
Controller methods belongs to Java classes known as controller classes. Controller classes are
ordinary java classes, any class can be turned into a controller by declaring a controller method.
Controller classes are registered in the IOC container of the Juzu application, we will study later
the benefits.

4.3.1. Controller life cycle

We will study in this section the complete life cycle of a controller object. Juzu relies on the IOC
container for managing the life cycle of controller objects, based on the @javax.inject.Inject
annotation. If the controller desires, it can receive life cycle callbacks thanks to the

 and annotations.@javax.annotation.PostConstruct @javax.annotation.PreDestroy

Let's have a look at the complete life cycle of a controller object during a Juzu request:

Figure 4.1. Life cycle of a controller object

Juzu begins the request, it will need an controller instance for the request and asks the IOC
container an instance

The IOC container creates a fully operational controller instance in several stesp

It gets a controller object instance either by creating a new instance by using the
default constructor or the constructor annotated with @Inject

Page 19 of 50

2.

2.

3.

3.

4.

1.

2.

5.

It injects the controller declared dependencies by the annotation@Inject

It invokes any method annotated with @PostConstruct

Juzu obtains a valid controller instance and simply invokes the controller method

After the invocation, Juzu releases the controller instance and delegates it to the IOC
container again

It invokes any method annotated with @PreDestroy

It makes the instance available to the garbage collector

Juzu ends the request and use the objet returned by the controller methodResponse

Page 20 of 50

5
Inversion of Control

Juzu provides native support for Injection of Control (known as) and relies on the specification IOC
 (known as) for providing implementation free IOC.JSR-330 @Inject

Although the JSR-330 is quite small it provides the necessary ground for building Juzu
applications. Juzu itself relies on the injection container for wiring the entire Juzu runtime
(controllers, templates, plugins, etc...).

We will explain how Juzu uses IOC for its runtime, we will suppose that the reader is familliar with
IOC and with the @Inject specification, in particular the notion of injection, scope and qualifier
should be familliar.

5.1. Juzu IOC

5.1.1. IOC containers

The JSR-330 is implemented by several projects, we refer to them as IOC containers, they are
implementations of the JSR-330 specification:

Spring Core 3

Context and Dependency Injection also know as implemented by the projectCDI Weld

Google Guice 3

Juzu is able to run with any of those implementation and leaves you the choice of the IOC
implementation you want to use.

CDI is a specification that extends the specification: CDI provides more features than@Inject
@Inject, however this specification is only implemented by Weld. Nevertheless if your choice
is to use CDI you will be leverage its specific features in your Juzu application

5.1.2. Beans

Beans are simply object managed by the IOC container, any bean can be injected other beans:

http://docs.oracle.com/javaee/6/api/javax/inject/package-summary.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://seamframework.org/Weld
http://code.google.com/p/google-guice/wiki/Guice30

Page 21 of 50

@java.inject.Inject
Service service;

5.1.3. Scopes

Scopes define how a instances of a bean are managed by the IOC container: for a given bean,
shall it be instantiated only one time and shared or shall it instantiated everty time it is required ?
that's the kind of question that scope answers.

Juzu provides 4 scopes to use within your application:

 scope: a single bean instance is the same for the whole@javax.inject.Singleton

application

 scope: the bean is instantiated once per request@juzu.RequestScoped

 scope: the bean is instantiated once per session@juzu.SessionScoped

 scope: the bean is instantiated once per request but is reused if it@juzu.FlashScoped

was instantiated during an action request in the next render request and only in the first one

5.1.4. Qualifiers

Qualifier are designed to distinguish several instances of a same bean. How does a bean differ
from another bean ? it's not really possible to tell, qualifiers simply answer this question, allowing
to:

distinguish beans based upon the qualifier members

configure the bean instance for a particular usage

The JSR-330 specification provides the qualifier whose purpose is to give a name to a@Named

bean, for instance

@Named("john")
 Person john;@Inject

@Named("peter")
 Person peter;@Inject

5.2. Beans in action
Beans are simply the objects managed by the IOC engine. In a Juzu applications we have several
kind of beans:

Controllers

Template

Application beans

Page 22 of 50

Plugin beans

5.2.1. Template beans

Every template has a corresponding class at runtime. The templatejuzu.template.Template

class allows applications to interact with templates, most of the time for rendering purpose:

template.render();

A template bean is always qualified by the qualifier. The path qualifier is simply the value of@Path

the path relative to the package, for instance is a valid qualifier value. Thetemplates index.gtmpl
qualifier allows to have several instances and distinguish them.Template

Templates have the scope: a single instance of the template object is created and@Singleton

shared in the IOC container.

