

This document is designed for users of X-definition

X-definition 4.0

User Manual

Author: J. Srp

Translation: V. Trojan

0 / 207

Content

1 PREFACE 7

2 X-DEFINITION TECHNOLOGY 8

2.1 Model of XML Element 9

2.2 X-script of X-definition 9

2.3 X-definition Java Packages 10

2.4 Exemplary XML Data 10

2.5 On-line Testing of X-definition 11

3 WAY OF USAGE OF X-DEFINITION 12

4 DESCRIPTION OF STRUCTURE OF XML DOCUMENT BY X-DEFINITION 13

4.1 Model of Exemplary Element 13

4.2 Specification of Quantifier of Attributes and Text Nodes 14

4.2.1 Fixed Values 14

4.2.2 Default Value 15

4.3 Alternative specification of quantifiers 15

4.4 Specification of Quantifier of Element 16

4.5 Events and Actions 16

4.5.1 Events Connected to Elements, Attributes or Text Nodes. 18

4.5.2 Events Connected with Element 19

4.5.3 Events Connected with Text Nodes or Attributes 20

4.6 Processing of Large XML Data 20

4.7 Sample of Complete X-definition 21

4.7.1 X-script of X-definition 21

4.7.2 Head of X-definition 22

4.7.3 Declaration Section of X-definition 23

4.8 External (Java) Methods 32

4.8.1 External Method with Parameter 33

4.8.2 External Method with XXNode Parameter 34

4.8.3 External Method with Array of Values 35

 1 / 207

4.9 Declaration of X-script Methods 36

4.9.1 Methods without Parameter 37

4.9.2 Methods with Parameter 37

4.9.3 Value of Attribute or Text Node in the X-script 37

4.10 User Defined Methods for Checking Data Types 38

4.10.1 Unique Value of Attribute or Text Node 39

4.10.2 Unique Values Table with Multiple Items Key 41

4.10.3 Nested Key 43

4.11 Group Specifications 44

4.11.1 Strict Order of Group Items (xd:sequence) 44

4.11.2 Arbitrary Order of Group Items (xd:mixed) 45

4.11.3 Selection of Item from a Group (xd:choice) 45

4.11.4 Selection with Action "match" 46

4.11.5 Groups with Text Node 48

4.11.6 "Named" Group as Model and Reference to Group. 48

4.11.7 Events and events of groups 48

4.1 XML Namespace in Models 49

5 TYPES OF VALUES AND OBJECTS IN X-SCRIPT 51

5.1 Basic Types of Values 51

5.2 ParseResult 53

5.3 Reference to the Attribute of the Current Element 53

5.4 Named Value 53

5.5 Container 54

5.5.1 Working with Container in X-script. 54

5.5.2 Container in external Java method 55

5.6 Working with Text Values 56

5.1 Objects for Working with Databases 56

6 JSON IN X-DEFINITION 57

6.1 Models of JSON data 57

6.2 JSON simple values 57

6.3 Models of JSON objects 57

2 / 207

6.4 $script – specification of properties of objects 58

6.5 Json arrays 58

6.6 $script - specification of properties of arrays 58

6.7 $oneOf specification 59

6.8 References to JSON models 59

6.9 Example of Java program with JSON 59

7 X-LEXICON 61

7.1 Java program of validation with X-lexicon 61

7.2 Java program of translation XML data with X-lexicon 62

8 CONSTRUCTION MODE OF X-DEFINITION 63

8.1 Create Section in X-script 63

8.1.1 Construction of elements 66

8.1.2 Construction of attributes and text nodes 66

8.1.3 Construction of element from Container 68

8.1.4 Construction of Element from Element 71

8.1.5 Construction of element from ResultSet 75

8.1.6 The source data used as the context used for the construction of XML document 79

8.2 Value of attribute or text node created from value of X-script variable 88

8.3 Linking databases with X-definitions 89

8.3.1 Statement 89

8.3.2 Closing resources 89

8.4 Construction of template (“fixed”) XML documents 90

8.5 Construction of groups 91

8.5.1 Strict order of elements (group xd:sequence) 92

8.5.2 Arbitrary order of elements (group xd:mixed) 92

8.5.3 Choice of elements (xd:choice group) 94

8.6 Combination of validation and construction mode 96

8.6.1 Validation in the construction mode 97

8.6.2 Construction in the validation mode 98

8.7 Example of XML transformation into HTML 99

8.7.1 X-definition of HTML document 100

8.7.2 Create section used to construct a HTML document 100

 3 / 207

9 USING OF X-DEFINITIONS IN JAVA CODE 104

9.1 Running the validation mode 104

9.2 Start the XML document construction 105

9.3 Alternate creation of XDPool 106

9.4 Build XDPool with classes containing exteral metods 106

9.5 Get result of X-definition process 107

9.6 External variables 107

9.6.1 Connection to the reelational database 108

9.7 External instance methods 109

9.8 Validation of data with a database in a XML document 110

9.9 XDPool in a binary data file 112

9.10 Continuous XML document writing 112

9.10.1 Automatic write to OutputStream 113

9.10.2 Incremental writing using XmlOutStream 113

10 STRUCTURING OF X-DEFINITIONS 115

10.1 Reference to another element model in X-definition 115

10.1.1 Alternative references to groups 117

10.2 Collection of X-Definitions 117

10.2.1 Scope (visibility) of global variables and methods 119

10.3 X-definitions in separate files 119

10.4 Macros 120

10.4.1 Macros with parameters 121

10.5 Structure comparison 122

11 EVENTS IN X-SCRIPT 124

11.1 Events in the validation mode 124

11.2 Construction mode events 125

12 DEBUGGER 127

13 PROCESSING AND REPORTING ERRORS 129

4 / 207

13.1 Generate XML file with errors 129

13.1.1 Creating of error data (two-phase) 129

13.1.2 One step construction of error data 131

13.2 Reporter 133

13.2.1 Reports 133

13.2.2 Tables of reports 137

13.2.3 System report manager 138

13.2.4 Reporters 139

13.2.5 Reports in exceptions 139

13.2.6 Example of use 140

13.3 The error method 142

13.4 Automatically generated errors 143

13.4.1 Generating into a reporter 143

13.4.2 Generate an exception listing error 144

13.5 Errors when compiling X-definition 144

14 APPENDIX A – COMPLETE EXAMPLE 146

15 APPENDIX B – FREQUENTLY ASKED QUESTIONS (F.A.Q.) 157

15.1 Data content, types 157

15.2 Error reporting 158

15.3 How to create an X-definition from given XML data 159

16 APPENDIX C – SUPPLEMENTARY DESCRIPTION OF X-DEFINITIONS 161

16.1 Utitlites. 161

16.1.1 Launch the validation mode from the command line 162

16.1.2 Lounch the construction mode from the command line 162

16.1.3 Checking the accuracy of Xdefinition 163

16.1.4 Create indented form of X-definition 163

16.1.5 Conversion of XML schema to X-definition. 164

16.1.6 Conversion of X-definition to XML schema. 164

16.2 Types of values in X-script 164

16.2.1 int (the integer numbers) 164

16.2.2 float (the floating-point numbers) 165

16.2.3 Decimal (the decimal numbers) 165

16.2.4 String (the character strings) 166

 5 / 207

16.2.5 Datetime (the date and time values) 166

16.2.6 boolean (Boolean values) 168

16.2.7 Locale (information about region) 168

16.2.8 Regex (Regular expressions) 169

16.2.9 RegexResult (results of regular expressions) 169

16.2.10 Input/Output (streams) 169

16.2.11 Element (XML elements) 169

16.2.12 Bytes (array of bytes) 169

16.2.13 NamedValue (named values) 169

16.2.14 Container (sequence and/or map of values) 169

16.2.15 Exception (program exceptions) 170

16.2.16 Parser (tool used to parse string values) 170

16.2.17 ParseResult (results of parsing/validation) 170

16.2.18 Report (messages) 170

16.2.19 BNFGrammar (BNF grammars) 170

16.2.20 BNFRule (BNF grammar rules) 170

16.2.21 uniqueSet (sets of unique items – table of rows) 171

16.2.22 UniqueSetKey (the key of a row from the uniqueSet table) 171

16.2.23 Service (database service; access to a database) 171

16.2.24 Statement (database commands) 171

16.2.25 ResultSet (results of the database commands) 171

16.2.26 XmlOutStream (data channels used for continuous writing of XML objects to a stream) 171

16.3 Type validation methods 172

16.3.1 Validation methods of XML schema types 172

16.3.2 Other validation methods in X-definition (and not in XML schema) 174

16.3.3 Data types used in Java external methods 176

16.4 Pedefined values (constants) 177

16.5 Ignored and illegal nodes 177

16.5.1 Speficifation of namespace for X-definition 178

16.6 Options 178

16.7 Methods implemented in X-Script 180

16.7.1 Implemented general methods 181

16.7.2 Methods of objects of all types 189

16.7.3 Methods of objects of the type BNFGrammar 189

16.7.4 Methods of objects of the type BNFRule 189

6 / 207

16.7.5 Methods of objects of the type Bytes 189

16.7.6 Methods of objects of the type Container 190

16.7.7 Methods of objects of the type Datetime 191

16.7.8 Methods of objects of type Duration (time interval) 192

16.7.9 Methods of objects of the type Element 192

16.7.10 Methods of objects of the type Exception 193

16.7.11 Methods of objects of the type Input 193

16.7.12 Methods of NamedValue objects 193

16.7.13 Methods of objects of the type Output 193

16.7.14 Methods of objects of the type ParseResult 194

16.7.15 Methods of objects of the type Regex 194

16.7.16 Methods of objects of the type RegexResult 195

16.7.17 Methods of objects of the type Report 195

16.7.18 Methods of objects of the type ResultSet 195

16.7.19 Methods of objects of the type Service 195

16.7.20 Methods of objects of the type Statement 196

16.7.21 Methods of the type String 196

16.7.22 Methods of objects of the type uniqueSet 197

16.7.23 Methods of objects of the type uniqueSetKey 197

16.7.24 Methods of objects of the type XmlOutStream 198

16.8 Mathematical methods in X-script 198

16.8.1 Methods of mathematical functions (taken from the class java.lang.Math) 198

16.8.2 Methods of mathematical functions (taken from java.math.BigDecimal) 199

16.9 BNF grammar 199

16.9.1 BNF production rule 199

16.9.2 BNF terminal symbol 200

16.9.3 Set of characters 200

16.9.4 BNF quantifier (repetition of a rule) 200

16.9.5 BNF expression 201

16.9.6 Comments and whitespaces 201

16.9.7 Implemented predefined rules 201

16.9.8 Implemented methods for handling the internal stack 203

16.9.9 Externally implemented rules 203

17 INDEX 205

RELATED DOCUMENTS 207

 7 / 207

1 Preface
his document is the user manual which contains the description of the programming tool X-definition. It is
designed for programmers who use this technology in projects with XML data.

The text of this document assumes the basic knowledge of XML language.

The document is divided into several chapters focused on different parts of the X-definition technology. You can
read the text either in sequential way or according to keywords presented at the header or the end of a chapter

and you can skip to the referenced parts according to your actual knowledge - see green arrows . At the

beginning of each chapter see red arrows pointing to the appropriate chapter describing recommended
knowledge.

T

Required knowledge to study
this chapter

Pointer to required knowledge

To study design of a
X-definition see Chapter 3

To study how to use
X-definition on essential
example see Chapter. 4

8 / 207

2 X-definition Technology

 basic knowledge of XML language ([1], [2]

X-definition is a programming language containing tools for

 Description of structure and values of XML documents and of the processing of XML data;

o X-definition describes XML document as an object containing root element and child nodes.
Elements may have attributes and child nodes may be either elements or text nodes.
X-definition also describes types of values of attributes and of the text nodes.

 Validation of source XML data and to process them. This way X-definition can be used instead of XML
schema or Schematron.

 Use XQuery format (only the versions distributed with Saxon library)

 With X-definition you can also describe rules for the construction of XML documents from variable
resources. This way you can use X-definition also for transformation to a given XML structure (instead of
XSLT).

 Generation of X-components - Java source code representing models of elements from X-definition
(similar way as JAXB).

 Processing of XML documents in different language variants (see specification of “thesaurus”).

 X-definition technology can process XML data of unlimited size (see the X-script command “forget” or
“stream mode”) [Doc1]

 Process data in the JSON format

X-definition - so as described data – is an XML document belonging to the namespace of X-definitions (ie
"http://www.xdef.org/xdef/4.0"). The X-definition highly respects the structure of described data. This way it
enables very fast and intuitive way to design the X-definitions even for large group of XML data. This feature
facilitates both the design and maintenance of large projects. The X-definition is a meta language used for
description of XML documents. In the process of development of X-definition it is possible also to specify
commands invoked during processing of data (so called “actions”). Those commands are invoked in different
situations during processing of X-definition and data.

The collection of X-definitions makes possible to compile to a project. Within the project may be references from
a X-definition to other X-definitions.

The compiler of X-definitions creates from source X-definitions a Java object XDPool. This object enables to create
an instance of object XDDocument. With this object it is possible to provide validation and to process the input
XML data (by method "xparse") or even to construct the XML data (by method "xcreate"). The result may be
either an instance of XML object (org.w3c.dom.Element) or it can be an instance of X-component (see the method
“parseXC”). Moreover, result of processed X-definition may be stored to output stream (stream mode).

X-definition may also contain a number of declarations of macros, variables, “types” of text values and methods.
The language used for description of programming part we call the “X-script” of X-definitions..

Syntax of X-script of X-definition is similar to the programming language Java or C. This way a source code is easily
understandable for programmers. It is also possible to invoke from X-definition an external method designed in
the Java language (see chapter 4.8).

 2.2 X-script of X-definition

2.4 Exemplary XML Data

4.8 External (Java) Methods

 9 / 207

2.1 Model of XML Element

 2 X-definition Technology

Basic concept of the X-definition language is “model” of XML element (hereafter only “model”). The model
describes structure of an XML element. Let’s have following element describing a book:

<Book ISBN = "123456789"
 Title = "X-definition 3.2"
 PublicationDate = "01.02.2018"
 Editor = "Syntea Software Group a.s."
 Price = "195.50" >
 <Author J. Srp </Author>
</Book>

Our XML element contains different types of values: isbn, title, date of publication, price, authors). If we have to
describe contents of such an element we can simply specify if a value is required or to describe interval of its
occurrences (by the “quantifier”). Let’s say the attributes “ISBN” and “Title” are required and the others are
optional. Let’s also accept that a book may have more authors or no author (who is author of The Bible?).
Eventually we can specify also the types of text values. Such formal description of a XML element is the model of
element “Book”. It may look like:

<Book ISBN = "required num(9,10); */ isbn is minumum 9 to 10 digits */"
 Title = "required string();"
 PublicationDate = "optional date();"
 Editor = "optional string();"
 Price = "optional decimal()" >
 <Author xd:script = "occurs 0..*"> string(); </Author>
</Book>

As we can see the model is very similar to the described XML data. Values of text items are described by special
language called “X-script of X-definition”. Note also the quantifier of the element “Author” is written to the
special auxiliary attribute „xd:script“. This attribute does not belong to any namespace of described XML data.
However, the name prefix “xs” defines that it belongs to the special namespace of X-definitions. By means of
element models it is possible to describe a general structure of any XML data, including the properties of values,
the occurrences of items and even the way of processing or construction of XML data.

2.2 X-script of X-definition

 2 X-definition Technology

The X-script of the X-definition (hereafter only “X-script”) is a language recorded to the X-definition as a text
value. In the case of an attribute or of a text node (the child of an element) the X-script is written as a text on the
place of the value of this text node. In the case of an element the X-script is written to the auxiliary attribute
“xd:script” (where “xd” is the prefix of the X-definition namespace). The X-script enables to describe some other
properties of data and/or the actions connected to different events during processing of a project. [Doc1]

The X-script consists of several sections. The order of individual sections in the X-script is arbitrary and none of
sections is compulsory. The sections of the X-script are separated by a semicolon (;). At the end of the X-script
record the or after the closing brace of a command assigned to a section of the X-script the specification of
semicolon may be omitted. The X-script has the free format. The items of the X-script may by separated by
unlimited number of spaces, new lines or tab characters (white spaces). [Doc1]

The X-script contains following sections [Doc1]:

1) Validation section – the validation section may be declared in the model of an element or in a text node
or in an attribute. The validation section defines the quantifier (ie the specification of permitted
occurrences of an item). The validation section of the attributes or of text nodes moreover contains also
the specification of the "type" of a value, ie rule how to check correctness of the text value. The
specification of type is described as an invocation of a method which parses the text value of an item. It
returns “true” if the value complies to the parsing rules. Otherwise it returns “false” and it generates an

10 / 207

error message. If validation method is not specified the value of an attribute or text node can be any
nonempty string of characters (ie the default validation method is "string()").

2) Sections of actions – the description of an action is introduced by a keyword specifying the event or the
state of processing of the X-definition code. After the keyword follows a statement which is invoked in
connection with the specified event. If no action is connected to an event the X-definition processor
provides a default action.

3) Options – the specification of options (parameters of processing of X-definition) is introduced by the
keyword “options” followed by the list of names separated by comma (",").

4) Reference – the reference specifies pointer to a part of the X-definition which is recorded on another
place. The reference is introduced by a keyword “ref”.

For more details see Chapter 4.7.

 2.3 X-definition packages

 4.5 Events and Actions

4.7.1 X-script of X-definition

 10.1 Reference to another element model in X-definition

 16.6 Options

2.3 X-definition Java Packages

The Java package distributed with X-definition 3.2 is:

 xdef.jar contains the X-definition compiler and processor, the X-definition

converter into the XML schema, and vice versa and few utilities package.

2.4 Exemplary XML Data

 basic knowledge of XML language ([1], [2])

Now we’ll explain the X-definition technology on the simple example of XML document. In the following chapters
it will be modified and supplemented with instruments for the validation and/or the construction mode.

The exemplary XML document describes:

1) a vehicle,

a) variant with elements and attributes:

<Vehicle type = "SUV"
 vrn = "1A23456"
 purchase = "2011-02-01"
 manufacturer = "Škoda"
 model = "Yeti" />

b) variant using only XML elements:

<Vehicle>
<type>SUV</type>

 <vrn>1A23456</vrn>
 <purchase>2011-02-01</purchase>
 <manufacturer>Škoda</manufacturer>
 <model>Yeti</model>
</Vehicle>

Vehicle is determined by the value of registration number of a vehicle (vrn). The record contains also the type of
vehicle (type), the date of purchase of vehicle (purchase), the manufacturer of vehicle (manufacturer) and the
model of vehicle (model).

2) a traffic accident:

 11 / 207

a) variant with elements and attributes:

<Accident id = "00123"
 date = "2011-05-17"
 injury = "3"
 death = "0"
 loss = "600" >

 <vrn>1A23456</vrn>
 <vrn>1B23456</vrn>
</Accident>

b) variant using only XML elements:

<Accident>
 <vrn>00123</vrn>
 <date>2011-05-17</date>
 <injury>3</injury>
 <death>0</death>
 <loss>600</loss>

 <vrn>1A23456</vrn>
 <vrn>1B23456</vrn>
</Accid

The traffic accident is determined by the identification number "id". The record contains also the date of
accident ("date"), the number of injured persons ("injury"), the number of death ("death") and total loss
("loss"). The child elements of an element “Accident” are listed as the registration numbers of vehicles
participating on an accident.

 3 Way of Usage of X-definition

 16 Appendix C –

2.5 On-line Testing of X-definition

You can try to run an X-definition on WEB:

URL Mode of test

http://xdef.syntea.cz/tutorial/examples/validate.html Validation mode.

http://xdef.syntea.cz/tutorial/examples/compose.html Construction mode.

http://xdef.syntea.cz/tutorial/examples/BNF.html (E)BNF grammar.

http://xdef.syntea.cz/tutorial/examples/template.html “Template” mode.

http://xdef.syntea.cz/tutorial/examples/validate.html
http://xdef.syntea.cz/tutorial/examples/compose.html
http://xdef.syntea.cz/tutorial/examples/BNF.html
http://xdef.syntea.cz/tutorial/examples/template.html

12 / 207

3 Way of Usage of X-definition

 basic knowledge of XML language ([1], [2])

 2 X-definition technology

 2.4 Exemplary XML Data

X-definition may be used in two basic processing modes:

a) validation mode – the input XML document is validated according to a X-definition. This means the input
document is checked according to given X-definition. There are checked the occurrences of all parts of
elements, attributes and text nodes and also there are checked the types of all text values.

 4 Description of structure of XML document by X-definition

b) construction mode – the XML document (the result of processing) is constructed according to the rules
described in a X-definition. In this mode the X-definition is processed as a formula for construction of the
result XML document.

 8 Construction Mode of X-definition

 13 / 207

4 Description of structure of XML document by X-definition

 basic knowledge of XML language ([1], [2])

 2 X-definition Technology

 2.1 Model of XML Element

 2.4 Exemplary XML data

The validation process of the input XML data starts from an element of input data (usually it is the root element of
XML document). In the X-definition it must be declared a model according which the validation starts. The model
describes a structure of the XML element where validation starts. In the model are described the attributes and
child nodes (see more in chapter 4.6). Since one X-definition may contain more models each model must have an
unambiguous name within whole X-definition.

4.1 Model of Exemplary Element

 2.4 Exemplary XML data

The model of our exemplary element is similar to the data it describes. Note instead of particular values of
attributes or text nodes there is specified in the X-script the occurrence limit and the type of described values. The
model of the element Vehicle will look as follows:

a) variant with elements and attributes:

<Vehicle
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other');"
 vrn = "string(7);"
 purchase = "date();"
 manufacturer = "string();"
 model = "string();"
 />

b) variant using only XML elements:

<Vehicle>
 <type> enum('SUV', 'MPV', 'personal', 'truck',
 'sport', 'other');
 </type>
 <vrn> string(7); </vrn>
 <purchase> date(); </purchase>
 <manufacturer> string(); </manufacturer>
 <model> string(); </model>
</Vehicl

Where data type:

 enum(p1, …) – accepts a value from the list of parameters;

 string() – accepts any character string;

 string(n) - – accepts any character string where string length is equal to n;

 string(m, n) – accepts all strings where the string length is greater or equal to m and less or equal to n;

 date() – accepts strings with date in the ISO date format (yyyy-MM-dd)

Text values of attributes or of text child nodes ("types") are checked by specification of a “validation method”.
This method is invoked with specified parameters. if parameters are missing the brackets may be omitted – you
can specify either “string” or “string()” when the text value is processed. If no validation method is specified the
default type is any nonempty sequence of characters (ie "string").

If the source code of the model is incorrect the compiler of X-definition will report an error message including
information about the location in the source data.

If we process the data from our exemplary example then no error will be reported. However, if any value of input
data would be incorrect the list of error messages will be reported. Each error message contains the information
about the location in source data.

 4.7 Sample of Complete X-definition

 4.2 Specification of Quantifier of Attributes and Text Nodes

14 / 207

 4.5 Events and Actions

 4.6 Processing of Large XML Data

 4.10 User Defined Methods for Checking Data Types

 8 Construction Mode of X-definition

 13 Processing and reporting errors

 16.2 Types of

4.2 Specification of Quantifier of Attributes and Text Nodes

 4.1 Model of Exemplary Element

The quantifier (the specification of occurrence) of an attribute or of a text node (the quantifier) may be described
as follows:

 required – the occurrence of the item is required,

 optional – the occurrence of the item is not required,

 illegal – the occurrence of the item is illegal,

 ignore – the occurrence of the item is ignored.

If the quantifier is not specified the value of quantifier is set to “required” (the default value).

For example, let§ doscribe in our exemplary data that the values of the item “rn” and of the item “purchase” are
required. All other items are optional. The model may look like:

a) variant with elements and attributes:

<Vehicle type = "optional enum('SUV', 'MPV',
 'personal','truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "optional string()"
 model = "optional string" />

b) variant using only XML elements:

<Vehicle>
 <type> optional enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'oother')
 </type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> optional string() </manufacturer>
 <model> optional string </model>
</Vehicle>

Note that the quantifiers “required” in the model were omitted because this value of quantifier is default.

 4.2 Specification of Quantifier of Attributes and Text Nodes

 4.4 Specification of Quantifier of Element

 4.7 Sample of Complete X-definition

 4.10.1 Unique Value of Attribute or Text Node

4.2.1 Fixed Values

 4.1 Model of Exemplary Element

 4.5 Events and Actions

 4.7.3.3 Declared Variables

If the value of an attribute or of a text node must have only the specified value it is possible to use the validation
method “eq” (in following example see validation method of the item “type”):

 15 / 207

a) variant with elements and attributes:

<Vehicle type = "eq('personal')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

b) variant using only XML elements:

<Vehicle>
 <type> eq('personal') </type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model> string </model>
</Vehicle>

 In the case the required value in the result of processed data must be present even if it is missing in the input
data you can use in the validation the keyword “fixed”. The value of such item se set to this value even if it is
missing in processed data. However, if the value differs from the required it is reported an error message:

a) variant with elements and attributes:

<Vehicle type = "fixed 'personal'"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

b) variant using only XML elements:

<Vehicle>
 <type> fixed 'personal' </type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model> string </model>
</Vehicle>

The value of the attribute “type” resp. of element “type” will be „personal“ even if it is missing in the input data.

The specification of validation section as “fixed”

type = "fixed 'personal'"

can be explicitly expressed as:

type = "required eq('personal'); onAbsence setText('personal')"

where “onAbsence” specifies the X-script section which is invoked if the attribute or text node described in the
model is missing. The method specification "setText(s)" sets in this situation the value from the parameter "s" to
the attribute or text node.

Let’s remark the value following the keyword “fixed” can be also a value of a variable (see Chapter 4.7.3):

...
<xd:declaration xd:scope="global">
 final String ver = "2.3.0-b02";
</xd:declaration>
...
<Vehicle typ = "fixed ver" ... />

4.2.2 Default Value

The specification of default value of an attribute or of text node is possible to set by a command introduced by the
keyword “default”. Let’s say the default value of the type of vehicle is “personal”:

a) variant with elements and attributes:

<Vehicle type = "optional enum('SUV', 'MPV',
 'personal','truck', 'sport', 'other');
 default 'personal'"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

b) variant using only XML elements:

<Vehicle>
 <type> optional enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other');
 default 'personal'
 </type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model> string </model>
</Vehicle>

4.3 Alternative specification of quantifiers

 2.2 Script of X-definition

16 / 207

Because of backward compatibility with the previous versions of the X-definition the quantifiers may be expressed
in different forms. Note the keyword "occurs" is not compulsory, it may be omitted. The meaning is the same:

occurs 1..1 required if not specified the default value is required

occurs 0..1 optional ?

occurs 0..* 0..* *

occurs 1..* 1..* +

occurs m..n m..n m..n

occurs n n n

You can write either "occurs 0..*" or only "*“. Instead of specification of "optional string()“ you can write just "?
string()“, instead of "required string()“ you can write only "string()“.

In the following X-script we will use the simplified version of quantifiers, e.g.:

a) variant with elements and attributes:

<List>
 <Vehicle xd:script = "+"
 type = "? enum('SUV', 'MPV', 'personal',
 'truck', 'sort', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "? string()"
 model = "? string" />
</List>

b) variant using only XML elements:

<List>
 <Vehicle xd:script = "+">
 <type> ? enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other') </type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> ? string() </manufacturer>
 <model> ? string </model>
 </Vehicle>
</List>

4.4 Specification of Quantifier of Element

 4.1 Model of Exemplary Element

For each internal element of a model, it is possible to specify quantifier in the "xd:script" attribute. If quantifier is
not specified then the number of occurrences is set to one ("required").

If in the list of vehicles and we accept the list can be empty or the number of vehicles can be unlimited the model
will be:

a) variant with elements and attributes:

<List>
 <Vehicle xd:script = "occurs 1..*"
 type = "? enum('SUV', 'MPV', 'personal',
 'truck', 'sort', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "? string()"
 model = "? string" />
</List>

b) variant using only XML elements:

<List>
 <Vehicle xd:script = " occurs 1..*">
 <type> ? enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other') </type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> ? string() </manufacturer>
 <model> ? string </model>
 </Vehicle>
</List>

Note the element "Vehicle" in the variant b) can have any number of occurrences (even also none). If at least
one vehicle is required in the list you may write e.g. plus sign:

<List>
 <Vehicle xd:script = "+"
 ...
</List>

 4.7 Sample of Complete X-definition

4.5 Events and Actions

 4.1 Model of Exemplary Element

 17 / 207

During processing of elements, attributes or text nodes there arises different events or situations. When such
event becomes it is in the X-script possible to specify the action – an executable source code - which is in such
situation invoked. Before the specification of an action it must be specified the name of the event. There are
following events:

Table of events and actions Doc1]:

Name of event Action
result

Description

Create Object This event happens only in the construction mode before it is started the process

 of construction of an object. In the validation mode this action is ignored. The action

must return an object or null. More see Chapter 8.

Default String This event is defined only for attributes or text nodes. Result of this action must be

 a string (an expression with type of result String). This string is set as value of the attribute

 of text node if it is not present in the source data. The action can be specified only

 in the X-script of an attribute or text node,

Match boolean This event happens before an element, attribute or e text node is processed. Result

 of this action must be a boolean value. The action has access only to name of the element

 and to it’s namespace and to the list of attributes. If the action returns true then the item

 is processed. If it is false then this item is not processed. The action can be specified only

 in the X-script of an attribute or text node,

Finally void This event happens after the process of the actually processed element is finished.

 The action is executed before the processing of an element is finished. The action can be

 specified only in the X-script of an element, attribute or text node. When invoked first there

 are executed all “finally” actions of attributes, then actions of text nodes and as the last

the finally action of the element itself.

Forget Action
here not
allowed

This event means the processed element is connected to the processed data and it is

 released from the memory. There is not possible to specify any executable code.

 Usually this action is specified when the input data are too large to be stored to

 the memory.. Often this action is specified in the stream mode of processing.

The action can be specified only in the X-script of elements.

Init void This event happens when an item will be processed. The action is invoked to initiate

 following process of the item.

The action can be specified in the X-script of elements, attributes or text nodes.

onAbsence void This event happens if the item described by the model not exists or if the number

 of occurrences is lower then the required number. If the action is specified the error

message is not reported (you can report your own message).

The action can be specified in the X-script of elements, attributes or text nodes.

onExcess void This event happens if the number of occurrences exceeds the allowed maximum.

 If the action is specified for this event the error message is not reported(you can

 report your own message).

The action can be specified in the X-script of elements, attributes or text nodes.

onTrue void This event happens when validation method does not detect an error. The action can be

specified only for attributes or for text nodes.

The action can be specified only in the X-script of attributes or text nodes.

onFalse void This event happens when validation method detects an error. If the actionis specified

18 / 207

the error message is not reported (you can report your own message).

The action can be specified only in the X-script of attributes or text nodes.

onIllegalAttr void This event happens when illegal attribute occurs (not declared attribute or illegal attribute).

If the action is specified for this event the error message is not reported(you can

 report your own message). The action can be specified only in the X-script of elements.

onIllegalElement void This event happens when illegal element occurs (not declared element or illegal element).

If the action is specified for this event the error message is not reported (you can

 report your own message). The action can be specified only in the X-script of element.

onIllegalText void This event happens when an illegal text occurs (not declared text or illegal text).

If the action is specified for this event the error message is not reported (you can

 report your own message). The action can be specified only in the X-script of an element.

onIllegalRoot void This event happens when process tarts with an element which is not specified as a root

of XML document. If the action is specified for this event the error message is not reported (you can

 report your own message).

The action can be specified only in the X-script of X-definition.

onStartElement void This event happens when starts proceeding of element body (ie after all attributes were

processed.

The action is specified in only the X-script of element.

onXmlError void This event happens when an XML error occurs, You can this way catch XML error in

the input data. Normally the program is finished with the exception. SException.

The action can be specified only in the X-script of X-definition.

The examples of using of actions are in following chapters.

 4.5.1 Events Connected to Elements, Attributes or Text Nodes.

 4.5.2 Events Connected with Element

 4.5.3 Events Connected with Text Nodes or Attributes

4.5.1 Events Connected to Elements, Attributes or Text Nodes.

 4.1 Model of Exemplary Element

Let’s illustrate the actions of two events which may occur:

 onAbsence – the event happens if the required minimum occurrences specified by quantifier is not
reached;

 onExcess – the event happens if the maximum occurrence specified by quantifier exceeds (of course
this event may happen only with elements),

Let’s say the quantifier of elements "Vehicle" in the model "Vehicles" is set to the interval 1 to 10. We can show
the usage of actions “onAbsence” and “onExcess” in the following example:

 19 / 207

a) variant with elements and attributes:

<List>
 <Vehicle xd:script = "1..10;
 onAbsence outln('Missing Vehicle!');
 onExcess outln('Too many Vehicles!');"
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7);
 onAbsence outln('Missing vrn!')"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
</List>

b) variant using only XML elements:

<List>
 <Vehicle xd:script = "1..10;
 onAbsence outln('Missing Vehicle!');
 onExcess outln('Too many Vehicles!')">
 <type> enun('SUV', 'MPV', 'personal', 'truck',
 'sport', 'other')
 </type>
 <vrn>
 string(7); onAbsence outln('Missing vrn!')
 </vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model> string </model>
 </Vehicle>
</List>

Note that

 The sections of X-script are separated by semicolon (“;”);

 The action specified for respective use the method outln. This method writes to the standard output
the line with the string from the argument. This method is invoked only if the respective event happens.

 4.5.2 Events Connected with Element

 4.5.3 Events Connected with Text Nodes or Attributes

 4.7 Sample of Complete X-definition

 4.8 External (Java) Methods

4.5.2 Events Connected with Element

 4 Model of Exemplary Element

We’ll illustrate actions connected with two following events:

 onStartElement – the action is invoked immediately after all attributes of the element are processed
and after check of occurrence interval. However, it happens before child nodes of the element are
processed.

 finally – the action is invoked when processing of the element and of all it’s child nodes is finished,
but before it is connected to the parent node (see event “forget”). You can specify the action forget also
for attributes and for text nodes. Note the action “forget” if specified is executed first for all text nodes,
then for attributes and then for the element itself.

The example of usage:

a) variant with elements and attributes:

<Vehicle xd:script = "
 onStartElement outln('Vehicle start');
 finally outln('Vehicle end')"
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7);
 finally outln('vrn=' + getText())"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

b) variant using only XML elements:

<Vehicle xd:script = "
 onStartElement outln('Vehicle start');

finally outln('Vehicle end')">
 <type> enum('SUV', 'MPV', 'personal', 'truck',
 'sport', 'other') </type>
 <vrn> string(7);
 finally outln('vrn=' + + getText())
 </vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model> string </model>
</Vehicle>

Note the method “getText” returns the string with the value of an attribute or a text node. The output will be:
Vehicle start

vrn=1234567

Vehicle end

20 / 207

 4.5.3 Events Connected with Text Nodes or Attributes

 4.7 Sample of Complete X-definition

 4.8 External (Java) Methods

4.5.3 Events Connected with Text Nodes or Attributes

 4 Model of Exemplary Element

In the following example we’ll introduce two events and it’s actions which are used only with text nodes or with
attributes. Those actions are declared in the validation section:

 onTrue – the action is invoked if the value of a text node or of an attribute is correct;

 onFalse – the action is invoked if the value of a text node or of an attribute is incorrect. Note that if this
action is specified no error message is reported.

For the item “purchase” the specification of above mentioned actions will look like:

a) variant with elements and attributes:

<Vehicle type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7);"
 purchase = "date();
 onTrue outln('Purhase date: ' + getText());
 onFalse outln('Incorrect date format')"
 manufacturer = "string()"
 model = "string" />

b) variant using only XML elements:

<Vehicle>
 <type> enum('SUV', 'MPV', 'personal', 'truck',
 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date();
 onTrue outln('Purhase date: ' + getText());
 onFalse outln('Incorrect date format')
 </purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
</Vehicle>

When the value of the item “purchase” will not be valid according to the required format it will be printed the
line “Incorrect date format” on the standard output stream. If the value is correct then it will be printed the line
with the value of purchase date.

 finální sestavení X-definice pro proces validace: Kapitola 4.7

 implementace uživatelských metod pro akce událostí: Kapitola 4.8

4.6 Processing of Large XML Data

 4.5 Events and Actions

The elements from input XML data are normally connected to the result XML document in the memory of the
computer. If there are processed very large XML data it may happen the computer have not enough memory to
store them. Therefore it is possible to specify the keyword “forget” that cause the processed element will be
removed from the memory (not be connected to the result data) after it was prosessed. However, the information
that it was processed (e.g. the counter of occurrences of this element) remains available. Removing of the
redundant element happens at the end of processing of the element, even after all events “finally”.

In the following example is the illustration how to express that the element “Vehicle” will be removed from
memory after it was processed:

a) variant with elements and attributes:

<Vehicle xd:script = "*; forget"
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer= "string()"
 model = "string" />

b) variant using only XML elements:

<Vehicle xd:script = "*; forget">
 <type> enum('SUV', 'MPV', 'personal', 'truck',
 'sport', 'other') </type>
 <vrn>string(7)</vrn>
 <purchase> date() </purchase>
 <manufacturer>string()</manufacurer>
 <model>string</model>
</Vehicle>

 21 / 207

If you specify the keyword “forget” the element will be removed from the memory of the computer. That is
why it should be stored to the result data on the output stream if you need such data. This will be described in
detail in the chapter 9.10.

 finální sestavení X-definice pro proces validace: Kapitola 4.7

 9.10 Continuous XML document writing

4.7 Sample of Complete X-definition

 4.1 Model of Exemplary Element

The X-definition is the XML document. If it is used for validation purpose it must be specified the name of the
model (or names of models) of the root element of processed data. Example of the complete X-definition:

a) variant with elements and attributes:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "*"
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
 </List>
</xd:def>

b) variant using only XML elements:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "*">
 <type> enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </type>
 <vrn>string(7)</vrn>
 <purchase> date() </purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </Vehicle>
 </List>
</xd:def>

where:

 The namespace of X-definition is "http://www.xdef.org/xdef/4.0", the namespace prefix is
“xd”;

 The name of X-definition is specified in the attribute “xd:name” (ie “garage”);

 The name of model which describes the root element of processed data is specified in the attribute
“xd:root” (ie “List”);.

In the X-definiton it may be also included the declaration of variables, methods, BNF grammars, thesaurus and
macros. This will be described later.

4.7.1 X-script of X-definition

The places where there is possible to write X-script are marked iń the following example is marked by the red
„SCRIPT“ word.