5.2.2. Controller beans

Each controller class is turned into a bean, that's how controllers can be injected with other beans.
As soon as Juzu finds a class annotated by , or , it is automatically@View @Action @Resource

turned into a bean.

Controller have the scope by default: every time a controller instance is required it will beRequest

created for the duration of the request. It is possible to change the scope of a controller by
annotating it with another scope annotation managed by Juzu:

@SessionScoped
 Controller {public class

 @View
 index() { }public void
}

5.2.2.1. Injection a template into a controller

Injecting a template bean into a controller bean is probably the most common Juzu pattern:

@Inject
@Path("index.gtmpl")
Template index;

The template can then be used for rendering purposes:

@View
 index() {public void

 index.render();
}

Page 23 of 50

5.2.3. Application beans

Application beans model the custom logic of an application, they are normally injected in controller
beans that use them when they process requests. The plugin allows an application tobinding
declare custom beans that can be used in the application.

5.2.3.1. POJO bean binding

Binding a Plain Old Java Object (POJO) is a very simple task to accomplish:

@Bindings(@Binding(Mailer.class))
 myapplication;package

The bean will be entirely managed by the IOC container, the binding plugin will just declare it in the
IOC container. The POJO will be created when needed, for instance when it is inserted in a
controller.

public MyController {class
 Mailer mailer;@Inject
 @Action
 sendMail(String recipient, String subject, String message) {public void
 mail.send(recipient, subject, message);
 }
}

5.2.3.2. Abstract bean binding

Binding an abstract class or an interface type is also possible with the memberimplementation

of the annotation:@Binding

@Bindings(@Binding(value=Mailer.class,implementation=MailerImpl.class))
 myapplication;package

5.2.3.3. Binding with a provider

Sometimes the implementation cannot be created by the IOC container, for instance it may not
have a correct constructor, it can only be retrieved using a factory or it should be configured before
being used. For such scenarios the implementation can specify a class implementing the

 interface.javax.inject.Provider

Page 24 of 50

public ConfiguredMailerProvider javax.inject.Provider<Mailer> {class implements

 String emailprivate
 String password;private

 ConfiguredMailerProvider() {public
 .email = System.getProperty();this "mailer.email"
 .password = System.getProperty();this "mailer.password"
 }

 Mailer get() {public
 MailerImpl(email, password);return new
 }
}

Thanks to the provider, we have a provider that returns a configured beforeMailer MailerImpl

usage.

5.2.3.4. Beyond the provider

The implementation class can also be an instance of . Thejuzu.inject.ProviderFactory

provider factory is a factory for providers whose purpose is to return a for a specificProvider

class. The provider factory has the method:

 /**
 * Returns a provider for a specific type or null if it cannot be produced.
 *
 * @param implementationType the implementation class object
 * @param <T> the implementation generic type
 * @return a provider for this class or null
 * @throws Exception any exception that would prevent to obtain the provider
 */
 <T> Provider<? T> getProvider(Class<T> implementationType)extends
 Exception;throws

The provider factory implementation must provide a public zero argument constructor and it will be
instantiated during the application boostrap by Juzu to obtain the provider. The returned providers
will then be bound into the IOC container.

Usually provider factories will lookup the service in a registry (like another IOC container) and
returns a provider that return them lazily or not.

5.2.3.5. Scoped binding

The annotation provides room for declaring a bean scope:@Binding

@Bindings(@Binding(value=Mailer. ,scope=Scope.SINGLETON))class

When the scope is not specified, the scope is determined from the bean or implementation that
should be annotated with a scope annotation. When it is specified, it overrides the annotation
scope the bean could declare.

Page 25 of 50

5.2.3.6. Qualifying provider

A provider implementation can declare qualifiers on the method they implement in order to setget

the qualifiers of the returned bean:

public MailerProvider Provider<Mailer> {class implements
 @Named("mailer")
 Mailer get() {public
 MailerImpl();return new
 }
}

This is useful for declaring qualifiers on a class that is not annotated by qualifiers, because it is not
possible to declare qualifiers in an annotation due to limitations of the Java language.@Binding

Page 26 of 50

6
Templating

Templating is the part of a Model View Controlle architecture. We will study in this chapterView
how the templating system interacts with the Juzu, at compilation time and at runtime, both aspects
are very important.

6.1. The templating engines
Juzu can use several templating engines, it provides a native template engine as well as the
Mustache templating engine. Those engines are not competing, instead they should be seen as
alternatives: the native Groovy engine provides the goodness of the Groovy languages, however
sometimes some people prefer logic-less templates and is a template engine theyMustache
should use. Let's introduce them briefly.

6.1.1. The native template engine

The native template engine extends the : it can include snippet ofGroovy templating system
Groovy code or resolve Groovy expressions:

6.1.1.1. Expressions

Expressions are simply Groovy expressions wrapped with the syntax:${...}

The sky is ${color}

6.1.1.2. Scriplets

Groovy code can also literaly be used with the syntax: . Within a scriptlet the scriplet <% ... %>

 implicit object can be used for outputting markup:out

<% ["red","green","blue"].each({ color -> out.print("The sky is " + color + "") }) %>

The scriplet syntax can also be used:<%= ... %>

The sky is <%= color %>

http://mustache.github.com/
http://groovy.codehaus.org/Groovy+Templates

Page 27 of 50

6.1.1.3. Controller urls

Controller urls is natively supported by the engine, it allows to create controller URL with a short
and compact syntax :@{...}

Example 6.1. Controller URL syntax

Home

URL expressions can contain parameters and they must be named:

Example 6.2. Controller URL with parameters

Purchase

The method refers to a controller method, when the application has several controllers,purchase
the controller name can be used to prefix the url expression and remove the ambiguity:

Example 6.3. Explicit controller URL

Purchase

Under the hood the controller URL syntax uses the controller compagnion for creating the URL: the
 will uses the controller compagnion Controller.purchase(product=1)

.Controller_#purchase(String product)

6.1.1.4. Taglib

The native engine provides taglib support using the or syntax:#{tag}...#{/tag}} #{tag/}

#{title value=Hello/}

Available tags are explained in the .taglib chapter

6.1.2. The Mustache template engine

The Mustache template engine uses templates based on the Java port oflogic-less Mustache.java
Mustache. Mustache is very easy to use, you can read the , however we will have adocumentation
quick overview of how it can be used in Juzu:

6.1.2.1. Variables

Variables uses the syntax, they are resolved against template parameters or beans.{{...}}

The sky is {{color}}

https://github.com/spullara/mustache.java
http://mustache.github.com/mustache.5.html

Page 28 of 50

6.1.2.2. Sections

Mustache sections allows to iterate expressions that are multivalued.

todo

6.2. Using templates
A template as seen by an application is a bean managed by the IOC container.

6.2.1. Template declaration

Applications use a template by injecting a object in its controllersjuzu.template.Template

qualified by the annotation:juzu.Path

Example 6.4. Using a template

public Controller {class

 @Inject
 @Path("index.gtmpl")
 Template index;

 @View
 index() {public void
 index.render();
 }
}

Declares the template path

Renders the template and send the markup to the response

The annotation is a qualifier annotation managed by the IOC container. It is veryjuzu.Path

similar to the qualifier, but it has a special meaning for Juzu for declaring@javax.inject.Named

the template.

The method of a template returns a response which can alsorender juzu.Response.Render

be returned by the controller method. This is equivalent to the previous example.

Example 6.5. Returning the generated juzu.Response.Render

 @View
 Response.Render index() {public
 index.render();return
 }

Page 29 of 50

6.2.2. Type safe parameters

Template type safe parameters brings more type safety in your applications. Templates can
declare parameters and they are made available on a subclass of the

 class.juzu.template.Template

Parameters are declared using the taglib support of the native template engine

Example 6.6. Native template parameter declaration

#{param name=color/}
The sky is ${color}.

or the pragma support of the Mustache engine

Example 6.7. Mustache template parameter declaration

{{%param color}}
The sky is {{color}}.