As you can see the X-script may be recorded as the value of the attribute “xd:script” at different places of the
X-defrinition:

22 / 207

<?xml version=”1.0” encoding=”UTF-8” ?>
<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles"
 xd:script = "SCRIPT">

 <xd:declaratiodn>
 SCRIPT
 </xd:declaration>

 <List xd:script = "SCRIPT">
 <Vehicle xd:script = "SCRIPT"
 type = "SCRIPT"
 vrn = "SCRIPT"
 ... />
 SCRIPT
 </List>

</xd:def>

4.7.2 Head of X-definition

 2 X-definition Technology

 4.1 Model of Exemplary Element

 4.2 Specification of Quantifier of Attributes and Text Nodes

 4.4 Specification of Quantifier of Element

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

The head of X-definition we consider the set of attributes of the element “xd:def”. The attributes are:

xmlns:xd the namespace of X-definitions, ie http://www.xdef.org/xdef/4.0. The attribute is
required.

xd:name the name of X-definition. One X-definition in the project may be without name. All the other
X-definitions must have a name and it must be unambiguous within the project. The name must
be a valid identifier.

xd:root the list of qualified names referring to models of root elements. The names in the list are
separated by character “|”. Instead of name of root element you can specify also asterisk (*) to
specify that it is accepted any other root element not mentioned in the list. [Doc1]. The root list
is used only in the validation mode. Example:

xd:root = "Vehicle | Accident | List | *"

Note that starting from X-definition version 4.0 it is possible to refer in the xd:root attribute also
a named choice group:

<xd:def xmlns:xd = "http://www.xdeg.org/xdef/4.0" xd:root = "X">
 <xd:choice xd:name = "X">
 <A/>

 </xd:choice>
</xd:def>

The root can be either the element A or B.

xd:script you can specify here the X-script used for the whole X-definition (e.g. specification of options).
The attribute is not required.

xd:include the list of URLs of other X-definitions which will be compiled together with this X-definition. The
separator of items in the list is comma (,). The attribute is not required.

impl-XXX not required atributes used for the implementaion information of an application. „XXX“ here is
the sufix of the name of an implementaion parameter. Number of implementation attributes is
not limited. However, the prefix of names must be “impl-”. In the X-script you can get the value

http://www.syntea.cz/xdef/2.0

 23 / 207

of the implementation parameter by the method getImplProperty('XXX') – the parameter
is the sufix of the name of implementation artribute. E.g. the attribute impl-
version=“1.2.3“ may be used as the information about the version of project. The value
“1.2.3“ is retuned by getImplProperty('version').

The example as follows writes at the end of process the name of author and the implementation
version:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles"
 impl-version = "1.0.53.169"
 impl-author = "J. Srp">

 <List xd:script = "finally { outln('Author: ' + getImplProperty('author'));
 outln('Version: ' + getImplProperty('version')); }">
 <Vehicle xd:script = "*"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />
 </List>
</xd:def>

 4.7.3 Declaration Section of X-definition

 9 Using of X-definitions in Java code

 14 Appendix A – complete example

4.7.3 Declaration Section of X-definition

 2 X-definition Technology

 4.1 Model of Exemplary Element

 4.4 Specification of Quantifier of Element

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

In the X-definition it tis possible to declare variables, methods and validation types which it is possible to use in
the code of the X-script. The scope of visibility of declared objects depends on the parameter in the declaration
section. Therefore you use the declared objects either in any X-definition of the project or just in the X-definition
where a declaration part is specified.

The X-script of the declaration part is recorded as a text value of the element "xd:declaration". The scope of
visibility is specified by attribute "xd:scope" where it's value can be either "global" or "local". The value "local"
sets the scope of visibility only to X-definition where the declaration was written. The value "global" sets visibility
to all X-definitions. If the attribute "scope" is not specified the default visibility is set to "global". The element
"xd:declaration" must be recorded as a direct child of X-definition (ie. of the element "xd:def"). Each
X-definition may contain even several declaraton parts. So you can separate different parts of declarations to
different sections or even to different X-definitions. This makes it possible eg. to separate "local" objects and
"global" objects etc.

In XML language some characters have a special meaning. So it is not possible to write them to the X-script and
you must write them to the XML text as entities (e.g.. „&“ as „&“ or „<“ as „<“ etc.). To prevent it you can
write the X-script of a declaration part to a CDATA section. This way you can write normally those characters.
Example:

24 / 207

xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
...
 <xd:declaration xd:scope = "global">
 <![CDATA[
 int x = 255 & 7;
]]>
 </xd:declaration>
...
 <Vehicle ... vrn = "string(x)" ... />
...
</xd:def>

4.7.3.1 Expressions in X-script

The result of an expression in the X-script is a value corresponding to the operation and to data types of operands
of an expression. E.g. in the following example you can declare the variable "max" of type int, visible only in the
current X definition, and in another declaration part to declare the globaly visible method "maxVRN" which is
used in as a parameter of the validation method of the attribute "vrn":

...
<Vehicle ... vrn = "string(maxVRN())" />
...
<xd:declaration xd:scope = "local">
 int max = 4;
</xd:declaration>
...
<xd:declaration xd:scope = "global">
 int maxVRN() {
 return max + 3;
 }
</xd:declaration>

The list of all operators supported in the X-script expressions is in the table as follows. Note that some operators
have an alternative notation to make them more readable in the X-script of attributes or of text nodes:

Binary operators:

Operator Alias Meaning Data types

& AND Logical AND. boolean, int

&& AAND Conditional logical AND. Boolean

| OR Logical OR. boolean, int

|| OOR Conditional logical OR. Boolean

< LT Relation less then. int, float, String, Datetime, Duration

> GT Relation greater then. int, float, String, Datetime, Duration

<= LE Relation less or equal then. int, float, String, Datetime, Duration

>= GE Relation greater or equal then. int, float, String, Datetime, Duration

== EQ Relation equals. Any type

!= NE Relation not equals. Any type

<< LSH Left shift of integer. Int

>> RSH Right shift of integer. Int

>>> RRSH Binary zero fill right shift. Int

% MOD Aritmetic modulus. int, float

^ XOR Logical or bitwise XOR“. boolean, int

+ Not exists Addition of numers or string
concatination.

int, float, String

- Not exists Substraction. int, float

* Not exists Multiplication. int, float

/ Not exists Division. int, float

Unary operators:

! NOT Logical NOT. Boolean

 25 / 207

~ NEG Bitwise negation (of a number). Int

++ Not exists Increment by 1. Int

-- Not exists Decrement by 1. Int

Assignment operators:

= Not exists Simple assignment. The left
operand is set to the value of right
operand.

Any type

+= Not exists Add to the left operand the right
operand.

int, float, String

-= Not exists Substract from the left operand the
right operand

int, float

*= Not exists Multiply the left operand by the
right operand.

int, float

/= Not exists Divide the left operand by the right
operand.

int, float

%= MODEQ The left operand is the modulus of
the left and the right operand.

int, float

<<= LSHEQ The left operand is bitwise shifted
left by the right operand.

int

>>= RSHEQ The left operand is bitwise shifted
right by the right operand.

int

>>>= RRSHEQ The left operand is bitwise right
shift zero filled by the right
operand.

int

&= ANDEQ The left operand is bitwise or
logical AND with the right operand.

int, boolean

^= XOREQ The left operand is bitwise or
logical XOR with the right operand.

int, boolean

|= OREQ The left operand is bitwise or
logical OR with the right operand.

int, boolean

An alternative notation should be preferred outside the CDATA section.

Example of an arithmetic expression written using the alternate notation:

i = p GE 125 AAND q LT 3;

The same expression with the base symbols (this should be written in a CDATA section):

i = p >= 125 && q < 3;

In the expressions, the priority of operators can be changed by parentheses in the usual way. The priority of the
operators is the same as Java or "C". Also, the automated conversions of types run similarly as Java (e.g. "int" or
"float"). If one of arguments of an addition operation (ie string concatenation) is a "String" value and the other
argument is "int" or "float" (or vice versa), an automated conversion to the "String" type is performed. A
conversion can also be forced by typing the type name into parentheses. You can also convert any value type to
the String by using the "toString" method.

The X-script also supports the conditional expression that has the form:

boolean_value ? value1 : value2

where value1 and value2 must be values of the same type. If boolean_value is true the result of the conditional
expression will be value1 otherwise it will be value2.

26 / 207

4.7.3.2 Statement in X-script

The statements in the X-script have very similar syntax and semantics as statements in Java. They are separated
by a semicolon and they are always treated regardless of the source text line spacing (ie the spaces, tabs and the
new lines are treated as a white space). Unlika In Java the characters of String constructor can be entered on
multiple lines between the quotation marks. Note that new lines are translated to spaces.

Unlike Java also in the X-script the labels are not supported. Therefore there are not supported also label
references in the commands "break" or "continue". Otherwise the syntax of statements in the X-script is similar to
writing in the Java language.

Comments

The comments may appear anywhere in the X-script. Every comment begins with a sequence of * / * and ends * /.
However, unlike as in Java the line comments (starting with //) are not allowed.

Identifiers

The identifiers in the X-script (such as naming a variable, method, type, etc.) must either begin with a letter or
with the underscore (_) character followed by letters, numbers, or underscores. In addition unlike as in Java in the
middle of the identifier, it may be written a dot (.), colon (:), or minus character (-) (as the standard XML naming
rules). The names in the X-script are case-sensitive. The names of variables and constants or methods may also
contain a dollar character ($). National alphabet characters may also be used.

Variable declaration statement

The variable declaration statement begins with the name of the data type followed by a sequence of variable
names (identifiers) separated by comma character. the variable declaration a assignment statement can also be
specified (as in Java).

The variable can be declared in the declaration section or within some statements (e.g. compound statements,
"for" statement etc.).

 The variable declaration statement can be preceded by a qualifier describing properties of a variable:

- final the variable has a fixed value in the initialization process. This value can't be changed in other
statements of the X-script.

- external the variable is accessible from the external Java program (this qualifier may only be used in the
the declaration part of X-definition).

Example of variable declaration in declaration part:

<xd:declaration xd:scope = "global">
 /* Declaration of global variables: */
 int a, b, c = 0;
 final String $count = "120";
 external float _average_02;
</xd:declaration>

Example of variable declaration in statement:

for (int i=0, max=10; i < max; i++) {
 float x, y;
 ...
}

Assignment statement

The assignment statement begins with the name of the variable that we want to assign and it follows value after
the equal sign (=). The assignments can be chained:

<xd:declaration>
 int a, b;
 ...
 a = b = 20;
 b += 12;
 ...
</xd:declaration>

if statement

 27 / 207

if (condition) statement

or

if (condition) statement else statement

while statement

while (condition) statement

do-while statement

do statement while (condition)

for statement

for (statement; condition; statement) statement

Note the "for each" statement is not supported in the X-script (e.g. for (variable : array) {...}).

switch statement

switch (expression of the type int or String) {

case value : statement (optional, may be repeated)

default : statement (optional)

}

Compound statement

The compoound statement contains a sequence of statements separated by semicolons between braces

{ statements }

Try-catch statement

try { statements } catch (Exception name) { statements }

Exception invocation

An exception in the X-script can be invoked by the "throw" command. Its parameter is an Exception object.

throw new Exception(message);

Example:

<xd:declaration>
 void x() {
 try {
 throw new Exception('Exception in method x');
 } catch (Exception ex) {
 outln(ex.getMessage());
 }
 }
</xd:declaration>

break statement

The break statement escapes the switch, for, while, do-while, or compound statement.

continue statement

The continue statement jumps to the beginning of the "for", "while" or "do"-"while" statement.

return statement

The "return" statement escapes the method and it returns process to the code where the method was invoked. If
a method should return a value the return statement must be followed by the value of the appropriate type.

28 / 207

4.7.3.3 Declared Variables

The variables listed in the declaration section are visible in an X-definition according to specified scope. We are
talking about declared variables. Declaring of a variable can be preceded by a qualifier "final" and/or "external".

 The qualifier "external" indicates that the value of a variable can be set externally and it is not initialized by the
X-definition processor. The resource allocated as an external variable is not released frm the memory at the end
of process (database objects, streams etc.).

The qualifier "final" sets a variable to be constant and thus it is prevented from any further modification. To such
object must be assigned a value in the declaration statement.

Example:

<xd:declaration xd:scope = "global">
 /* Global variables. */
 external int globalVariable;
 final String const = "KONSTANTA";
 external final extConst;
 int id, start = 0, konec = 50;
 ...
</xd:declaration>

To declared variables, as well as Java class objects are assigned to an initial value. That is, the uninitialized global
variables are set to the default values (zero for numbers, false for booleans, null for other objects etc.)

All objects that are created in the X-script are, if necessary, automatically closed (by the method "close")
immediately after completion of the validation or design: ie. that after returning control code back to Java
program where the process was called. However, if a variable was declared as external, then its closing is left to
the programmer, even if the appropriate variable was initialized by the X-script command. Eg. in the case of a
"Connection" type of object (database) the close method is generated only if the corresponding variable is not
marked as "external".

The X-definition compiler reports an error for any attempt to assign a value to a variable marked as "final".
However, if the variable is marked as "external" the initialization value can only be assigned from the Java
program where the process was invoked. That is the variable can't be initialized in the declaration statement
(nevertheless, the external variable can be also marked as "final" and you can't change it in the X-script).

4.7.3.4 Declaration of Method

 5.5 Container

In declaration part of X-definition can be declared a method. Write syntax of method declaration is based on Java.
All the methods declared in a declaration part are visible from the X-script according to "scope" parameter. At the
beginning of the method declaration is the identifier of the method result type. It is followed by a name of the
method and the comma-separated list of parameters in parentheses. The parameter list may also be empty. In the
statement block of a method declaration the statement "return" forces return to the place from which a method
was invoked. If the declared method does not return a value (the return type is void) the method may finish with
the "return" statement without parameter. If the method should return a value as a result the "return" statement
must succeed a value of the result of a method:

 29 / 207

<xd:declaration>
 void printText(String par1, String par2, String par3) {
 ...
 return;
 }
 int getCount() {
 ...
 return 123;
 }
 boolean compare(String a, int b) {
 ...
 return false;
 }
 ...
</xd:declaration>

A special case is a method with a parameter type "Container" specified as the last item of a parameter list.
When calling such a method, instead of the last parameter you can specify a comma-separated list of so-called
"named values". This is appropriate when it is necessary to declare too many different parameter variants [Doc 1]:

<xd:declaration>
 /* Method with parameter Container with named items. */
 String getConVal(int i, Container data) {
 String name = 'p' + i;
 return data.hasNamedItem(name) ? data.getNamedItem(name) : 'null';
 }
 /* This method which invokes method getConVal with different parameters and prints them. */
 void printConVal() {
 outln(getConVal(%p1='DATA', %p2='Secret'));
 outln("==========");
 outln(getConVal(%a='A', %b='B', %cD.eF:1-3='Some value'));
 }
 ...
</xd:declaration>

The output will be after calling the method PrintConVal():

%p1=DATA
%p2=Secret
=======
%a=A
%b=B
%cD.eF:1-3=Some value

Note that the variable declared in a body of a method, in a statement block (between the opening and closing
brackets), in a "for" statement etc. - so as in Java - is not initially set to an approptiate initial value and therefore
attempting to access an uninitialized variable causes an error at the compile time of X-definition.

4.7.3.5 Declaration of Validation Type

As we have already shown a validation method provides parsing of the text values and we speak about the "type"
of a value. In order not to specify validation methods always with the parameter list (and also to increase clarity of
source code) it is possible to declare certain type of value as a named type. The declaration is written in the
declaration part starting with the keyword "type". So as the other declarations in declaration section the visibility
is set according to parameter "scope". The syntax of type declaration is described in [Doc 1]:

type name type_spacification (parameters);

Example:

30 / 207

...
<xd:declaration>
 type string7 string(7);
 type rgbColor enum("red", "green", "blue");
 ...
</xd:declaration>
...
<Item id="string7" color="optional rgbColor" />
...

The declared type can also be written as method invocation with parameters in brackets. However, the list of
parameters must be empty:

...
<Item id="string7()" color="optional rgbColor()" />
...

4.7.3.6 Command Block in X-script Section

 2.2 X-script of X-definition

 4.5 Events and Actions

In a X-script section you can write a statement block (ie, a sequence of statements) which is bounded by brackets (
"{" and "}"). The statement block is similar to a statement block in the method declaration (ie it may contain a
"return" statement):

<Vehicle xd:script = "occurs 1..100;
 onAbsence {
 outln('Element Vehicle is missing.');
 outln('Reqiuired minimum 1 occurence.');
 return;
 }
 onExcess { outln('Maximum 100 occurences.'); }"
 ...

4.7.3.7 Statement Block in the X-script Sections Requiring Return Value

 8.1 Create Section in X-script

If a X-script statement block is specified in a section that requires a value (such as the create section, the match
section or a validation method), the corresponding data must be returned with the "return" statement followed
by the result value:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "
 create {
 outln('Konstructin of element Accident.');
 return true;
 }">
 <Accident xd:script = "occurs 0..*;
 create {
 i++;
 return 3;
 }" ...>
 ...
 </Accident>
 </Accidents>

 <xd:declaration>
 int i = 0;
 </xd:declaration>
</xd:def>

If the return statement is not specified, or if return value is missing the X definition compiler reports an error.

4.7.3.8 Ambiguous Objects in the X-Definition

 2 X-definition Technology

 31 / 207

 4.1 Model of Exemplary Element

 4.2 Specification of Quantifier of Attributes and Text Nodes

 4.4 Specification of Quantifier of Element

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

If an ambiguous declaration of an model appears in the X-definition, the X-definition compiler will report an
appropriate error. A typical cause of an ambiguous object is specification of two successive elements with the
same name when the first element is specified with variable number of occurrences, e.g.:

<Accidents>
 <Accident xd:script = "occurs 0..*" ... >
 <Accident ... >
</Accidents>

It is obvious that the second "Accident" model will never be applied. However, if the first model was specified
with a fixed number of occurrences, the X-definition would be unambiguous.

<Accidents>
 <Accident xd:script = "occurs 2" ... >
 <Accident ... >
</Accidents>

Note: if the "match" section is specified in the first element model with variable number of occurrences then the
ambiguity error is not reported.

4.7.3.9 Varibale Declaration in Elements

If you need to have a variable that is bound with an instance of processed element in a model you can declare
such variable in the variable declaration section of the X-script of element. Variable declaration section starts with
the keyword "var" and it MUST be specified before any executive section of the X-script of element (only
quantifier can be specified before it):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:root = "Measurements">

<Measurements>
 <Measurement xd:script="occurs 1..*;
 var { int count = 0; float total = 0; } /* MUST be before other sections! */
 finally outln(@date +'; measurements: ' + count + ', average=' + (total/count));"
 date = "required date()" >
 <Value xd:script = "occurs 1..*; finally count++;">
 required double; onTrue total += (float) getParsedValue();
 </Value>
 </Measurement>
 </Measurements>
</xd:def>

Note that "@date" refers to the attribute "date" of the current element (ie "Measurement"). In this context it is
the string which is value of the attribute "date". The method "getParsedValue()" returns parsed value from the
result of validation method (in this case the float value of the text of element "value" - the result of method
"double" is converted to the X-script value "float").

If input data are:

32 / 207

<Measurements>
 <Measurement date="2017-08-10T11:31:05">
 <Value>10</Value>
 <Value>11.8</Value>
 <Value>9.4</Value>
 </Measurement>
 <Measurement date="2017-08-10T13:01:27">
 <Value>12.35</Value>
 </Measurement>
</Measurements>

it will print the messages:
2017-08-10T11:31:05; measurements: 3, average=10.4

2017-08-10T13:01:27; measurements: 1, average=12.35

4.7.3.10 Specification of X-definition in XML Document

 2 X-definition Technology

4.1 Model of Exemplary Element

It is possible to specify an X-definition that handles XML data directly in an XML document in the "location"
attribute from the "http://www.syntea.com/xdef/instance" namespace. Let the prefix of this namespace be "xdi".
You can specify the URL of the X-definition by the "xdi:location" attribute in the XML document element. You can
also specify a list of X-definitions URLs separated by the character comma (,). In the "xdi:xdefName" attribute you
can specify the name of X-definition that describes the corresponding XML object. [Doc1]:

<?xml version="1.0" ?>

<Vehicles xmlns:xdi = "http://www.cz.syntea/xdef/instance"
 xdi:location = "/path/to/Vehicles.xdef"
 xdi:xdefName = "garage" >
 <Vehicle ... >
 ...

 <Vehicle ... >

</Vehicles>

4.8 External (Java) Methods

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

In the X-script in addition to built-in methods you can also specify and in to use "external" methods which are
embedded in a Java class accessible to X-definition processor. In order to invoke an external method in a X-script
it is necessary to declare external methods in "xd:declaration" element. Declared external methods can be used in
the X-script of X-definition. The list of external methods is privided by the command "external method {list}"
where the list contains items separated by semicolon in the following format:

ReturnType FullyQualifiedMethodName(parameter list) [as AliasName];

where

 The return type of value returned from the method (see the complete list of data types defined for the
X-definition X-script in Chapter 14.2).

 Fully qualified method name, ie, package, class name, and method name separated by a dot character.

 The parameter list is described by the data types of the method parameters. The parameter list in in
parenthesis contains the specification of parameter types separated by the comma character. It must be
listed in the same order of the order as the parameters specified in the method header declared in the
Java code.

 Alias name (optional):

o If the alias name is specified it must precede the keyword "as". The alias name must be of
course unambiguous in the entire project.

 33 / 207

o The alias thus represents a new name for the appropriate external method. The alias name
overlays the original name of an external method. Thus, if an alias is used, it is no longer possible
to invoke the external method with its original name.

o As an alias you can use the original name of another method declared in the attribute
"methods". In this case the alias must have also the second one method; otherwise the
X-definition compiler will report an error.

o If the alias is not specified the external method is referred in the X-script with its unqualified
name (ie without the name of the package and the class name).

If the list contains only one item, the brackets "{" and "}" may be omitted. So as all objects declared in
"xd:declaration", the declared external methods have visibility according to the paramater "scope".

Example:

<xd:declaration scope = "global">
 external method {
 void myorg.project.xd.util.Support.printItemPrice(String, String) as print;
 float myorg.project.xd.util.Data.price(String);
 }
...
 external method double myorg.Calculation.getDiscount(float);
</xd:declaration>

The X-definition resolves overloading of methods similarly as Java. Therefore, in the list of declared external
methods can be specified methods with the same name differing only in the parameter list. The X-definition
compiler ensures that the corresponding method is called from the appropriate Java class. You can also use the
alias name to distinguish overloaded methods.

In the code of Java class each method declared in the X-script must be declared as a "public" and "static". The type
of return value must match a type specified for the X-script. The validation methods must return "ParseResult"
value.

Types of parameters of an external method must also match a data type available as X-script data type. As the
first parameter it is possible to specify the parameter with the data type org.xdef.proc.XXNode (or the derived
type org.xdef.proc.XXData or the type org.xdef.proc.XXElement), which represents the currently processed XML
node. It makes available the value of an attribute or a text node in the external method. If this first parameter is
specified in the declaration of the external method the X-definition passes to the external method the object
corresponding to the current processed XML.

In the X-Definition the numeric data types "int" and "float" are implemented as 64bit values (corresponding to
Java types "long" and "double"). However, it is also possible to specify the types "long" and "double" in the X-
script, but the result is same as "int" and "float". It is necessary to take this into account when implementing the
external method and passing parameters between the X-definition and the external Java method. Parameter
conversion to int and float to external methods is done automatically, but numeric loss can occur. An example of
use is given in Chapter 4.7.4. For a complete list of all data types used in X-definition and their equivalents
between Java and X-definition; see Chapter 16.3.3.

 4.8.1 External Method with Parameter

 4.8.2 External Method with XXNode Parameter

 4.8.3 External Method with Array of Values

 4.7 Sample of Complete X-definition

4.8.1 External Method with Parameter

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

 4.8 External (Java) Methods

34 / 207

As an example of use of an external method with a parameter will be used the method providing printing of the
text that is passed to the method through the parameter. In our example we use both methods "print": without
parameter and also with a parameter.

Java source code:

package myProject;
public class MyClass {

public static void print() {

 System.out.println("Processing of the element X started");
}

public static void print(String msg) {

 System.out.println(msg);
}

}

X-definition:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "X" >

<xd:declaration>
 external method {
 void myProject.MyClass.print();
 void myProject.MyClass.print(String);
 }
</xd:declaration>

 <X xd:script = "onStartElement print(); finally print('Processing of the element X finished')" />
</xd:def>

The example above can be modified: for the "print" method we set the alias name "pr". The "print" method can
therefore be called in the X-definition using the "pr" alias name:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "X" >

<xd:declaration>
 external method void myProject.MyClass.print() as pr;
 external method void myProject.MyClass.print(String) as pr;
</xd:declaration>

 <X xd:script = "onStartElement pr(); finally pr('Processing of the element X finished')" />
</xd:def>

The output will be:

Processing of the element X started
Processing of the element X finished

 9 Using of X-definitions in Java code

4.8.2 External Method with XXNode Parameter

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

 4.8 External (Java) Methods

The X definition at work internally creates control objects that relate to the currently processed part of an XML
object. All work objects are derived from the common interface org.xdef.proc.XXNode. The object
org.xdef.proc.XXElement that is created at the start of processing of XML elements and the
org.xdef.proc.XXData is created when processing text values of XML objects (ie the attributes and text
nodes). These objects are created dynamically during processing of XML document and after processing expire.
The mentioned objects are accessible in external Java method invoked from the X-script. External method can use
them to get detailed information about processed data or to manipulate processing. Therefore, the object can be
passed to external method via parameter of XXNode type (or XXElement or XXData). [Doc3]

As an example the external method will now be used to print the text that will be passed through its String
parameter and to read and print out value of "vrn" attribute through XXNode object from the Vehicle element:

 35 / 207

public static void myPrint(XXNode xnode, String msg) {
 String regn = xnode.getXXElement().getAttribute("vrn");
 System.out.printf("Info=%s; Registred number=%s", msg, regn);
}

In we declare the external method with XXNode parameter. However, in the X-script the first parameter is not
specified; it is automatically added:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "Vehicles" xd:name = "Vehicles">

 <xd:declaration>
 external method void myProject.MyClass.myPrint(XXNode, String);
 </xd:declaration>

 <List>
 <Vehicle xd:script = "occurs 0..*; onStartElement myPrint('Element Vehicle started')"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />
 </List>
</xd:def>

The X-definition compiler adds to the external method automatically the value XXNode of parameter declared as
the first parameter.

In external method sometimes you need to get values of element models from X-definition or from the project.
The object containing the X-definition information is implemented on the interface org.xdef.model.XMDefinition.
This object can be obtained from XXNode object by method "getXMDefinition". The org.xdef.model.XMElement
object contains information about the element model and can be obtained from XXNode by method
"getXMElement". An object with cz.syneta.xdef.model.XMData interface contains information about the
attributes and child nodes. It can be obtained by various methods from object org.xdef.model.XMElement:

public static void myPrint(XXNode xnode, String msg) {
 String regn = xnode.getXXElement().getAttribute("vrn");
 System.out.printf("Info=%s; Registred number=%s", msg, regn);

 /* Root elements of actual X-definition */
 for (XMElement xelem : xnode.getXMDefinition().getRootModels()) {
 System.out.println("Root Element: " + xelem.getName());
 }

 /* Name and quantifier of the model of element where was invoked this method myPrint(): */
 System.out.println("Model of element " + xnode.getXMElement().getName() +
 " occurs " + xnode.getXMElement().minOccurs() + ".." + xnode.getXMElement().maxOccurs());

 /* Attributes declared in the model of actual element (types and names) */

for (XMData xdata : xnode.getXMElement().getAttrs()) {
 System.out.println((xdata.isOptional() == true ? "optional " : "required ") +
 xdata.getValueTypeName() + " " + xdata.getName() + ";");
 }
}

 9 Using of X-definitions in Java code

4.8.3 External Method with Array of Values

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

 4.8 External (Java) Methods

 4.8.1 External Method with Parameter

As an example will be presented an external method that has a single parameter with the array of values of
general data types supported by X-definitions. For this purpose the X-definition offers the interface
"org.xdef.XDValue", which represents the basis of all supported data types of X-script values. The external method

36 / 207

in our example prints the value of the data types passed by the array in the method parameter and lists whether
this is or is not a String data type:

public static void printParam(XDValue[] values) {
 for(XDValue par:values) {
 /* Get data type id of the item. */
 short dataType = par.getItemType();

 /* Print out the data type ID and the value of the item. */
 System.out.print(dataType + " (" + par.stringValue() + "), ");

 /* print if it is or isn't a string value. */
 if(dataType == XDValueTypes.STRING_VALUE) {
 System.out.println("value is String.");
 } else {
 System.out.println(" value is not String.");
 }
 }
}

This external method can be called as any external method, except that any number of parameters (including
none, then length of XDValue [] parameter will be zero). All passed values correspond to the XDValue interface,
from which it can be cast in the external method into a given data type:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "X" >

 <xd:declaration> external method void myProject.MyClass.printParam(XDValue[]) as pp; </xd:declaration>

 <X xd:script = " finally {int min = 5; pp('aaa', min, 1);}" />
</xd:def/>

When passing an object, its data type is retained. That is, for example, when calling the pp ('aaa', '5', 1), the first
and second parameters are represented as string values (ie, the value '5' will be understood as a string containing
the character 5) and the third parameter is represented as the number 1.

Each data type supported by X-definitions is implemented by a specific Java class that implements the XDValue
interface. X definition distinguishes between data types using numeric constants. Constants for each type are
declared in the class cz.synea.xdef.XDValueTypes. For the String data type, it is XDValueTypes.STRING_VALUE.

It is also possible to specify as the first parameter the XXNode object that is passed to the method automatically.
Its use is identical to the example in Chapter 4.7.3.

 9 Using of X-definitions in Java code

4.9 Declaration of X-script Methods

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

 4.7.3.4 Declaration of Method

In addition to the built-in (Chapter 14.6) and external (Chapter 4.8) methods, the user-defined methods may be
declared in the X-definition declaration part (as opposed to the external methods defined in the Java class) can
also be called in the appropriate X-Script sections. Each method declared in the declaration part has the visibility
according to "scope" parameter of declaration section. User defined methods are written to X-script od
declaration part as the text value (or CDATA section) of an element <xd:declaration>.

 4.8 External (Java) Methods

 4.8.1 External Method with Parameter

 4.8.2 External Method with XXNode Parameter

 4.8.3 External Method with Array of Values

 9 Using of X-definitions in Java code

 37 / 207

4.9.1 Methods without Parameter

 4.7.3.4 Declaration of Method

 4.8 External (Java) Methods

Let's define now a method that only prints a text to the standard output:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "X" >

 <xd:declaration xd:scope = "local" >
 void myPrint() {
 outln("Metoda myPrint() was invoked");
 }
 </xd:declaration>

 <X xd:script = "finally myPrint();" />

</xd:def/>

Note that compared to Chapter 4.8, where the implementation of an identical but external method is presented
the "myPrint" method is declared in the declaration part X of the definition.

 9 Using of X-definitions in Java code

4.9.2 Methods with Parameter

 4.7.3.4 Declaration of Method

 4.8 External (Java) Methods

We now show a declaration of a method that lists the text passed to it through its String parameter:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "X" >

 <xd:declaration>
 void myPrint(String msg) {
 outln(msg);
 }
 </xd:declaration>

 <X xd:script = "finally myPrint('method myPrint called from the element X');" />

</xd:def/>

The method will print a text from the parameter to the standard output.

 9 Using of X-definitions in Java code

4.9.3 Value of Attribute or Text Node in the X-script

 4.7.3.4 Declaration of Method

 4.8 External (Java) Methods

In methods defined in the X-definition declaration part the attributes of the currently processed element can be
processed similarly as in the case of external methods (through the XXNode object - see Chapter 4.7.3). You can
get the value of an attribute from a currently processed attribute or text node by the method getText (). A value
of the attribute with a given name in a currently processed element can be obtained in the script by method
getAttr(attribute_name).The following example shows how to get the value of the attribute "manufacturer" while
processing the element "Vehicle" and how to get a value of the actually processed attribute:

38 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:name = "garage" xd:root = "Vehicles">

 <List>
 <Vehicle
 xd:script = "occurs 0..*; finally print(getAttr('manufacturer'));"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string; onTrue print(getText());" />
 </List>

 <xd:declaration>
 void print(String s) {
 outln(s);
 }
 </xd:declaration>

</xd:def>

Methods "getText" and "getAttr" can also be used in the body of a declared method. They are applied to the
currently processed object (analogically, in external methods these values are available from the XXNode, XXData,
XXElement arguments):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <List>
 <Vehicle
 xd:script = "occurs 0..*; finally printAttr('manufacturer');"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string; onTrue printText();" />
 </List>

 <xd:declaration>
 void printAttr(String s) {
 outln(getAttr(s));
 }
 void printText() {
 outln(getText());
 }
 </xd:declaration>

</xd:def>

 9 Using of X-definitions in Java code

4.10 User Defined Methods for Checking Data Types

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

 4.7.3.4 Declaration of Method

 4.8 External (Java) Methods

In some situations, the built-in methods for checking the data types used in the X-script may not be sufficient, and
it is necessary to check the data values by the user resources. For this purpose, user-defined methods can be
used: either the external methods (see Chapter 4.8) or the methods defined in the X-definition declaration section
(see Chapter 4.9).

The return value of all data type parsing methods can be either boolean or ParseResult (if the parsed badge is not
a String and needs to be used in other part of X-script). The number of parameters can be arbitrary. The method
thus defined is used to check (parse) the value of the attribute or text node in the element model.The following
example demonstrates the use of the Vehicle Registration Number type where the correct number of characters
must be 7. In the case of a malformed format, the message put error message and returns false, otherwise it

 39 / 207

returns true. The method is defined in the following example in the declaration part of the X-definition and is
named "vrn":

a) variant with elements and attributes:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage" xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "occurs 0..*"
 typ = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "vrn()"
 porchase = "date()"
 manufacturer = "string()"
 model = "string" />
 </List>

 <xd:declaration>
 /* Method checks data type of Vehicle
 * Registration number.
 */
 boolean vrn() {
 String text = getText();
 if (text.length() != len) {
 return error(text +
 " is not valid. Required " +
 len + " characters.");
 }
 return true;
 }
 </xd:declaration>
</xd:def>

b) variant using only XML elements:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage" xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "occurs 0..*">
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </type>
 <vrn>vrn(7)</vrn>
 <purchase>date()</purchase>
 <manufaccturer>string()</manufacturer>
 <model>string</model>
 </Vehicle>
 </List>

 <xd:declaration>
 /* Method checks data type of Vehicle
 * Registration number.
 */
 boolean vrn() {
 String text = getText();
 if (text.length() != len) {
 return error(text +
 " is not valid. Required " + len +
 " characters.");
 }
 return true;
 }
 </xd:declaration>
</xd:def>

In the example above, several embedded X-script methods are used:

• getText () method returns the value of the currently processed attribute or text node.

• length() - the method of the String object in the X-script returns the number of characters of a given string. (ie it
is similar to the java.lang.String.length() method).

• error() - the method returns allways the boolean value false and it puts the text specified in the parameter to
the error reporter (details and other variants of the error method see chapters 7 and 11.2).

If the above-mentioned "vrn" method for checking the data type of a vehicle registration number returns the
boolean value true, then the valid value is considered to be correct (and the onTrue event arises). If it returns
false, then it false it writes the the error message to log file and the onFalse event occurs.

 9 Using of X-definitions in Java code

 9.8 Validation of data with a database in a XML document

 13.3 The error method

4.10.1 Unique Value of Attribute or Text Node

 4.10 User Defined Methods for Checking Data Types

If an attribute (or text node) whose value is to be a unique NCName value within the whole XML document, the
uniqueness can be ensured using the ID() method (similar to XML schema or DTD). If this value occurs in the XML
document multiple times, an error is reported. If there is required a reference to a unique value you can use the
validation method IDREF(). The validation method IDREFS() checks the list of references to unique values
separated by a space.

In the X definition it is possible to specify a set of any type of unique values. You can declare the "uniqueSet"
object to which the appropriate validation method is attached. The values stored in this object can be viewed as a

40 / 207

table of unique values. The unique value can be viewed as a key to the table. The uniqueSet object is declared by
the following command:

<xd:declaration>
 uniqueSet obj validation_method;
</xd:declaration

The following methods are defined on "uniqueSet" objects (below "obj"). Note the key in a table can generally be
composed of multiple items (this will be described in next chapter):

- obj.ID() will first check the formal correctness of the value and then checks the uniqueness of the key
and adds the key to the table. If the value is incorrect or unambiguous, an error is reported.

- - obj.SET() is similar to the ID method but it does not report an error if the key in the table already
exists, ie this key can be repeated in the table.

- obj.IDREF() checks whether the value is formally correct and whether the value of the actual key is in
the table. If not an error is reported. The reference may occur before the a unique value is inserted to the
table (by methos ID or SET), it may be inserted later.

- obj.IDREFS() performs the IDREF operation on a list of values separated by spaces.

- obj.CHKID() checks whether the value is formally correct and whether the value of actual key is in the
table. If not, an error is reported. However, unlike the IDREF method the key must be inserted to table
before the reference.

- obj.CHKIDS() performs the CHKID operation on a list of values separated by spaces.

- obj.CLEAR() clears all entries of the table. If the table contains the references to a value (by method
IDREF or IDREFS) that has not been inserted yet to the table by the ID of SET method, the appropriate
errors are reported. This feature can typically be used at the end of the element processing in the model
to limit the validity range of the respective set of keys.

In following example, the X definition describes the "Accident" model which contains a list of vehicles and a list of
accidents. Both, the vehicle registration number and the identification number of an accident, must be unique.
The reference to the vehicle registration number involved in the accident must correspond to some of the vehicle
registration number ("vrn") from the list of elements "Vehicle":

a) variant with elements and attributes:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:root = "Accidents">

 <xd:declaration>
 uniqueSet vehicles string(7);
 uniqueSet accidents int();
 </xd:declaration>

 <Accidents>

 <Vehicle xd:script = "occurs 0..*"
 type = "enum('SUV', 'MPV', 'personal',
 'truckí', 'spor', 'other')"
 vrn = " vehicles.ID() "
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />

 <Accident xd:script = "occurs 0..*"
 id = " accidents.ID(); "
 date = " date(); "
 injury = " int(); "
 death = " int(); "
 loss = "decimal()" >
 <vrn xd:script = "occurs 0..*" >
 vehicles.IDREF();
 </vrn>
 </Accident>
 </Accidents>

</xd:def>

 41 / 207

b) variant using only XML elements:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:root = "Accidents">

 <xd:declaration>
 uniqueSet vehicles string(7);
 uniqueSet accidents int();
 </xd:declaration>

 <Accidents>

 <Vehicle xd:script = "occurs 0..*">
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </type>
 <vrn> vehicles.ID() </vrn>
 <purchase> date() </purchase>

 <manufacturer>string()</manufacturer>
 <model>string()</model>
 </Vehicle>

 <Accident xd:script = "occurs 0..*">
 <vrn> accidents.ID(); </vrn>
 <date> date(); </date>
 <injury> int(); </injury>
 <death> int(); </death>
 <loss> decimal()"</loss>
 <vrn xd:script = "occurs 0..*" >
 vehicles.IDREF();
 </vrn>
 </Accident>

 </Accidents>

</xd:def>

Furthermore, we show more complex situaltion. Let's have a street where are houses and in houses are
apartments. House numbers are unique across the street. In each house there are apartments that must be
unique within the house and not within the street. Uniqueness is ensured by validation method ID(). Using the
CLEAR() method invoked at the end of processing of the house, we will ensure the uniqueness of the apartment
numbers within the house (and not within the streat):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:root = "Street">

 <Street>
 <House xd:script = "occurs 0..*; finally apartements.CLEAR(); "
 number = "houses.ID()">
 <Apartement xd:script = "occurs 0..*;"
 number = "apartements.ID()" />
 </House>
 </Street>

 <xd:declaration>
 uniqueSet houses int();
 uniqueSet apartements int();
 </xd:declaration>
</xd:def>

 9 Using of X-definitions in Java code

 9.8 Validation of data with a database in a XML document

 13.3 The error method

4.10.2 Unique Values Table with Multiple Items Key

In the X definition you can declare tables with keys composed from more key items. The uniqueness of a key in a
table is determined by a set of key items. If more than one key item is specified in the declaration of a table, these
key items must be named. The key item name ends with a colon (":") followed by the specification of a validation
method. Key items are written into the compound parentheses ("{" and "}") and they are separated by a
semicolon (";"). The declaration of such a table (set of houses and apartements) with multiple key items has the
following form:

<xd:declaration>
 uniqueSet street { house: int(); apartement: int() }
</xd:declaration>

An example from the previous chapter can be written:

42 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "Houses">

 <xd:declaration>
 uniqueSet houses { house: string(); apartement: string(); }
 </xd:declaration>

 <Houses>
 <House xd:script = "occurs 0..*"
 number = "houses.house.ID()" >
 <Apartement xd:script = "occurs 0..*; "
 number = "houses.apartement.ID()" />
 </House>
 </Houses>
</xd:def>

The validation method ID stores to the table an entry with all the key items that have been previously set. If a key
item is not set at this time the null value is used.