When the template is declared in a controller, a subclass of can bejuzu.template.Template

used:

package weather;

 Controller {public class

 @Inject
 @Path("sky.gtmpl")
 weather.templates.sky sky;

 @View
 index() {public void
 sky.with().color().render(); "blue"
 }
}

The typed template classweather.templates.sky

Use the template parametersky color

The class does not exist in the original source but it is available whenweather.templates.sky

the application is compiled because it will be generated by Juzu compiler integration. The sky
templates provides a syntax to bind parameters: f luent

.sky.with().color("blue").render()

Page 30 of 50

6.2.3. Expression resolution

When we studied the templating engine syntax but we did not mentioned exactly how expression
are resolved.

6.2.3.1. Single name expressions

Both templating system provides a syntax for resolving single name expressions:

 for Groovy${...}

 for Mustache{{...}}

Resolution is performed against template parameters or bean named with the
 qualifier.javax.inject.Named

Example 6.8. Named bean

@javax.inject.Named("color")
 Color {public class

 String toString() {public
 ;return "red"
 }
}

Example 6.9. Template parameters

index.with().set(,).render(); "color" "red"
index.with().color().render(); "red"

Detyped version

Type safe version

6.2.3.2. Compound expressions

Compound expressions are resolved the same way for the first name and the expression resolve
will attempt to navigate the rest of the expressions from this object:

 for Groovy${weather.color}

 for Mustache{{#weather}}{{color}}{{/weather}}

Page 31 of 50

Example 6.10. Named bean

@javax.inject.Named("weather")
 Weather {public class

 String color;private

 Weather(String color) {public
 .color = color;this
 }

 Weather() {public
 .color = ;this "red"
 }

 String getColor() {public
 color;return
 }
}

Example 6.11. Template parameters

index.with().set(, Weather()).render(); "weather" new "blue"
index.with().color(Weather()).render(); new "blue"

Detyped version

Type safe version

}}}

Page 32 of 50

7
Templating SPI

This chapter dives into the template life cycle from compilation time to run time. We will describe
the template Service Provider Interface (SPI), the SPI is designed to make Juzu templating
extensible and integrating new template engines in Juzu. This chapter is optional is you are writing
application with Juzu, however it is a must read if you want to know more Juzu internals or if you
want to understand how to integrate a template engine in Juzu.

When a Juzu application is compiled, the Juzu annotation processor detects the @Path
annotations and triggers the compilation of the related templates. The template compilation can be
split in two parts:

Generating the template companion class that inherits the juzu.template.Template
class. This part is generic and works with any templating system, it is entirely managed by
Juzu.

Compiling the template file, this task is delegated to the and isTemplateProvider

extensible. The provider allows to have several templating system in Juzu and decouples the
template compilation process from the details of the templating engine.

7.1. Compiling a Groovy template
Let's study an example with the Groovy template at compilation time.

Page 33 of 50

1.

2.

1.

2.

3.

4.

Figure 7.1. Compiling a Groovy template

When the Java compiler is invoked, the following steps are executed

The Java compiler triggers the Juzu annotation processor when it finds the @Path
annotation

Juzu resolves the relative path to the package of the applicationtemplates

When the template cannot be resolved a compilation error is triggered

Otherwise the template is loaded

The template provider is looked up according to the file name extension, it will generate the
 source fileindex.groovy

Juzu creates the class that extends the classindex juzu.template.Template

annotated by the annotation@Path("index.gtmpl")

After that the only remaining part is to compile the source to a class. It can beindex.groovy
achieved either at build time using the compiler or at load time when the templategroovyc index

is loaded using a . The former approach makes the build a bit moreGroovyClassLoader

complex (but not much as Groovy compilation is fairly well supported in build systems or IDEs) as
it requires to run a Groovy compilation but it will perform additional validation of the template as
well as reduce the load time of the template. The later approach will detect any compilation error
(such as Groovy syntax error) at runtime and the compilation will take a fewindex.groovy
milliseconds.

This flexibility allows to use the lazy approach during development and when the application is
released then the Groovy compiler can be used to compile the once and for all.index.groovy

Page 34 of 50

7.2. Type safe URL resolution
Groovy templates provides the syntax for generating URL from the application controllers.@{...}

This section gives an overview of the underlying resolution mechanism.

Figure 7.2. Template URL resolution during compilation

Parse: the template is parsed into its model representation

Resolve: the link is resolved againt the controller meta modelindex

Validate: the link is validatedindex

Emit: the corresponding file is emitted and save on the class outputindex.groovy

Compile: the Groovy source is compiled into a class by the compiler (this part isgroovyc
done after)javac

7.3. Template Service Provider Interface
Juzu provides a Service Provider Interface (SPI) for integrating thirdparty template engine. Actually
all template system are integrated with the SPI. We will study briefly the integration points so you
can integrate a template engine of your choice in Juzu.