If no method is used to check the key value in the table, only the relevant key items of the current key are set. E.g.
if you write

number = "houses.house()"

house number is saved in the current key, but it does not perform any operation with the table "houses".
However, if you specify the ID method, for example the acctual key with all items is stored in the table. Thus if the
value of the "apartement" item has not been set before the following value of the key containing the pair of
house and apartement will be stored in the table "houses":

street.house=number, streat.apartement=null

To understand better the uniqueSet activity here's another example. Let's have an XML document containing
countries, cities, streets house numbers and apartement numbers. In the element address we must take in mind
that the order of processing it's attribytes id not defined. So we prepare values of key items by invoking just the
method on the appropriate key item (it provides formal check of the value and saves it to the key item). To
ensure the preared key is completed we ca't use the method IDREF at the attribute "house" but the method
IDREF must be invoked in the "finally" section of the element "Address" the on the table "address" (it checks the
whole prepared key composed from attributes):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "Addresses">

 <xd:declaration>
 uniqueSet address { country: string(); town: string(); street: string(); house: int();}
 </xd:declaration>

 <Addresses>

 <Country xd:script = "occurs 0..*;" name = "address.country();">
 <Town xd:script = "occurs 0..*;" name = "address.town();">
 <Street xd:script = "occurs 0..*;" name = "address.street();">
 <House xd:script = "occurs 0..*;" number = "address.house.ID();" />
 </Street>
 </Town>
 </Country>

 <Address xd:script = "occurs 0..*; finally address.IDREF();"
 country = "address.country(); "
 town = "address.town(); "
 street = "address.street(); "
 house = "address.house(); " />

 </Addresses>

</xd:def>

Note that the "ID" method for the "address" table is specified only in the "House" element. In the case of a village,
the value of the "street" item in the key will be null. The previous key items are set to the actual key and only the
ID method puts the completed key with all the items to the table. In the "Address" element, the "IDREF" method
is called at the end of the element processing on the competed actual key "address". If this method was specified
e.g. for the "number" attribute, an error could occur because the order of processing of an attribute is not defined
and some key items might not have been set at the time the attribute "number" was processed.

 43 / 207

If a key item is optional (ie it will be set to it authomatically a "null" value if it doesn't occur in the data) specify a
question mark ("?") before the validation method. E.g.:

uniqueSet street { house: string(); apartement: ? string(); }

If the question mark is not specified in the named item, the value previously set remains unchanged, the null
value is set when a question mark is specified.

4.10.3 Nested Key

In some cases, we can declare the key as a key entry. To understand our example we have to know that the result
of methods "ID", "IDREF", "SET" and "CHKID" returns as a result (like any validation method) a "ParseResult"
object. So the expression on the line 4 first cheks if a value is in the table "A" and then the value sets to the key
part "b" in table "B":

1 uniqueSet A { a: string() }
2 uniqueSet B { b: A.a; c: string() }
3 ...
4 B.b(A.a().ID())

Here's how the following example works. Let's have XML with an overview of staff, projects, teams, and staff
activity report - ie how many hours the individual staff worked on. Let's define the table "Person" with the
employee codes. Let's define the table "Project" with the projects codes. And define the table "Team" which
contains the touples of the employee code project code. The X-definition will be:

 1 <xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "Overview" >
 2
 3 <xd:declaration xd:scope = "local" >
 4 type codePrj string(4);
 5 type codeUsr string(2, 50);
 6 uniqueSet Person { usr: codeUsr };
 7 uniqueSet Project { prj: codePrj };
 8 uniqueSet Team { prj: Project.prj; usr: User.usr }
 9 </xd:declaration>
10
11 <Overview>
12
13 <Employee xd:script = "occurs +"
14 UserID = "required User.usr.ID()" Name = "required string()" />
15
16 <Project xd:script = "occurs +"
17 ProjectCode = "/* Check the unique code in Project and set the prj item in the Team table. */
18 required Team.prj(Project.prj.ID());"
19 ProjectName = "required string()" >
20 <Team xd:script = "occurs +"
21 UserID = "required Team.usr.ID()" />
22 </Project>
23
24 <ProjectActivity xd:script = "occurs +"
25 ProjectCode = "/* Check if Project code exists and set prj item in Team table. */
26 required Team.prj (Project.prj.IDREF())" >
27 <EmployeeActivity xd:script = "occurs +"
28 UserID = "required Team.usr.IDREF()" >
29 <Activity xd:script = "occurs +"
30 Date = "required date()"
31 Hours = "required int()" />
32 </EmployeeActivity>
33 </ProjectActivity>
34
35 </Overview>
36
37 </xd:def>

The "ProjectTeam" table has a key composed of two entries "prj" and "user" that refer to the "User" and "Project"
key entries (see line 8). Line 7 ensures unambiguous employee code. Line 14 adds value of the key to the table
"User". On the line 18, the unique code is set to the "Project" table, and at the same time the key part "prj" of
"Team" is set. On the line 21, the usr entry is stored in the "Team" and ensures the uniqueness of the key in the

44 / 207

"Team" table (ie the "prj" and "usr" pair). The line 26 will check if the key is in the "Project" table and set "prj" in
the "Team" key. Line 28 adds the "prj" key part to the "Team" key and check if the pair exists in the "Team" table.

Example of valid data:

<OverWiew>
 <Employee UserID="JBROWN" Name="John Brown"/>
 <Employee UserID="KSMITH" Name="Karl Smith"/>
 <Employee UserID="VTELL" Name="Vilem Tell"/>
 <Project ProjectCode="ALFA" ProjectName="Project ALFA">
 <Team UserID="JBROWN"/>
 <Team UserID="KSMITH"/>
 <Team UserID="VTELL"/>
 </Project>
 <Projekt ProjectCode="BETA" ProjectName="Project BETA">
 <Team UserID="JBROWN"/>
 </Project>
 <Project ProjectCode="GAMA" ProjectName="Project GAMA">
 <Team UserID="KSMITH"/>
 <Team UserID="JBROWN"/>
 </Project>
 <ProjectActivity ProjectCode="ALFA">
 <EmployeeActivity UserID="KSMITH">
 <Activity Date="2016-06-15" Hours="2"/>
 </EmployeeActivity>
 <EmployeeActivity UserID="JBROWN">
 <Activity Date="2016-06-15" Hours="2"/>
 <Activity Date="2016-06-15" Hours="6"/>
 </EmployeeActivity>
 </ProjectActivity>
 <ProjectActivity ProjectCode="BETA">
 <EmployeeActivity UserID="JBROWN">
 <Activity Date="2016-06-15" Hours="4"/>
 </EmployeeActivity>
 </ProjectActivity>
 <ProjectActivity ProjectCode="GAMA">
 <EmployeeActivity UserID="KSMITH">
 <Activity Date="2016-06-15" Hours="2"/>
 </EmployeeActivity>
 </ProjectActivity>
</OverWiew>

4.11 Group Specifications

 4.7 Sample of Complete X-definition

The order of attributes in an element is always arbitrary, so the order of the attributes specified in the X definition
is not respected in a valid XML document. The same statement is not true for child elements and text nodes.

This chapter describes how to define groups of elements and text nodes. An important feature of groups is that
they can also act as models. That is, they can be refered from different parts of the X-definition. A group may
describe different combinations of elements and text nodes.

 4.11.1 Strict Order of Group Items (xd:sequence)

 4.11.2 Arbitrary Order of Group Items (xd:mixed)

 4.11.3 Selection of Item from a Group (xd:choice)

 4.11.5 Groups with Text Node

4.11.1 Strict Order of Group Items (xd:sequence)

 4.7 Sample of Complete X-definition

The fact that the order of the elements in a valid XML document matches the order declared in the model is
implicit. However, the group of text node elements in the X-definition can be explicitly defined using a special
"xd:sequence" element. Our exempary example will have then the following form:

 45 / 207

<Vehicle xd:script = "occurs 0..*">
 <xd:sequence>
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string()</model>
 </xd:sequence>
</Vehicle>

In the example it was explicitly stated that the order of items in the group is fixed.

 4.11.2 Arbitrary Order of Group Items (xd:mixed)

 4.11.3 Selection of Item from a Group (xd:choice)

4.11.2 Arbitrary Order of Group Items (xd:mixed)

 4.7 Sample of Complete X-definition

The X-Definition allows you to allow the occurrence of declared items also in any order. Elements (elements or the
text nodes) that may occur in an arbitrary sequence must be declared in the X-definition special element
"xd:mixed". The example in Chapter 4.7 will be in such case as follows:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "occurs 0..*">
 <xd:mixed>
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string()</model>
 </xd:mixed>
 </Vehicle>
 </List>
</xd:def>

In the example it was declared that the order of the sub-elements of the Vehicle element does not matter.

 4.11.3 Selection of Item from a Group (xd:choice)

4.11.3 Selection of Item from a Group (xd:choice)

 4.7 Sample of Complete X-definition

Selecting an element from a given group can be written in the X-definition using the "xd:choice" element. We
extend our example so that we add the element "owner" which have a child element either "person" or
"company":

<Vehicle>
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model>string()</model>
 <owner>
 <xd:choice>
 <person firstName = "string()" lastName = "string()" />
 <company name = "string()" />
 </xd:choice>
 </owner>
</Vehicle>

If we specify in the X-script of element "xd:choice" a qualifier with "occurence 0..1" the element "owner" may be
empty or it may contain a child according to "xd:choice":

46 / 207

<owner>
 <xd:choice xd:script="occurs 0..1">
 <person firstName = "string()"lastName = "string()" />
 <company name = "string()" />
 </xd:choice>
</owner>

Then it will be valid following three XML data:

<owner>
 <person firstName = "John" lastName = "Brown" />
</owner>

or

<owner>
 <company name = "Syntea" />
</owner>

or

<owner/>

If we include to a selection group a sequence containing at least 2 elements then at least one occurrence of the
first item in the sequence must be mandatory (selection will be made according to this item). The following
example is model that allows either a touple of elements "type" and "vrn" or one of the "purchase",
"manufacturer" or "model" elements to be selected in the "Vehicle" element:

<Vehicle>
 <xd:choice>
 <xd:sequence>
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 </xd:sequence>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string()</model>
 </xd:choice>
</Vehicle>

Therefore, the following two elements will be valid for the above model:

<Vehicle>
 <type>SUV</type>
 <vrn>1A23456</vrn>
</Vehicle>
</Vehicles>
<Vehicle>
 <manufacturer>Škoda</manufacturer>
</Vehicle>

4.11.4 Selection with Action "match"

In some cases, you need to select elements according to a rule (eg the existence of a certain attribute). For this
purpose, it is possible to specify a "match" action in the Skript. The "match" action is a boolean expression that
specifies whether to select an item [Doc1].

The "match" action in the X-script that evaluates whether the element contains an attribute has the following
form:

match @attributeName

If the attribute exists in an element, the expression will be "true", otherwise "false".

Let's show it on the following example. In the selection group, the element of the same name is specified more
than once and the match action determines which variant of the model element will be selected. In our example,
there are two variants of the "owner" element (note the second "element owner" element does not have an
action "match" - if the first option was not chosen, it will be the second):

 47 / 207

 <xd:choice>
 <owner xd:script = "match @firstName AND @lastName"
 firstName = "string()"
 lastName = "string()" />
 <owner company = "string()" />
 </xd:choice>

Therefore, the two following XML document samples will be valid for the selection group:

<owner firstName = "Jan" lastName = "Novak" />

<owner company = "Syntea" />

A X-script that evaluates whether a particular element contains a given attribute with a specific value has the
following form:

match @attributeName EQ 'attribute value'

The use of action "match" demonstrates the following example, which distinguishes two different models of the
"Vehicle" element according to the name of manufacturer:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:name = "garage" xd:root = "Vehicles">

 <List>
 <xd:choice xd:script = "occurs 0..*">
 <Vehicle xd:script = "match @manufacturer EQ 'VW'; "
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "fixed 'VW'"
 model = "enum('Golf', 'Passat', 'Polo')" />
 <Vehicle xd:script = "match @manufacturer EQ 'Škoda';"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "fixed 'Škoda'"
 model = "enum('Fabia', 'Octavia', 'Yetti')"/>
 </xd:choice>
 </Vehicles>

</xd:def>

The example shows that if the "manufacturer" attribute of the "Vehicle" element contains a "Škoda" value, the
element model will check the "Škoda" models if it contains "VW" value then the Volkswagen models are allowed.

Additionally, the example shows that the value of attribut "manufacturer" has been replaced by a fixed value (see
chapter 4.2.2) corresponding to the value in the match action condition. If instead of the fixed 'value' the type
string method remained, the result would be the same.

Therefore, the two following elements "Vehicle" will be valid for the X-definition above:

<List>
 <Vehicle type = "SUV"
 vrn = "1A23456"
 purchase = "2011-02-01"
 manufacturer = "VW"
 model = "Golf" />
 <Vehicle type = "SUV"
 vrn = "2B34567"
 purchase = "2009-10-30"
 manufacturer = "Škoda"

 model = "Yetti"/>
</List>

Note: the specification of @attributeName returns a value of the attribute from the currently processed element.
This value is interpreted as true in a logical expression if the attribute exists, otherwise it is false. If the attribute
exists and the specification is followed by an comparation operator (e.g., EQ 'value'), the corresponding
expression is evaluated with the value of the appropriate attribute.

 9 Using of X-definitions in Java code

48 / 207

4.11.5 Groups with Text Node

 4.7 Sample of Complete X-definition

All the group statements described above may not necessarily be a combination of elements only, but may also
include a text node declaration.

For example, if the "Vehicle" element contained a vehicle registration number or a text node with a description,
the "xd: choice" element may have the form:

<Vehicle>
 <xd:choice>
 <vrn>string(7)</vrn>
 string() /* description */
 </xd:choice>
</Vehicle>

Both following elements will be valid:

<Vehicle>
 <vrn>1A23456</vrn>
</Vehicle>

<Vehicle>
 Unknown vehicle!
</Vehicl

Similarly, the text node can be included in the "xd:sequence" or "xd:mixed" groups.

4.11.6 "Named" Group as Model and Reference to Group.

 4.7 Sample of Complete X-definition

Each of the "xd:sequence", "xd:mixed" and "xd:choice" groups can be specified as a self-standing model in the
X-definition. In order to be able to refer to the appropriate group within the X-definition, a group must be a direct
descendant element "xd:def" and must be named with the "xd:name" attribute. The following example
demonstrates how to use a group model and corresponding reference:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:name = "garage" xd:root = "Vehicles" >

 <List>
 <Vehicle xd:script = "occurs 0..*" >
 <xd:sequence xd:script="ref VehicleInfo" />
 </Vehicle>
 </List>

 <xd:sequence xd:name="VehicleInfo" >
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string()</model>
 </xd:sequence>

</xd:def>

With the "ref" keyword in the X-script is specified link to a group model.

Group models serve in particular to increase the clarity of the X-definition, or to allow the sharing of a single
group model in multiple element models, thereby helping to make X-definitions easier to read and maintain.

4.11.7 Events and events of groups

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

For the "xd:sequence", "xd:mixed" and "xd:choice" groups you can specify the "xd:script" attribute for writing X-
script, which can also define some actions like in the X-script of element ("init", "finally", "create"). The exception
is "onStartElement" which can not be used for groups.The following example prints the "Group is processed"
when the group is process finish:

 49 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:name = "garage" xd:root = "Vehicles">
 <List>
 <Vehicle xd:script = "occurs 0..*">
 <xd:mixed xd:script = "finally outln('Group is processed')">
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchsee>
 <manufacturer>string()</manufacturer>
 <model>string()</model>
 </xd:mixed>
 </Vehicle>
 </List>
</xd:def>

4.1 XML Namespace in Models

If there are elements or attributes from a particular namespace in a model, you need to use the "xmlns" attributes
in the header of the X-definition to describe all the namespaces and the corresponding prefixes. In models the
namespace is then specified by the appropriate prefix. In the following example the "Vehicle" element and all
internal elements and attributes are from the namespace "http://cz.vehicle.registr" to which the prefix "reg" is
assigned. The element "accident" and all internal elements are from the namespace "http://cz.vehicle.accident"
with the prefix "acc", but in our sample the attributes of this element have no namespace assigned. The
corresponding X definition will be:

50 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:root = "Acceidents"
 xmlns:reg = "http://cz.vehicle.registr"
 xmlns:acc = "http://cz.vehicle.accident" >

<Accidents>
 <Vehicles>
 <reg:Vehicle xd:script = "occurs 0..*"
 reg:type = "enum('SUV', 'MPV','personal',
 'truck', 'sport', 'other')"
 reg:vrn = "string(7)"
 reg:purchase = "date()"
 reg:manufacturer = "string()"
 reg:model = "string()" />
 </Vehicles>

 <acc:accident xd:script = "occurs 0..*" >
 id = "int()"
 date = "date()"
 injury = "int()"
 death = "int()"
 <acc:vrn xd:script = "occurs 1..*" >
 string(7)
 </acc:vrn>
 </acc:accident>

</Accidents>

</xd:def>

b) variant using only XML elements:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:root = "Acceidents"
 xmlns:reg = "http://cz.vehicle.registr"
 xmlns:acc = "http://cz.vehicle.accident" >

<Accidents>
 <Vehicles>
 <reg:Vehicle xd:script = "occurs 0..*">
 <reg:type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </reg:typ>
 <reg:vrn> string(7) </reg:vrn>
 <reg:purchase> date() </reg:purchase>
 <reg:manufacturer> string()
 </reg: manufacturer >
 <reg:model>string()</reg:model>
 </reg:Vehicle>
 </Vehicles>

 <acc:accident xd:script = "occurs 0..*" >
 <acc:id> int() </acc:id>
 <acc:date> date(); </acc:date>
 <acc:injury> int(); </injury>
 <acc:death> int(); </acc:death>
 <acc:vrn xd:script = "occurs 1..*">
 string(7)
 </acc:vrn>
 </acc:accident>

</Accidents>

</xd:def>

 51 / 207

5 Types of Values and Objects in X-script

 Basic knowledge of XML markup language ([1], [2])

 2 X-definition Technology

 2.4 Exemplary XML Data

 4 Description of structure of XML document by X-definition

This chapter describes the types of values and data objects and some useful methods implemented in
X-definitions.