7.3.1. Template providers

The is the main entry point when ajuzu.impl.template.spi.TemplateProvider

templating system is integrated. The provider is triggered during the compilation phase by the APT
system built into the Java compiler.

Page 35 of 50

/**
 * A provider for templating system.
 *
 * @author Julien Viet
 * @param <M> the template model
 */

 TemplateProvider<M Serializable> {public abstract class extends
 ...
}

The provider must declare the template model generic type. It must be a serializable type<M>

because Juzu will sometimes write template models on the disk during the compilation this usually
happens only in Eclipse due its incremental compiler architecture. The type specified by the
provider is privately managed (i.e it is opaque for Juzu) and it symbolizes an internal
representation of the parsed source (usually an Abstract Syntax Tree), it will be used in various
methods of the provider.

Let's have a review of the methods of this class to have a better understanding.

 String getSourceExtension();public abstract

 String getTargetExtension();public abstract

The method is used to determine what file extension the provider cangetSourceExtension()

compile. The implementation should return a constant value, for instance the Groovy provide
simply returns the value.gtmpl

The method returns a file extension of the file that is generated by thegetTargetExtension()

provider. This extension is optional and it can return null if the provider will not generate a target
file. For instance the Groovy provider returns the value because it will emit a a Groovy file,groovy

however the Mustache provider will return null because it won't emit any file.

 M parse(public abstract
 ParseContext context,
 CharSequence source) TemplateException;throws

 process(public abstract void
 ProcessContext context,
 Template<M> template) TemplateException;throws

 CharSequence emit(public abstract
 EmitContext context,
 M templateModel) TemplateException;throws

The , and methods care about transforming the template source to its finalparse process emit

representation : the template stub.

The method is invoked with the content of the template and returns a template model.parse

The representation returned by the parse method is a parsed representation of the template
source. If a parsing error occurs the method can throw a .TemplateException

Page 36 of 50

The method is invoked after the template is parsed with the necessary context forprocess

performing further processing of the template, for instance the Groovy templating engine
performs the resolution of type safe URLs or type safe parameters declaration at this
moment. During the process:

The provider can resolve other templates using the , if the templateProcessContext

to resolve is not yet loaded it will trigger the / / lifecycle, it if wasparse process emit

already processed the template is simply returned

The implementation can resolve controller methods and translate them into method
invocation, this is used for checking type safe URL and translating them into controller
companion invocation

The argument represents the template, itjuzu.impl.template.spi.Template

has several fields such as the template model or the template path

The implementation can declare type safe parameters using the
 method. The declared parameters will beTemplate#addParameter(String)

generated on the subclassjuzu.template.Template

The method is invoked when the template processing is over. The implementation canemit

return null or a that will be saved in a file named after the origin template fileCharSequence

but with the extension returned by the method.getTargetExtension()

 Class<? TemplateStub> getTemplateStubType();public abstract extends

Finally the returns the type of a java class that will be used forgetTemplateStubType()

creating a template stub. For each template, a stub is created, the stub is responsible for loading
the template at runtime.

7.3.2. Template stub

Template stubs are java class created by the template compiler for managing the template at
runtime on behalf of the provider. Each provider provides its own stub implementation as a

 subclass, when Juzu finalizes the compilation of ajuzu.impl.template.spi.TemplateStub

template it will create a subclass of the stub for the compiled template. A stub must implement two
abstract methods:

 doInit(ClassLoader loader);protected abstract void

 doRender(TemplateRenderContext renderContext)protected abstract void
 TemplateExecutionException, IOException;throws

The method loads the template using the provided , it will be call only oncedoInit ClassLoader

before the template is rendered.

The method renders the template using the provided . ThedoRender TemplateRenderContext

render context provides the necessary hooks such as:

Producing markup

Page 37 of 50

Setting the title

Obtaining the locale

Accessing parameters or application beans for resolving expressions

7.4. Template at work
After having described the various pieces of the templating SPI, let's look at how the template
generated stubs are used by Juzu templating system at runtime.