5.1 Basic Types of Values
 int - integer numbers are implemented in the X-script as 64-bit values, ie as "long" Java type. You can write the

value of a number as decimal (eg "123456") or as hexadecimal if the entry begins with "0x" or "0X", eg

"0xABCDEF123". In hexadecimal form it is possible to use both upper and lower case letters (eg "0xabdDEF123").

For greater readability, it is possible to write an underscore character ("_") at any time after the first digit; Ie

"1__234_56" or "0xAB_CD_EF". In the X-script, the following int constants are defined by identifiers:

$MININT minimal value of integer number (-9223372036854775808)
$MAXINT maximal value of integer number (9223372036854775807)

float - floating-point numbers are implemented in the X-script as 64-bit values, ie they correspond to Java type

"double". The value can be written with decimal point and / or exponent. The exponent is indicated by the letter

"e" or "E". Similarly as integers, it is possible to enter the "_" character at any position after the first digit. The

following entries represent the same value: "3.14159", "0.0314159e2", "0.0314159E + 2", "314159E-5",

"31_41.5__9E-3".$PI … konstanta pi, poměr obvodu kruhu k průměru (3.141592653589793). In the X-script, the

following float constants are defined by identifiers:

$PI the ratio of the circumference of a circle to its diameter (3.141592653589793)
$E e, the base of natural logarithms (2.718281828459045).
$MINFLOAT smallest positive nonzero value (4.9E-324) .
$MAXFLOAT largest positive value (1.7976931348623157E308).
$NEGATIVEINFINITY negative infinity.
$POSTIVEINFINITY positive infinity.
$NaN not valid value (Not a Number).

Decimal decimal numbers with decimal development are implemented in the X-script as java.math.BigDecimal.
This type of number is written with prefix "0d" or "0D" followed by an integer or floating-point number. An
underscore can be used in the entry, eg. "0d123__456_890_999_000_333". Decimal values are only possible to
compare in the expressions, other operations must be performed using the appropriate methods.

boolean - logical values. For writing values you can use identifiers "true" and "false".

String - arrays of characters. Character strings can contain any characters that are allowed in XML documents.
Values of strings strings are written into apostrophes or quotation marks (since XML attribute values can also be
inside quotation marks or apostrophes, it is appropriate to use another character inside the attribute, ie if the
attribute value is bounded with quotes, we write apostrophes and vice versa). If there is a character inside the
string that is a string (ie an apostrophe or quote), the '\' character is preceded by a character. The occurrence of
the '\' character itself is written in duplicate as '\\'. Using the "\" character, you can further describe any Unicode
16 character by writing "\ uxxxx" where x is hexadecimal digits. You can also write some special characters using
the following two characters:

52 / 207

\n linefeed (LF == \u000a)
\r carriage return (CR == \u000d)
\t horizontal tab (HT == \u0009)
\f form feed (FF == \u000c)
\b backspace (BS == \u0008)

Warning: If the X-script text is listed as an attribute value, the XML processor will replace all occurrences of the
linefeeds by spaces. Therefore, new lines need to be written to like "\ n" in X-script of the attribute. Additionally, it
is necessary to avoid unintentional macros. The occurrence of a pair of characters "${" anywhere in the X-script is
interpreted as the beginning of a macro call, so inside the character strings, in this case, the "$" character of that
character pair must be written using an escape sequence such as "\ 44" or "\ u0024")
Datetime - date and time. Values representing date and time. Contains year, month, and day. They can be written

to the constructor as a string of characters according to ISO8601. E.g.

Datetime dt = new Datetime("2005-11-31T14:35+0200");

The Datetime object may not contain all items so it can serve to preserve the date or time individually:

Datetime d = new Datetime("2005-11-31");
Datetime t = new Datetime("14:34:07.234");

Bytes - array of bytes. This object may be the result of the parseBase64 or parseHex method. The ten-byte field
constructor is (all bytes are set to zero):

Bytes bb = new Bytes(10); /* Cleaned array of 10 bytes */

See 16.2.12 Bytes (array of bytes)

Element – XML elements. Objects of this type refer to the value of type "org.w3c.dom.Element". They can, for
example, be the result of the "getElement", "XPath" methods or the methods above the "Container" objects.

Report - message. This type of object represents a parameterizable and linguistically customizable message.
Messages are, for example, bug reports in the X-script. We can create a message:

Report r = new Report("REP005", "Unknown error!");

The last error reported during processing can be obtained, for example, by the "getLastError()" method.

Regex - regular expression. Objects of this type can be created using the new Regex (s) constructor, where s is a
string with the regular expression source. Regular expression conforms to XML schema specification.

RegexResult - resut of regular expression. Objects of this type arise as a result of the getMatcher method.

Input/Output - files, streams. Objects of this type are used to work with files and streams. There are predeclared
objects "$stdOut" (corresponding to java.lang.System.out), 1"$stdErr" (corresponding to java.lang.System.err) and
"$stdIn" (corresponding to java.lang.System.in). The files can be used as the first parameter of the "putReport"
method. The "$stdOut" file is automatically used in "out" and "outln" methods. Similarly, the file "$stdErr" is used
in the "putReport" method.

Note: If the "out" or "outln" method is called in the X-script, the stream "$stdOut" is automatically added as the
first parameter. (For example, for output to standard output, only the "outln ('My Text') can be written in the X-
script.)

Exception - program exception. This object is passed when a program exception (bug) is caught in the construct
"try {...} catch (Exception (ex)) {...}". An exception can also be caused by the "throw" command. You can create an
exception object in a X-script using the new Exception ("text of error message") constructor.

BNFGrammar - extended Backus-Naur form. This type of object is defined by the variable in the declaration
section or by the special declaration element:

<xd:BNFGrammar xd:name="name">
 rule := ...
 ...
</xd:BNFGrammar>

See 16.2.19 BNFGrammar (BNF grammars).

 53 / 207

BNFRule - rule from BNF grammar. The BNF grammar rule can be used, for example, to validate text values of
attributes or text nodes. The rule can be obtained from a BNFGrammar object using the method rule(name). See
16.2.20 BNFRule (BNF grammar rules).

5.2 ParseResult

ParseResult values are the results of X-script validation methods. They contain a string that has been processed by
the validation method and the result value of parsing (this may be the original string, or the number, date, etc.,
depending on the type of validated value). If an error occurred while validating, the PrseResult value may contain
a list of errors found during validation. The ParseResult object can be also created by a constructor with a string
parameter. When created, this string is also set as a parsing result. Methods above the ParseResult type see
DOPLNIT!. Example:

ParseResult p = new ParseResult("123");
p.setValue(0d123); /* set decimal value. */
p.error("Error occured"); /* set error message. */
if (p.matches()) outln("OK");
if (p.error()) outln("error");

If this object occurs in the boolean expression, it is converted to a boolean type, and the result is true if errors are
not reported in the object, otherwise false (ie. it is authomatically invoked the "match" method):

String s = "12456.78";
ParseResult p = double(s); / * The type method with a string parameter performs check and conversion. * /
float x = (p) ? (double) p.getValue() : $NaN; /* if error set Not a Number value. */

5.3 Reference to the Attribute of the Current Element

In the X-script of elements and attributes it is possible to express a reference to the attribute of the current
element by writing "@ attribute_name". If this entry appears in a boolean expression, then the value is true if the
attribute with that name exists, otherwise the value is false. If this entry is given in string expressions, the result is
an attribute value or an empty string.

<A xd:scriot = "match (@a AND @b OR @c); finally outln('Attribute a is: ' + @a);"
 a = "optional string" b = "optional string" c = "optional int" ...

The result of the "match" section will be true only if there are in the "A" element both "a" and "b" attributes, or
the "c" attribute.

5.4 Named Value

Named value represents a pair of name and value. The name can be any string and the value can be any value
implemented in X definitions. The name of this type is "NamedValue". Sample of declaration and use:

NamedValue x = new NamedValue("abc", 123);
int i = (int) x.getValue();
String s = x.getName();
x.setValue("xxx");
namedValue y = %yyy=3.14;

In the first line, we created the named value "x" with the name "abc" and the value 123. In the second line, we
store this value in the variable "i" using the "getValue ()" method. But we had to cast it to an integer, because the
getValue () method returns the value of the general X-definition type "Any". In the third line, we saved the name
"abc" to the variable "s" using the "getName ()" method. In the fourth line, we set the named variable "x" to string
"xxx" using the "setValue" method. In the fifth line, a constructor example is given for the named value "y", the
name being "yyy" and the value 3.14 (the name in this case must be the valid identifier of the X definitions).

54 / 207

5.5 Container

The "Container" data object can contain a number of arbitrary values supported in the X-definition, ie also the
"Container" data type, which is also the supported value. Objects of this type may be the result of some X-script
methods (e.g. xPath, XQuery, etc.). Items stored in "Container" may be named or unnamed. The "Container" data
type in X-definitions thus represents a type that merges the Java properties of the java.utils.Map class (the name
of the named item in the "Container" serves as the key to retrieve its value) and java.utils.List (unnamed items are
ordered sequentially so as elements in the field). Each unnamed item is then indexed and each named item is
designated by its name. "Container" can represent data similar way as an XML element: attributes are as named
items and unnamed items match the descendants of an element.

An example of using the Data Type Container is in the examples in chapters 6.2.3, 6.4 where it is used to prepare
the data retrieved from the relational database and the chapter 7.7 where it is used to store the part of the XML
document specified by the selected element. A more complete example of container use is given in chapter 12.

The declaration of "Container" and how to work with it see chapter 5.5.1.

 5.5.1 Working with Container in X-script.

 5.5.2 Container in external Java method

 8 Construction Mode of X-definition

 9 Using of X-definitions in Java code

 podrobné informace o typu Container: Kapitola 16.2

5.5.1 Working with Container in X-script.

The Container can be created in the X-script using a constructor defined by pairs of square brackets "[" a and "]".
Inside brackets are the comma-separated values. When writing an unnamed item, only its value is entered. When
writing a named item it starts with the percentage symbol ("%") followed by the name of the item, the equation
character ("=") and the value. Unnamed items are stored in the order listed. The first unnamed item index is 0.
Example:

Container measurements = [%locality = "Prague", %value="temperature", 11.3, 12.9, 15, 10.5 8.7];
Container empty = [];

Add item:

- add unnamed item with Conteiner method addItem(value),

- add named item with Conteiner method setNamedItem(name,value).

Read item:

- Read value of unnamed item from given index use method item(index),

- Read value of named item with given name use method getNamedItem(name).

See other methods of Conteainer in the table DOPLNIT!.

The following two examples describe two different ways how to create a container.

 55 / 207

a) Container created by the constructor:

<xd:declaration>
 int injCnt = 3; /* Number of injures */

 /* Returns vehicle registration number. */
 String getVRN() {
 return "1B23456";
 }

 /* Data for element Accident. */
 Container accident = [
 %id = "00123",
 %date = "2011-05-17",
 %injury = injCnt, /* value from variable */
 %death = 0, /* value directly */
 %loss = "600", /* value directly */

 [/*Container in Container (element vrn) */
 "1A23456" /* value directly */
],
 [
 getVRN() /* value by method. */
]
];
</xd:declaration>

b) Container created using methods:

<xd:declaration>
 int injCnt = 3; /* Number of injures */

 /* Returns vehicle registration number. */
 String getVRN() {
 return "1B23456";
 }

 /* Prepare the empty Container for Accident. */
 Container accident = [];

 /* Set values to Container */
 accident.setNamedItem("id", "00123");
 accident.setNamedItem("date", "2011-05-17");
 accident.setNamedItem("injury", injCnt);
 accident.setNamedItem("death", 0);
 accident.setNamedItem("loss", "600");

 /* Prepare the Container of element "vrn" */
 Container vrn = ["1A23456"];
 /* Insert it as unnamed item to Container */
 accident.addItem(rz);

 vrn = [getVRN()];
 accident.addItem(vrn);
</xd:declaration>

Example b) can be used for example when data for the Container is obtained by successive reading of values e.g.
from ResultSet from JDBC. The example a) can be used when all values are available.

 5.5.2 Container in external Java method

5.5.2 Container in external Java method

 5.5.1 Working with Container in X-script.

The Container can also be used in an external Java method. In Java, the Container implementation is represented
by the org.xdef.XDContainer interface and can be created using the static "createXDContainer" method in the
XDFactory class. See methods of the interface org.xdef.XDContainer (addXDItem, setXDNamedItem, getXDItem,
getXDNamedItem etc.).

The "accident" example we can write as Java external method which returns an accident in the Container object:

import org.xdef.XDContainer;

public class ContainerTest {

 /** Return Container with Accident. */
 public static Container createAccident() {
 /* Prepare empty Container "accident". */
 XDContainer accident = XDFactory.createXDContainer();
 accident.setXDNamedItem("id", "00123");
 accident.setXDNamedItem("date", "2011-05-17");
 accident.setXDNamedItem("injury", 3);
 accident.setXDNamedItem("death", 0);
 accident.setXDNamedItem("loss", "600");
 /* Prepare Container with one string item. */
 XDContainer vrn = XDFactory.createXDContainer("1A23456");
 /* Insert the container "vrn" to "accident". */
 accident.addXDItem(rz);
 /* Prepare other Container "vrn". */
 vrn = XDFactory.createXDContainer(getVRN());
 /* Insert the container "vrn" to "accident". */
 accident.addXDItem(vrn);
 return accident;
 }

56 / 207

 /** Return vehicle registration number. */
 private static String getVRN() {
 return "2B23456";
 }

}

5.6 Working with Text Values

While processing an XML document, you can in the X-script refer to the currently processed XML items such as
the element, attribute, or node text node using the following methods:

- getText() returns the text value of the currently processed attribute or text node. If this method is called
out the attribute, or the text node it returns null

- setText(string) sets the value to the currently processed attribute or text node. If this method is called
outside the attribute or text node, the exception occurs.

- getElement() returns the currently processed element. The method can be called from an X-Script of
element, its attributes, or a text nodes.

Example of use:

 <Vehicle xd:script = "occurs 0..*; finally printElem()"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7); finally printVrn()"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />

 <xd:declaration>
 /** Print the actual element.*/
 void printElem() {
 Element el = getElement();
 outln(el);
 }
 /** Print text value of the processed attribute or the text node.*/
 void printVrn() {
 String vrn = getText();
 if (vrn != null) {
 outln(vrn);
 }
 }
 </xd:declaration>

Printed result:

1A23456
<Vehicle typ="SUV" vrn="1A23456" ... />

5.1 Objects for Working with Databases

To work with different types of databases, the following types of objects are defined in the X-script:

Service. An object to connect to the services of different databases. In most cases it is passed to the X definitions
as an external variable. However, the constructor can also be used in the X-script:

Service connection = new Service(s1,s2,s3,s4);

 where parameter s1 is a type of database (e.g., "jdbc", "eXist" etc.), s2 is a database URL, s3 is a username, and s4 is
a password.

Statement. The object contains a prepared database command. It is possible to create it from the Service object,
e.g. with prepareStatement (s), where "s" is a string with a database command:

Statement stmt = connection.prepareStatement(s);

ResultSet. Object containing the result of a database command. In the relational database instance, it contains a
table whose rows have named columns. Lines can be accessed by the "next()" method. In the case of an XML
database, the result of a Statement depends on the command, for example, this may be the Container object.

 57 / 207

6 JSON in X-definition

 Introducing JSON [7] https://www.json.org/json-en.html

 4 Description of structure of XML document by X-definition

In the version 4.0 it is possible also describe and process JSON data.

6.1 Models of JSON data

JSON document is described in the text content of the element “xd:json” which is specified as child member of X-
definition. Each JSON model must have a unique name which is specified in the attribute ”xd:name”. The
properties of values of JSON document are described similar way as in models of XML elements. JSON data may
contain an object, array or simple value.

6.2 JSON simple values

Simple values are strings, number, string, Boolean or null. The simple values parsers are

- jstring name of parser of JSON string values (result type is STRING)
- jnumber name of parser of JSON number values (result type is DECIMAL)
- jboolean name of parser of JSON Boolean values (result type is BOOLEAN)
- jnull name of parser of JSON null values (result type is NULL)

Except of parsers above you can use any of XML value parsers, such as date, dateTime, base64Binary,
hex64Binary, duration etc. JSON result of those values are strings. The XML value boolean is same as JSON
jboolean. The result of null value is JSON null. The result of XML numeric types (integer, float, decimal etc.) are in
JSON numbers.

6.3 Models of JSON objects

Models of JSON objects are described directly as JSON objects. The values of members (i.e. name/value pairs) are
described similar way as values of XML attributes or XML text nodes. Example::

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "Person" >
 <xd:json name= "Person">
 { "Person" : {
 "ID" : "optional int()",
 "Name" : "jstring()",
 "Address" : {
 "Town" : "string()",
 "Street" : "string()",
 "Number" : "int()"
 }
 }
 }
 </xd:json>
</xd:def>

JSON data:

https://www.json.org/json-en.html

58 / 207

{ "Person" : {
 "ID" : "123", "Name" : "Borisa Jonson",
 "Address" : { "Town" : "London", "Street" : "Downing street", "Number" : "10" }
 }
}

6.4 $script – specification of properties of objects

The properties of objects you can describe in the item designated by the keyword “$script” followed by colon and
a string value containing the X-script specification. This item must be the first one before description of other
items. The syntax of value and it is same as in xd:script in XML element models. In the following example the
object containing item “ID” is described as optional:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "contract" >
 <xd:json name= "contract">
 { "Contract" : { $script : "optional; finally outlnt('ID = ' + getValue());",
 "ID" : "optional int()"
 }
 "Name" : "jstring()"
 }
 </xd:json>
</xd:def>

Note that after the item “ID” is processed it will be printed the value of this item to the standard output.

6.5 Json arrays

You can specify occurrence of values of JSON array items similar way as in the value description of XML models.
The occurrence of items is specified in the value description. In the following example of JSON model of array is
the first item string and follows minimum 2 and maximum 3 integers. After those numbers: follows any number of
objects with coordinates of points.

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "array" >
 <xd:json name= "array">
 ["jstring()",
 "occurs 2..3 jnumber();",
 { $script : "occurs *",
 "X": "jnumber()",
 "Y": "jnumber()"
 }
]
 </xd:json>
</xd:def>

Valid JSON data:

["shape" : {
 123, 456,
 { "X" : -15.6, "Y" : 9e-2 },
 { "X" : 0, "Y" : 15 }
 }
]

6.6 $script - specification of properties of arrays

Similarly as in objects, the properties of arrays you can describe in the item “$script”. In the following example is
described model of matrix 3 x 3 of floating point numbers:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "matrix" >
 <xd:json name= "matrix">
 [
 [$script : "occurs 3", "occurs 3 float()"]
]
 </xd:json>
</xd:def>

Valid JSON data:

 59 / 207

[
 [123, 456, 789],
 [-13, 4.6, 7.9],
 [1e3, 999, 0]
]

6.7 $oneOf specification

If the case an item has more variants you specify the item $oneOf in the array. Then the model choose one of
items of array the array. Example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "genre" >
 <xd:json name= "genre">
 { "Genre" : [$ontOf,
 "jstring()",
 ["occurs 2..* jstring()"]
]
 }
 </xd:json>
</xd:def>

Note that data can be either:

{ "Genre" : "classic" }

or:

{ "Genre" : ["jazz", "pop" }

6.8 References to JSON models

From a JSON model it is possible to refer other JSON model similar way as in XML models from the X-script:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "genres" >
 <xd:json name= "genres">
 [{ $script : "occurs 1..*; ref genre" }]
 </xd:json>
 <xd:json name = "genre">
 { "Genre" : [$ontOf,
 "jstring()",
 ["occurs 2..* jstring()"]
]
 }
 </xd:json>
</xd:def>

Valid JSON data:

[
 { "Genre" : "classic" },
 { "Genre" : ["jazz", "pop"] }
]

6.9 Example of Java program with JSON

Processing of JSON data is similar to processing of XML data. First it is necessary to compile X-definitions and to
create the XDDocument object. From the XDDocument it is possible to invoke the method “jparse” (similar way
as xprarse for XML data). See example below.