Figure 7.3. index groovy at work

When the controller declares the template the compiler produces three artifactsindex.gtmpl

the class template inherits : it is the only class visibleindex juzu.template.Template

from the controller and the whole application

the Groovy template is the effective template code: it produces the markup,index.groovy
resolve expressions, etc...

the template stub inherits : it is the bridge between the index_ GroovyTemplateStub

 class and the file, it loads the Groovy template and runs it when the index index.groovy
 need to render the templateTemplate

When a controller is instantiated, the template instance is injected into the controller, the index

 annotation plays an essential role because it's a qualifier and that qualifier is used to@Path

distinguish the correct subclass to inject in the controller.

Instead of using the qualified template injection, the controller could declare directly the template
 subclass it will still work. Actually this approach should be used when type safe parametersindex

are used as only the type declares the fluent API.index

Page 38 of 50

For instance if the declares the parameter the class will look like:index.gtmpl color index

@Path("index.gtmpl")
 index Template {public class extends

 ...

 index with() {public
 index.Builder();return new
 }

 Builder Template.Builder {public class extends

 Builder color(String color) {public
 // Generated code
 }
 }
}

The controller can then use the fluent API:

public Controller {class

 @Inject
 @Path("index.gtmpl")
 Template index;

 @View
 index() {public void
 index.with().color().render();"red"
 }
}

Page 39 of 50

8
Taglib

A tag library is an essential component of a templating system, allowing to enrich a templating with
encapsulated programmable logic.

Juzu does not yet allow application to define their own tags, it will be added a a new feature
in a future version.

8.1. Taglib syntax
Like most taglib syntaxes, Juzu provides two syntaxes for invoking a tag:

Example 8.1. Start and end tag syntax

#{foo}bar#{/foo}

The start/end syntax opens the tag with and ends it with .#{foo} #{/foo}

A tag can also be empty:

Example 8.2. Empty tag syntax

#{foo/}

A tag can also be invoked empty with the syntax.#{foo/}

8.2. Include tag
The tag simply includes a template inside the current template. The inclusion is dynamicinclude
and not static, meaning that the content of the included template is not in the callinginserted
template, instead when inclusion is performed the control is passed to the included template.

Page 40 of 50

Example 8.3. The include tag

#{include path=dispatched.gtmpl/}

The attribute determines the template to include, the path value is relative to the templatespath
package.

8.3. Decorate / Insert tag
The tag allows the content of the decorating template to wrap the content of the templatedecorate
invoking the tag. The tag should be used in the decorating template to specify the placeinsert
where to insert the markup produced by the template to decorate.

Example 8.4. The wrapped template

#{decorate path=box.gtmpl/}

Example 8.5. The decoraring template

<div style="border: 1px solid black">
#{insert/}
</div>

8.4. Title tag
The tag specifies a title to insert in the object the template willtitle juzu.Response.Render

produce.

Example 8.6. Setting the title

#{title value=Home/}

8.5. Param tag
The tag enhances the type safety of templates, allowing to declare parameters for executingparam
a template. When such a parameter is declared, the generated template class companion will have
a fluent parameter for setting the value of the parameter:

Example 8.7. Declaring a template parameter

#{param name=color/}

Page 41 of 50

Example 8.8. Using the template parameter

@Inject my.templates.index index;

@View
 index() {public void

 index.with().color().render();"red"
}

Page 42 of 50

9
Assets

Web assets are resources used over the web such as stylesheet and script files. Juzu provides a
few facilities for managing applications assets.

9.1. Asset serving
The class represents an asset in Juzu, assets can be of two types:juzu.asset.Asset

 is the coordinate of an asset, i.e how Juzu can resolve and create a validAsset.Value

URL to an asset. An asset value is determined by a and an . The locationlocation uri
determines where the asset can be resolved for instance the location means that theserver
asset is served by the web server. The uri is simply the absolute or relative asset path that
resolves in the location.

 is a reference to an asset value. Asset reference are useful because theyAsset.Ref

decouple the application of the value and allow external configuration to determine the asset.
For example, an application will add to a response an asset reference to instead ofjquery
adding the jquery assethttps://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js
address to a response.

When an application is deployed, the plugin can configure assets in the . The assetasset manager
manager has several responsibilities:

manage asset dependencies: the order in which assets are literaly declared when they are
served. For instance the asset depends on the asset because the jqueryjquery-ui jquery
script must be loaded before the script.jquery-ui

resolve asset references: each asset reference must be resolved and produce a final web url
that will produce the resource when it is resolved by the web browsers

During a request, assets of both kind can be added to the response. At the end of the request, the
runtime uses the asset manager to translate the response assets into a list of uri to add to the
page:

Page 43 of 50

Figure 9.1. Compiling a Groovy template

An asset reference is a link to an asset value that is configured externally, thus an asset of any
kind will always resolve to a location and an uri. Let's examine the different possible asset location:

external: the value is opaque to Juzu, for instance the a CDN hosted script such as
.https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js

server: the asset is served by the same web server in which Juzu is deployed. If the asset
value is relative, the final uri will resolve relatively to the web archive context address.

classpath: the asset is served by Juzu (a servlet configured in the webasset server
application) and the resource is located on the classpath.

9.2. Declaring assets programmatically
When an application requires an asset, it adds the asset to the object:Response.Render

@Inject
@Path("index.gtmpl")
Template index;

@View
 Response.Render index() {public

 Response.Render render = index.render();
 render.addScript(Asset.uri(+"https://ajax.googleapis"
));".com/ajax/libs/jquery/1.7.2/jquery.min.js"
 render;return
}

The same with a fluent syntax:

Page 44 of 50

@Inject
@Path("index.gtmpl")
Template index;

@View
 Response.Render index() {public

 index.render().addScript(Asset.uri(+return "https://ajax.googleapis.com"
));"/ajax/libs/jquery/1.7.2/jquery.min.js"
}

9.3. Asset plugin
The asset plugin provides declarative asset configuration. The annotation declares a list@Assets

of assets used by the an application.

Example 9.1. JQuery UI declarative asset configuration

@Assets(
 scripts = {
 @Script(id = "jquery",
 src = "public/javascripts/jquery-1.7.1.min.js"),
 @Script(src = "public/javascripts/jquery-ui-1.7.2.custom.min.js",
 depends = "jquery")
 },
 stylesheets = {
 @Stylesheet(src = "public/ui-lightness/jquery-ui-1.7.2.custom.css")
 }
)

 my.application;package

Declares the jquery asset

Declares the jquery-ui asset

Make jquery-ui depend on jquery

The assets will be served from the war file because the server location is configured by default.
The first annotation declares the JQuery asset reference identified by the member as@Script id

being . The second annotation declares the JQuery-UI plugin, it does not need an jquery @Script

 member because nothing refers to it, however it declares a dependency with the id depends
member that declares it depending on the asset.jquery

JQuery-UI requires also a stylesheet to be served along with the script, it is achieved thanks to the
 annotation.@Stylesheet

9.3.1. Server assets

Server assets are served by the webserver in which the application is deployed. Relative server
assets are served from the war file containing the application.

Page 45 of 50

Example 9.2. Declarative relative server asset configuration

@Assets(scripts = @Script(src = "myscript.js"))
 my.application;package

9.3.2. Classpath assets

Classpath assets can be located anywhere on the application classpath, they can be either
absolute or relatives. Relative classpath assets declared by the asset plugin must be located in the

 package of the application, for instance an application packaged under assets my.application

will have its relative assets located under .my.application.assets

Example 9.3. Declarative relative classpath asset configuration

@Assets(scripts = @Script(
 src = "myscript.js",
 location = AssetLocation.CLASSPATH))

 my.application;package

9.3.3. External assets

External assets declares an opaque URL for Juzu.

Example 9.4. External classpath asset configuration

@Assets(scripts = @Script(
 src = "https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js",
 location = AssetLocation.CLASSPATH))

 my.application;package

9.4. Less plugin
The Less plugin transform Less source files into regular CSS files. This plugin operates during
compile phase to transform Less sources into css assets that can be the served by the asset
plugin.