X-definition:

60 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "distances" >
 <xd:json name= "distances">
 { "Cities" : [
 { $script : "occurs 1..*",
 "from" : "jstring()",
 { $script : "occurs 1..* ",
 "to" : "jstring()",
 "distance" : "int()"
 }
 }
]
 }
 </xd:json>
</xd:def>

JSON data:

{ "Cities" : [
 { "from" : "Brussels",
 [{ "to" : "Lonndon", "distance" : 322 },
 { "to" : "Paris", "distance" : 265 }],
 { "from" : "Amsterdam",
 [{ "to" : "Lonndon", "distance" : 344 }]
]
}

Java program:

import java.io.File;
import java.util.Properties;
import org.xdef.XDDocument;
import org.xdef.XDFactory;
import org.xdef.XDPool;
import org.xdef.sys.ArrayReporter;

...
 File xdef ...
 File jsonData ...
 Properties props ...
 ArrayReporter reporter = new ArrayReporter()l

 XPool xpool = XDFactory.compileXD(props, xdef);
 XDDocument xdoc = xpool.createXDDocument("distances");
 Object json = xdoc.jparse(jsonData, reporter);
 if (reporter.errors()) Systém.err.println(reporter);
 else ...

 61 / 207

7 X-lexicon
X-lexicon technology enables to work with XML data modified to different local languages. The names of models
of elements and attributes are modified to given language according to the specification of X-lexicon in X-
definition source files.

X-lexicon is a XML special element with the namespace of X-definition where are described such local names of
XML elements and attributes items in the models in X-definition where it is required modification according to
given local language.

Let us have a X-definition with siplified model of an insurance contract:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:root = "Contract" xd:name = "contract">
 <Contract Number = "int()"
 Date = "date()" >
 <Owner Name = "string ()"
 Company = "string ()" />
 </Contract>
</xd:def>

Let us describe lexicon for the English language and for the German language. The models in the project are
described in the English language, so the English language is default. The required modifications for German
language will be:

English: German:

Contract Vertrag
Number Numer
Date Datum
Owner Inhaber
Name Name
Company Firma

Note the attribute name Name in the element model Owner is same in both languages, so it will not be changed.

The description for each language is written to the special element in the namespace of X-definition. For each
required language must be specified one element xd:lexicon. In the attribute "language" must be specified the
language name which it describes. If in given language are not changes of tags from a model then the attribute
xd:default may be specified as “true”, ie. no transformation will be provided for given language.

Each line of the text content of xd:lexicon element describes X-position of an item and required change of name.
Not described items will remain without change.

The xd:lexicon elements may be written in separate XML documents or to be inserted to any X-definition.

So the xd:lexicon elements for the model of Contract from the example above for English anf German language
will be:

<xd:lexicon xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:language = "eng" xd:default = "true" />

<xd:lexicon xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:language = "deu" >
 contract#Contract = Vertrag
 contract#Contract/@Number = Numer
 contract#Contract/@Date = Datum
 contract#Contract/Owner = Inhaber
 contract#Contract/Owner/@Company = Firma
</xd:lexicon>

7.1 Java program of validation with X-lexicon

If we have input XML data in German version, we have to set the language verwion to the XDDocument with the
method “setLexiconLanguage”:

 XDDocument xdoc = xpool.createXDDocument("contract");
 xdec.setLexiconLanguage("deu");
 Element result = xdoc.xparse(germanData, reporter);

62 / 207

7.2 Java program of translation XML data with X-lexicon

If the input data are e.g. in German language, the translation to e.g. English language may be provided with the
method “xtranslate”:

 File data ... // data in German language
 XDPool xpool ...

 XDDocument xdoc = xpool.createXDDocument("contract");
 ArrayReporter reporter = new ArrayReporter();
 Element e = xdec.xtranslate(data, "deu", "eng", reporter); // result will be in english

 63 / 207

8 Construction Mode of X-definition

 Basic knowledge of XML markup language ([1], [2])

 2 X-definition Technology

 2.4 Exemplary XML Data

 4 Description of structure of XML document by X-definition

The X-definition can serve as a rule for constructing an XML document or its specific part (eg selected elements) or
as a rule for transforming an XML input document to another XML structure.

The description of the result XML document structure in construction mode is specified in the "create" section of
the X-script. The create section is introduced by the keyword create and must provide data for creating the
appropriate XML object. If the creation section is not defined, then the default operations are performed.

When creating the final XML document, the validation of the result is performed at the same time according to
the model. The X-definition design for the construction mode is therefore adding the "create" section to the X-
script where it is needed.

XML document construction is done starting with the root element. In order for the construction to be executed it
is first necessary to specify the model of root element which will be used for creating the resulting XML
document.

 8.1 Create Section in X-script

 8.7 Example of XML transformation into HTML

 8.2 Value of attribute or text node created from value of X-script variable

 8.3 Linking databases with X-definitions

 8.4 Construction of template (“fixed”) XML documents

 8.5 Construction of groups

 8.6 Combination of validation and construction mode

 9 Using of X-definitions in Java code

8.1 Create Section in X-script

 4 Description of structure of XML document by X-definition

 8 Construction Mode of X-definition

Before selecting a specific example to create an XML document in the construction mode, it is necessary to
familiarize yourself with the X-script writing capabilities and its meaning in the "create" section of the X-script. The
"create" section provides the creation of the desired element, attribute or text node and their values. This section
is introduced by the key word "create", followed by a command that provides the value by which the
corresponding object is created. However, if the "create" section is not specified, a default operation is
performed.

The command in the "create" section can return a value of several types. The table below provides an overview of
the types of values that can be returned by the "create" section to construct an element, attribute, or text node.
Each of the options is either added to a chapter with a more detailed description, or refers to a website where the
X-definition in the design mode can be tested:

The type of value
in the “create"

section of the X-
Description Example Result of the example

64 / 207

script

create boolean The value indicates whether the
given element (can only be used for
the element) will be created.

If the value is true, then the
maximum number (from quantifier)
of elements will be created.
Therefore, when the number of
occurrences is unlimited, this X-script
invokes an endless cycle, which will
end with a lack of memory.

If the value is false, then the element
will not be created at all.

<vrn xd:script="
 occurs 1..*;
 create true">

 string(7)
</vrn>

Error: Outofmemory
Exception (because of
creating an infinite
number of elements
“rz").

<vrn xd:script="
 occurs 1..*;
 create false">

 string(7)

</vrn>

Error: missing
required element "rz"
(not creates any
element “rz").

Online Demo: http://xdef.syntea.cz/tutorial/examples/C201.html

create int Non-negative integer value indicates
the number of resulting elements
that are created.

When you use the attributes and text
nodes the value is created to the
String.

<vrn xd:script="
 occurs 1..*;
 create 2 ">

 string(7)

</vrn>

<vrn/>
<vrn/>

Error: missing text
node.
Error: missing text
node.

Online demos: http://xdef.syntea.cz/tutorial/en/example/C202.html
http://xdef.syntea.cz/tutorial/en/example/C203.html

create String A string value that is used to create a
text node or attribute values. A string
value is always validated, ie verifies
to the defined datatype (number,
date, etc.) of an attribute or a text
node.

If the string value is used in the X-
script of the element it will be
created exactly one element (string
value can be further used as a
context, see chapter 8).

A string constant must be enclosed in
double quotation marks or
apostrophes (because it is itself the
attribute value enclosed in quotation
marks, were used to define string
apostrophes – with this combination,
you must follow the correct pair of
quotation marks or apostrophes) and
must be non-empty.

<vrn xd:script="
 occurs 1..*;
 create 1 ">

 string (7);
 create ' 1A23456 '
</vrn>

<Accident xd:script="
 occurs 0 .. *;
 create 1 "
 injury = "
 int (0, 9999);
 create 1 "
/>

<vrn>
 1A23456
</vrn>

<Accident
 injury = "12"
/>

Online Demo: http://xdef.syntea.cz/tutorial/en/example/C209.html

create null Null values behaves like a value of
boolean false, so the element is not
created.

<vrn xd:script="
 occurs 1..*;
 create 1 ">

 string (7); create null
</vrn>

<vrn/>

Error: missing text
node.

Online Demo: http://xdef.syntea.cz/tutorial/en/example/C208.html

create Context The type of Context represents in the
construction mode an object whose
values are used as a prototype for

<vrn xd:script="
 occurs 1..*;
 create [true,
 false, true] ">

<vrn>
 1A23456
</vrn>
<vrn>

http://xdef.syntea.cz/tutorial/examples/C201.html
http://xdef.syntea.cz/tutorial/en/example/C202.html
http://xdef.syntea.cz/tutorial/en/example/C203.html
http://xdef.syntea.cz/tutorial/en/example/C209.html
http://xdef.syntea.cz/tutorial/en/example/C208.html

 65 / 207

the construction of elements.

The number of created elements
corresponds to number of sequential
items in the Context.

 string (7);
 create ' 1A23456 '

</vrn>

 1A23456
</vrn>

More in the chapter 8.1

create Element More in the chapter 8.1.

create
XPath_result

More in the chapter 8.1.4.1

create
ResultSet

The type of the ResultSet is a similar
type of Context. The Resultset is
used as an iterator and the number
of its iterations specifies the number
of elements that will be created.

The entries of ResultSet can be all of
the types, or null.

<vrn xd:script="
 occurs 1..*;
 create rs ">

 string (7);
 create rs.
 getItem ('rzID')
</vrn>

<xd:declaration>
external Service s;
ResultSet rs =
 s. query ('SELECT rzID
 FROM RZ_Table');
</xd:declaration>

<vrn>
 1A23456
</vrn>
<vrn>
 9B87654
</vrn>

More in the chapter 8.1.5

create
XQuery_result

In an implementation that supports XQuery can be the value of a sequence that is the result
of the XQuery expression. This implementation contains the code of Saxonica standard and
it is not included to the distribution of X-definition.

For using of XQuery and XPath version 2.0 you need the software of the company Saxonica
or some other software.

Description of the use of XQuery is not included in this documentation.

For the the construction of attributes and text nodes it can be used as a data source only numeric or string value
or null.

 8.1.1 Construction of elements

 8.1.2 Construction of attributes and text nodes

 8.1.3 Construction of element from Container

 8.1.4 Construction of Element from Element

 8.1.5 Construction of element from ResultSet

 8.1.6 The source data used as the context used for the construction of XML document

 8.7 Example of XML transformation into HTML

 8.2 Value of attribute or text node created from value of X-script variable

 8.3 Linking databases with X-definitions

 8.4 Construction of template (“fixed”) XML documents

 8.5 Construction of groups

 8.6 Combination of validation and construction mode

66 / 207

8.1.1 Construction of elements

If it had been known in advance the number of constructed elements, you can create an XML document with
accidents according to the following X-definition (for the time being were omitted attributes and text nodes
whose values can only be created when in the create section of the X-script returns a string). It is assumed that in
the root element of an accident will be created 3 elements “Accident":

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create true">
 <Accident xd:script = "occurs 0..*; create 3" ...>
 ...
 </Accident>
 </Accidents>
</xd:def>

The generated XML file then it will have the following form:

<Accidents>
 <Accident ...>
 ...
 </Accident>

 <Accident ...>
 ...
 </Accident>

 <Accident ...>
 ...
 </Accident>
</Accidents>

You can test it online here: http://xdef.syntea.cz/tutorial/en/example/C202.html.

The same result occurs when the boolean value true is replaced by the numeric value of 1:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <Accident xd:script = "occurs 0..*; create 3" ...>
 ...
 </Accident>
 </Accidents>
</xd:def>

You can test it online here: http://xdef.syntea.cz/tutorial/en/example/C203.html.

However, these cases occur very rarely, because usually the number of elements is not known in advance. It is
also the case in the situation when working with relational databases and reading the results of a SQL query via
the interface ResultSet when elements in the result set are undergoing a throwaway prototype and in each
iteration method "hasnext()" to determine whether the appropriate set contains more some other, yet unread,
element.

 8.1.2 Construction of attributes and text nodes

 8.1.3 Construction of element from Container

 8.1.4 Construction of Element from Element

 8.1.5 Construction of element from ResultSet

 8.1.6 Construction of element from ResultSet

8.1.2 Construction of attributes and text nodes

In the examples with X-definitions (the attribute “loss" was to demonstrate the use of null values in the create
section changed to optional), you can now add the create section for the attributes and text nodes. To create

http://xdef.syntea.cz/tutorial/en/example/C202.html
http://xdef.syntea.cz/tutorial/en/example/C203.html

 67 / 207

sections will be given constant values, ie, that their values have been in all the elements of the resulting XML file
the same and, therefore, the following sample is rather illustrative and, in practice, usable only in special cases.
The example of the construction of the numeric attribute values from both a number and a string:

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <Accident xd:script = "occurs 0..*; create 3"
 vrn = "string(5) ; create '00123'"
 date = "date();
 create '03.04.2013'"
 injury = "int(0, 9999); create 2"
 death = "int(0, 9999); create '1'"
 loss = "optional int(0, 100000000);
 create null">

 ...
 </Accident>
 </Accidents>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <Accident xd:script = "occurs 0..*; create 3">
 <vrn>string(5); create '00123'</vrn>
 <date>date(); create '03.04.2013'</date>
 <injury>int(0, 9999); create 2</injury>
 <death>int(0, 9999); create '1'</death>
 <loss>
 optional int(0, 100000000);
 create null
 </loss>
 ...
 </Accident>
 </Accidents>
</xd:def>

The resulting XML document will contain the three identical elements Nehoda. The attribute "loss" in the XML
document will be not contained, because it was in its create section specified the null value (ie in the situation
when an attribute or a text node is not present its value not exists). The element “loss" int the variant b) in the
output of the XML document will be present, but its text value will be empty. And because an attribute or a text
node of the element is optional, the X-definition above is correct and it will construct the following XML
documents:

a) variant with elements and attributes

<Accidents>
 <Accident
 vrn = "00123"
 date = "2013-04-03"
 injury = "2"
 death = "1" >

 ...
 </Accident>

 <Accident ...>
 ...
 </Accident>

 <Accident ...>
 ...
 </Accident>
</Accidents>

b) variant only with elements

<Accidents>
 <Accident>
 <vrn>00123</vrn>
 <date>2013-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss />
 ...
 </Accident>

 <Accident>
 ...
 </Accident>

 <Accident>
 ...
 </Accident>
</Accidents>

As you can see from the preceding examples, if the create section of the selected element is not defined, then this
element is created automatically, even if the specified subtree is empty or does not contain in the resulting XML
document neither attribute.

This procedure you can test online here:

- http://xdef.syntea.cz/tutorial/en/example/C211.html;

- http://xdef.syntea.cz/tutorial/en/example/C212.html;

- http://xdef.syntea.cz/tutorial/en/example/C213.html;

In general, you can write to the create section of attributes and text nodes any object or a method that returns an
object. This object is in the construction mode converted to type String (that is, it is automatically called an
internal method “toString"). After the conversion above are tests of the accuracy of the format of the string that
corresponds to the datatype specified for that attribute or a text node.

http://xdef.syntea.cz/tutorial/en/example/C211.html
http://xdef.syntea.cz/tutorial/en/example/C212.html
http://xdef.syntea.cz/tutorial/en/example/C213.html

68 / 207

Therefore, in the examples above it was possible to create a numeric type of attribute value from both, a string
and a number. In the case of numeric value in the create section is this value converted to a string and then
verified that the appropriate value corresponds to the datatype. Therefore, the following X-definition for an
attribute or a text node of the element “id" caused an error:

"string(5); create 00123"

The specified number 00123 is first converted to a string. However, because it is a number, the conversion
removes the leading zeros, thus it is converted to the string "123". However, the definition of the datatype
requires a string length of 5 in this case, but the string length was 3 only. If the “id" was the “int" data type, it
eliminates this problem, which you can verify online on the example:

- http://xdef.syntea.cz/tutorial/en/example/C214.html.

 8.1.3 Construction of element from Container

 8.1.4 Construction of Element from Element

 8.1.5 Construction of element from ResultSet

 8.1.6 The source data used as the context used for the construction of XML document

8.1.3 Construction of element from Container

 5.5 Container

 8.1.1 Construction of elements

 8.1.2 Construction of attributes and text nodes

The objects of the type Container are objects that can be called an iterator for the gradual acquisition of their
items, which can be used in the construction of the elements, attributes, and text nodes and their values. In
general it can be said that each element (object), which is stored in the Container is used to create a single
element. This means that the Container containing for example. 3 elements will allow the construction of 3
elements. Data from each of the object (ie an item of the Container) are also used to construct the attribute
values and text nodes.

In doing so, the items of Container used to construct elements can be unnamed, or named not necessarily
depending on the name (see below). While for the construction of attribute values is in general required that the
values of the items of the Container to have same name as the element attributes.

The following topics in this chapter explain how to use the data type of the Container in the construction mode,
first on simple examples, followed by a more complex example, and a more complex use of Context.

Because the Container object implements an iterator, is its usage and behavior similar to the Element and to the
ResultSet.

The simplest example of usage of Container is to create a set of boolean values that indicates whether or not the
element to create. The following example builds on the example from the chapter 8.1 when it uses for the
construction of the three elements “Accident" the field with three values “true", ie. it exploits the Container [true,
true, true]:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create true">
 <Accident xd:script = "occurs 0..*; create [true, true, true]" ...>
 ...
 </Accident>
 </Accidents>
</xd:def>

The generated XML file then will contain the 3 elements Accident, as in the example in chapter 8.1:

http://xdef.syntea.cz/tutorial/en/example/C214.html

 69 / 207

<Accidents>
 <Accident ...>
 ...
 </Accident>

 <Accident ...>
 ...
 </Accident>

 <Accident ...>
 ...
 </Accident>
</Accidents>

The X-definition understands the Context as a set from which it selects one element after another. And even if it is
in the X-definition defined model of element "Accident" only once, by the number of items in the Context will
determine how many of the resulting elements will be created. The source code:

<Accident xd:script = "occurs 0..*; create [true, true, true]" ...>

You can, from the perspective of the create section, see it from the pseudocode as follows:

for-each (AnyValue value : Container ([true, true, true])) {
 // for each item 'value' of the Container construct element(s)
 if (value != null & value != false) { // for null or false do not create anything
 if (is-instance-of-integer(value)) {
 // the integer value specifies the number of constructed elements
 while (value-- > 0) {
 <Accident ... />
 }
 } else {
 // only one element is created
 <Accident ... />
 }
 }
}

Such a mechanism you can be verify online here: http://xdef.syntea.cz/tutorial/en/example/C204.html.

On the contrary, the following X-definition constructs only one element "Accident”, because if the value of the
entry (even if it is part of the Context) is false or null, leads to the fact that the element or attribute or text node
will not be created:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create true">
 <Accident xd:script = "occurs 0..*; create [false, true, false]" ...>
 ...
 </Accident>
 </Accidents>
</xd:def>

The generated XML file will contain only one element "Accident":

<Accidents>
 <Accident ...>
 ...
 </Accident>
</Accidents>

Check it online here: http://xdef.syntea.cz/tutorial/en/example/C205.html.

The analogy between boolean and numeric value in the create section can also be converted to the Context, and
therefore, instead of the three values "true" will lead to the creation of 3 elements of an accident the following
X-definition:

http://xdef.syntea.cz/tutorial/en/example/C204.html
http://xdef.syntea.cz/tutorial/en/example/C205.html

70 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create true">
 <Accident xd:script = "occurs 0..*; create [1, 2]" ...>
 ...
 </Accident>
 </Accidents>
</xd:def>

Here is online example: http://xdef.syntea.cz/tutorial/en/example/C206.html.