The Less plugin declares a set of files to be compiled via the package annotation..less @Less

However unlike the asset plugin, the Less plugin is not related to a specific application, it means
that the annotation can be used on any package. The files will be resolved from the @Less .less

 child package of the annotated package:assets

When an application package is annotated the package will coincide with theassets

application asset package

When a regular package is annotated, application can refer to it via an absolute uri

Page 46 of 50

Example 9.5. Transforming and declaring Less assets

@Less(value = "bootstrap.less", minify = true)
 @Assets(stylesheets = "bootstrap.css")

 my.application;package

Transform to my.application.assets.bootstrap.less

my.application.assets.bootstrap.css

Declare to be served by the applicationmy.application.assets.bootstrap.css

Page 47 of 50

10
Less plugin

LESS is a dynamic stylesheet language which extends CSS with dynamic behavior such as
variables, mixins, operations and functions. LESS is easy to learn thanks to the online

.documentation

Juzu provides a LESS plugin that takes care of compiling a LESS stylesheet into a CSS stylesheet
which are then served by the Asset plugin. This chapter explains how to use LESS and combine it
with the .Asset plugin

10.1. Usage
The LESS plugin operates at compilation time only because the only task he has to do is to
transform a LESS source code into a CSS stylesheet. The runtime part is usually done by the
Asset plugin.

The annotation annotates a package containing an package. This @Less assets assets

package should contain the LESS files to be compiled.

Example 10.1. Annotating an application package for processing LESS files

@Less("stylesheet.less")
@Application

 myapp;package

 juzu.plugin.less.Less;import

The file will be located in the package. The child packagestylesheet.less myapp.assets assets

of the annotated package should contain the stylesheet, this is done on purpose to coincide exactly
with the package used by the Asset plugin. During the compilation phase the assets

 will be compiled to the . If we want this file to be served with thestylesheet.less stylesheet.css
application we simply add the corresponding annotation:@Asset

http://lesscss.org/
http://lesscss.org/

Page 48 of 50

Example 10.2. LESS and Asset plugins in action

@Less("stylesheet.less")
@Assets(stylesheets = @Stylesheet(
 src = "stylesheet.css",
 location = AssetLocation.CLASSPATH)
)
@Application

 myapp;package

 juzu.plugin.less.Less;import
 juzu.plugin.asset.Asset;import
 juzu.plugin.asset.Stylesheet;import

By default LESS will use a default formatting for the generated CSS. To achieve smaller CSS size,
a option can be used, this option will trim the whitespace when processing the file : minify

.@Less(value = "stylesheet.less", minify = true)

10.2. Building
Add the Less plugin jar to your compilation classpath.

In Maven it can achieved by adding the Less plugin dependency to your POM:

<dependency>
 org.juzu<groupId> </groupId>
 juzu-plugins-less<artifactId> </artifactId>
 0.5.0<version> </version>
</dependency>

Page 49 of 50

11
Portlet plugin

The portlet plugin enhance Juzu portlet applications.

11.1. Portlet class generation
A Juzu portlet application is managed by a configured with the application name.JuzuPortlet

The annotation can be used to generate a subclass of the @juzu.plugin.portlet.Portlet

 that configures the application name for you, easing the configuration of the JuzuPortlet

 corresponding section.portlet.xml

@Portlet
 my;package

<portlet>
 MyApplication<portlet-name> </portlet-name>
 = My Application<display-name xml:lang "EN"> </display-name>
 myapp.MyPortlet<portlet-class> </portlet-class>
 <supports>
 text/html<mime-type> </mime-type>
 </supports>
 <portlet-info>
 My Application<title> </title>
 </portlet-info>
</portlet>

The plugin will generate the portlet using the application name with the first letter capitalized and
the suffix. In our example the application generates the class. If you don'tPortlet my MyPortlet

like it you can change the name of the generated class in the application:

@Portlet(name "MyGreatPortlet")
 my;package

Page 50 of 50

<portlet>
 MyApplication<portlet-name> </portlet-name>
 = My Application<display-name xml:lang "EN"> </display-name>
 myapp.MyGreatPortlet<portlet-class> </portlet-class>
 <supports>
 text/html<mime-type> </mime-type>
 </supports>
 <portlet-info>
 My Application<title> </title>
 </portlet-info>
</portlet>

11.2. Portlet preferences injection
During the various phase of an application, the current portlet preferences can be injected in a
controller:

Example 11.1. Injecting portlet preferences

@Inject javax.portlet.PortletPreferences preferences;

The same restriction defined in the portlet specification applies to the provided preferences
object: i.e saving preferences can only be performed during an action phase.

11.3. Building
Add the Portlet plugin jar to your compilation classpath.

In Maven it can achieved by adding the Less plugin dependency to your POM:

<dependency>
 org.juzu<groupId> </groupId>
 juzu-plugins-portlet<artifactId> </artifactId>
 0.5.0<version> </version>
</dependency>