Now add the construction of the remaining structure - attributes, and text nodes using the Context (there will be
also explained a similar mechanism for the use of Element). In the case of the Context type (or Element) in the
current entry of the Context (or in the currently processed element) are searched the named data items (or
attribute names) corresponding to the names of the attributes in the X-definition.

The pseudocode described above can therefore be supplemented with this finding as follows:

for-each (AnyValue value : Container ([true, true, true])) {
 // for each item 'value' of the Container construct element(s)
 if (value != null && value != false) { // for null or false do not create anything
 if (is-instance-of-integer(value)) {
 // the integer value specifies the number of constructed elements
 while (value-- > 0) {
 <Accident id="value.get('id')" date="value.get('date')" ... />
 }
 } else {
 // for other types of value create one element with the item
 <Accident id="value.get('id')" date="value.get('date')" ... />
 }
 }
}

The listed properties with automatic lookup values for attributes and text nodes can be used as shown in the
following example (in fact it already is a basic usage of the context described in the chapter 8.1.6). The Container
will be built manually with one element, which will also be the type of Container (will correspond to the element
"Accident", which will be constructed), the named items (they will match the attributes) and other elements of
the Container (these will correspond to the child elements "vrn" in the element of Accident). Unnamed elements
in the Container generally match the values of text nodes.

Important note: For the construction of an element which in any depth of the XML tree contains at least two child
elements with that are siblings in the XML tree, you must build the Container from the context values or from
elements (see chapter 8.1.4). It is not enough to use the Container containing the simple data types, as in the
following example. Therefore, the following example describes the construction of XML document using
attributes.

For the construction of Container will be used an example from Chapter 5.5.1 Working with Container in X-script.
in combination with X-definition described above (the comprehensive examples of work with the context will be
extended X-definition – into the element "vrn" the attribute "price" will be added):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs 0..*; create accident"
 vrn = "string(5)"
 date = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn xd:script="occurs 1..*"
 price = "int(1, 100000)">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

http://xdef.syntea.cz/tutorial/en/example/C206.html

 71 / 207

 <xd:declaration>
 /* value ca be stored in variable. */
 int injury = 3;

 /* Data returned by a method. */
 String getVRN() {
 return "1B23456";
 }

 /* Data for the element Accident. */
 Container accident = [
 %id = "00123", /* named item used as value of attribute. */
 %date = "2011-05-17",
 %injured = zrCnt, /* Value from variable injuryCnt. */
 %killed = 0, /* Hodnota jako číslo. */
 %loss = "600", /* value as string*/

 /* Contexts for child elements "vrn". The item %price cannot be placed on the same level as
 the item %loss, because the processor of X-definition would not find it. */
 [
 %price = "240", /* Named value for the construction of attribute 'price'. */
 "1A23456" /* Unnamed value prepared for construction of textového node. */
],

 [%price = "130", getVRN()]
];
 </xd:declaration>
</xd:def>

The above described property simplified the X-definition and allowed to write only one single create section to
the entire model (load data from the Container will ensure that by default). The output of the specified X-
definition will be the following XML file:

<Accidents>
 <Accident vrn= "00123"
 date = "2011-05-17"
 injury = "3"
 death = "0"
 loss = "600" >

 <vrn price="240">1A23456</vrn>
 <vrn price="130">1B23456</vrn>
 </Accident>
</Accidents>

See online example: http://xdef.syntea.cz/tutorial/en/example/C346.html.

Tip: the value of named and unnamed items of context it is possible to retrieve from a relational database – see
chapter 8.1.5.

 8.1.4 Construction of Element from Element

 8.1.5 Construction of element from ResultSet

 8.1.6 The source data used as the context used for the construction of XML document

8.1.4 Construction of Element from Element

 basic knowledge of XPath expression

 5.5 Container

 8.1.1 Construction of elements

 8.1.2 Construction of attributes and text nodes

The construction of an element from an element is very similar to the construction of the element from
Container. If an element is used for the construction of the element according to X-definition, it behaves as if the
source element in its place was the Container object containing this element as a single item. The X-script with
Container containing the single element for the construction of the element "Accident":

http://xdef.syntea.cz/tutorial/en/example/C346.html

72 / 207

<Accident xd:script = "occurs 0..*; create [ELEMENT]" ...>

you can specify directly in the create section the element with source data:

<Accident xd:script = "occurs 0..*; create ELEMENT" ...>

Usage of element as the data source (or an element as an item of Container), however, allows you to construct
the element that contains on the same the depth level of XML tree more siblings.

The Example from Chapter 8.1.1, where was described the mechanism of construction of elements regardless to
the attributes and text nodes, can be modified so that when you request the creation of one element "Accident"
(for simplicity without attributes or child elements) will be inserted instead of the values "true" or "1" the source
element from create section:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create new Element('A')">
...
 </Accidents>
</xd:def>

In the above example was in the X-script created a new object of Element by using the command "new".

As with the item in the Container nor the source element, the item is used regardless of name (Note: it doesn't
matter the name of the root element, the names of the child elements should be accepted!). In the above
example has a source element name "A", but it will still be used for the construction of the element "Accident",
which will be created from it. The result of the specified X-definition is the following document.

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C207.html.

For simplicity, the XML source data will be presented in separate XML files and in the appropriate X-definition will
be accessible through the external variable of "source", which can be set from Java code. Let the XML input data
be available:

A typical example of using the element as the data source for the construction of element is the use of the
content of one XML document to another XML document structure (see chapter 8.7). In the source XML
document, you can use the XPath expression to select the specific part (a particular source element) that will be
used as the source data for the construction of the element.

For simplicity, the XML source data will be presented in separate XML files and in the appropriate X-definition will
be accessible through the external variable of "source", which can be set from Java code. Let the XML input data
be available:

a) variant with elements and attributes

<root>
 <rec vrn = "00123"
 date = "2013-04-03"
 injury = "2"
 death = "1"
 loss = "120">
 <car vrn="1C23456" />
 </rec>

 <rec vrn = "00345"
 date = "2012-04-03"
 injury = "2"
 death = "1"
 loss = "150">
 <car vrn="1B23456" />
 </rec>

 <rec vrn = "00456"
 date = "2011-04-03"
 injury = "2"
 death = "1"
 loss = "30">
 <car vrn="1A23456" />
 <car vrn="2A34567" />
 </rec>
</root>

b) variant only with elements

http://xdef.syntea.cz/tutorial/en/example/C207.html

 73 / 207

<root>
 <rec>
 <vrn>00123</vrn>
 <date>2013-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>120</loss>
 <car>1C23456</car>
 </rec>
 <rec>
 <vrn>00345</vrn>
 <date>2012-04-03</date>
 <injury>2</injury>
 <death>1</death>

 <loss>150</loss>
 <car>1B23456</car>
 </rec>
 <rec>
 <vrn>00456</vrn>
 <date>2011-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>30</loss>
 <car>1A23456</car>
 <car>2A34567</car>
 </rec>
</root>

 8.1.5 Construction of element from ResultSet

 8.1.6 The source data used as the context used for the construction of XML document

 8.1.4.1 Use of xpath method

 8.1.6.1 Using of the method from

8.1.4.1 Use of xpath method

The first will be for the construction elements of the source elements described the use of the xpath method.

The xpath method as input parameters to enter the XPath expression and the source element in which the XPath
expression according to the specified will be searched for the source of the element (or elements); the method
returns as a result the list of found elements as the NodeList. Calling the "xpath" method does not change the
current context and, therefore, to use the xpath method is especially useful in those cases where a specific
element is loaded the source XML document, the values of attributes, and text nodes, and its child elements are
used in a form of the source element; or in the case where the source XML document is used to retrieve a specific
attribute value, or a text node (see Chapter 9.7).

The first example will be simple. Using the newly defined X-definition reads from the source file the list of all the
elements "car":

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script="create source">
 <vrn xd:script="occurs 1..*;
 create xpath('/root/rec/car', source)"
 vrn="string(7)" />
 </Accidents>

 <xd:declaration>
 /* Root element */
 external Element source;
 </xd:declaration>
</xd:def>

c) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script="create source">
 <vrn xd:script="occurs 1..*;
 create xpath('/root/rec/car', source)">
 string(7)
 </vrn>
 </Accidents>
 <xd:declaration>
 /* Root element */
 external Element source;
 </xd:declaration>
</xd:def>

As can be seen, the X-definition is based on the X-definition where has been left only the element "vrn", and has
been modified so that the structure match the source XML document.

If the element "Accident" is not the root element, then the section create must be specified. On the root element
is not the create section need to define, and it is therefore included here only for sample purposes (the global
variable "source" contains one element and therefore creates a single element "Accident").

Xpath method ('/root/rec/car ', source) finds in the root element all elements "car". Processor of X-definition finds
elements "car" and uses them to create elements of the “vrn". When you create an element “vrn" and the
attribute “crn" is used as the value of attribute “vrn" in the element "car" (ie, the behavior is similar to the

74 / 207

behavior of Container and thanks to the same name of attribute “vrn" is not necessary to define the create
section for this attribute. The result after construction will be the following:

a) variant with elements and attributes

<Accidents>
 <vrn vrn="1C23456" />
 <vrn vrn="1B23456" />
 <vrn vrn="1A23456" />
 <vrn vrn="2A34567" />
</Accidents>

b) variant only with elements

<Accidents>
 <vrn>1C23456</vrn>
 <vrn>1B23456</vrn>
 <vrn>1A23456</vrn>
 <vrn>2A34567</vrn>
</Accidents>

A special case of the construction of the same XML document but only for a specific element of the source XML
data. If it was required to make the 2nd element “rec", just modify the XPath expression as follows:

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script="create source">
 <vrn xd:script="occurs 1..*;
 create xpath('/root/rec/car[2]', source)"
 vrn="string(7)">
 </vrn>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script="create source">
 <vrn xd:script="occurs 1..*;
 create xpath('/root/rec/car[2]', source)">
 string(7)
 </vrn>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

Constructed document will be:

a) variant with elements and attributes

<Accidents>
 <vrn vrn="1B23456" />
</Accidents>

b) variant only with elements

<Accidents>
 <vrn>1B23456</vrn>
</Accidents>

In practice, however, it is not usually known sequence number of element and its specific selection, therefore, the
search for a key value may be specified in XPath expression. A key value used in the source XML document is the
value of the attribute “id" (or text node of element “id"). Identically constructed document as is mentioned above,
therefore, the X-definition will be (the xpath method returns only those elements "rec", which has the value of
the attribute "id" "00345"):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script="create source">
 <vrn xd:script="occurs 1..*;
 create xpath(
 '/root/rec[@id=\'00345\']/car',
 source)"
 vrn="string(7)">
 </vrn>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

In the case that the xpath method returns a single element, you can use it to implement even simple
transformations. If it is for a variant a) the aim to print the registration number of that record as the value of text
node of element, and not as the attribute value. The X-definition can be as follows:

 75 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script="create source">
 <vrn xd:script="occurs 1..*;
 create xpath('/root/rec[@id=\'00345\']/car/@vrn', source)">
 string(7); create xpath('/root/rec[@id=\'00345\']/car/@vrn', source)"
 </vrn>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

The parameter of the method “xpath" that searches the element “car" with the value of the attribute of the
parent element and from the element "car" reads the value of the attribute “spz" which returns as a result. This
will be result:

<Accidents>
 <vrn>1B23456</vrn>
</Accidents>

If the method “xpath" returned more results, then this example will not work and you must use the method
"from".

The method "xpath" try on simple examples online here:

- http://xdef.syntea.cz/en/tutorial/example/C210.html;

- http://xdef.syntea.cz/tutorial/en/example/C215.html.

For transformations between two XML documents it is usually better to use the method "from" that is described
in the chapter 8.1.6.1.

 8.1.6.1 Using of the method from

 9.7 External instance methods

8.1.5 Construction of element from ResultSet

 basic knowledge of JDBC

 8.1.1 Construction of elements

 8.1.2 Construction of attributes and text nodes

Another typical case and often used in practice is the structure of an XML document and its elements on the basis
of data obtained as the result of a database command. Because the most common type of the database is
relational database, the following samples will be carried out via the SQL commands over relational databases.

For this purpose it is possible to use in the create section the ResultSet as a data source (from JDBC) that has an
iterator through which gradually offers its items. The ResultSet returns in the base case, the method “query"
called on the Service object (which is an instance of JDBC java. sql. Connection).

For simplicity, assume that the goal will be to construct an XML document containing a list of registered vehicles,
ie the aim of the construction element "Vehicle" from the variant a) example in Chapter 9.7.

Let there be a relational table VozidloTable:

id (primary key) type date vendor model

1A23456 SUV 14-07-2011 Škoda, a.s. Yeti

2B34567 sport 21-12-2007 Toyota RX8

3C45678 MPV 03-02-2013 VW Golf

SQL statements of the relational database, you can enter by using JDBC directly from external methods in the Java
code. In this documentation in the following example are entered and processed directly from X-definition.

http://xdef.syntea.cz/tutorial/examples/C210.html
http://xdef.syntea.cz/tutorial/examples/C215.html

76 / 207

Connections to the database it is appropriate to obtain or create in the Java code and to pass into the X-definition
as an external variable — in a XDService object that in the X-definition acts as the data type Service – see chapter
9.6.1.

Let's hahe the external variable which represents a connection to a relational database:

...
<xd:declaration>
 ...
 external Sdervice service;
 ...
</xd:declaration>
...

To obtain the ResultSet, from which it would be possible to construct the resulting XML document, you can use
the method "query" on the object "service" that passes as a parameter the SQL command:

ResultSet cars = service.query('SELECT * FROM CarsTable');

ResultSet "Vehicles" can now be used as an iterator to the "create" section. Constructs so many elements, how
much the ResultSet contains items. The boolean method "next()" shifts the cursor to the next row of the ResultSet
and it is called implicitly before the construction of an element. The attribute values are created from the
columns of the row returned from ResultSet. The value is obtained by method ”getItem" with the name of
column.

However, the next() method on the ResultSet you can call explicitly in the X-script. On the ResultSet is also
available the boolean method “hasNext()", which returns "true" if the ResultSetu has a next row, otherwise it
returns false.

The X-definition which of the data obtained from a relational database constructs an XML document with the
elements of the Vehicle is based on the X-definition referred to in chapter 4.7 is listed below:

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "Vehicles"
 xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "occurs 0..*;
 create cars; finally cars.close()"
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other');
 create cars.getItem('type')"
 vrn = "string(7);
 create cars.getItem('id')"
 purchase = "date();
 create convertDT(
 cars.getItem('date'))"
 producer = "string();
 create cars.getItem('vendor')"
 model = "string;
 create cars.getItem('model')" />
 </List>

 <xd:declaration>
 external Service service;
 ResultSet cars = service.query(
 'SELECT * FROM VozidloTable');

 /** Method to convert a time from the format
 * dd-MM-yyyy to xd:dateTime. */
 String convertDT(String dt) {
 Datetime in = parseDate(dt, "dd-MM-yyyy");
 return in.toString("yyyy-MM-dd");
 }
 </xd:declaration>
</xd:def>

 77 / 207

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "Vehicles"
 xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "occurs 0..*;
 create cars; finally cars.close()">
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'spor', 'other');
 create cars.getItem('type')
 </type>
 <vrn>string(7);
 create cars.getItem('id')
 </vrn>
 <purchase>
 date();
 create convertDT(
 cars.getItem('date'))
 </purchase>
 <producers>string();

 create cars.getItem('vendor')
 </producer>
 <model>string;
 create cars.getItem('model')
 </model>
 </Vehicle>
 </List>

 <xd:declaration>
 external Service service;
 ResultSet cars = service.query(
 'SELECT * FROM VozidloTable');

 /** Method to convert a time from the format
 * dd-MM-yyyy to xd:dateTime. */
 String convertDT(String dt) {
 Datetime in = parseDate(dt, "dd-MM-yyyy");
 return in.toString("yyyy-MM-dd");
 }
 </xd:declaration>
</xd:def>

Because the date format in the database is different from the format required by the X-definition, it was
necessary to ensure the conversion to the desired format. The appropriate conversion ensures user method
"convertDT", which is declared in the X-script in the xd:declaration section. The created XML document will have
the following content:

a) variant with elements and attributes

<List>
 <Vehicle type = "SUV"
 vrn = "1A23456"
 purchase = "2011-07-14"
 producer = "Škoda, a.s."
 model = "Yeti" />

 <Vehicle type = "sport"
 vrn = "2B34567"
 purchase = "2007-12-21"
 producer = "Toyota"
 model = "RX8" />

 <Vehicle type = "MPV"
 vrn = "3C45678"
 purchase = "2013-02-03"
 producer = "VW"
 model = "Golf" />
</List>

b) variant only with elements

<List>
 <Vehicle>
 <type>SUV</type>
 <vrn>1A23456</vrn>
 <purchase>2011-07-17</purchase>
 <producer>Škoda, a.s.</producer>
 <model>Yeti</model>
 </Vehicle>

 <Vehicle>
 <type> sport</type>
 <vrn>2B34567</vrn>
 <purchase>007-12-21</purchase>
 <producer>Toyota</producer>
 <model>RX8</model>
 </Vehicle>

 <Vehicle>
 <type>MPV</type>
 <vrn>3C45678</vrn>
 <purchase>2013-02-03</purchase>
 <producer>VW</producer>
 <model>Golf</model>
 </Vehicle>
</List>

If for example, the value of attribute "model" in a relational database is empty (it should be default NULL), then in
the variant b) creates the element “model", but its text node will have an empty value.

In addition, if the X-definition of variant b) requested an optional element "model", then it would not be this
element being created. In order to ensure that behavior it is required to add the create section also to the X-script
of element "model". Therefore we add to the create section of the X-script of this element the the test if the value
is NULL (whose result will be true or false):

78 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "Vehicles"
 xd:root = "Vehicles">

 <List>
 <Vehicle xd:script = "occurs 0..*; create cars; finally cars.close()">
 <type>
 enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other'); create cars.getItem('type')
 </type>
 <vrn>string(7); create cars.getItem('id')</vrn>
 <purchase>date(; create convertDT(cars.getItem('date'))</purchase>
 <producer>string(); create cars.getItem('vendor')</producer>
 <model xd:script = "occurs 0..1; create cars.getItem('model') != null">
 string; create cars.getItem('model')
 </model>
 </Vehicle>
 </List>

 <xd:declaration>
 external Service service;
 ResultSet cars = service.query('SELECT * FROM CarsTable');

 String convertDT(String dt) {
 Datetime in = parseDate(dt, "yyyy-MM-dd");
 return in.toString("yyyy-MM-dd ");
 }
 </xd:declaration>
</xd:def>

The example how to use ResultSet in the X-definition garageDB and garagDBElem:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "List">

 <List>
 <Vehicle xd:script = "occurs 0..*; create cars; cars.close()" ... >
 ...
 </Vehicle>
 ...
 </List>
 <xd:declaration>
 external Service service;
 ResultSet cars = service.query('SELECT * FROM VozidloTable');
 ...
 </xd:declaration>
</xd:def>

The variable “cars” (of the type ResultSet) is replaced by the method “query”. In this case the ResultSet is
created internally. The method getItem is not invoked on the ResultSet but as a global method in the X-script
and it is applied on the actual context (the internally created ResultSet). After the SQL is processed it is
authomatically ensured it external resources are closed (see the chapter 8.3.2 - as you can see in the following
example):

 79 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garageDB"
 xd:root = "List">

 <List>
 <Vehicle xd:script = "occurs 0..*;
 create service.query(
 'SELECT * FROM VozidloTable')"
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other');
 create getItem('type')"
 vrn = "string(7);
 create getItem('id')"
 purchase = "date();
 create convertDT(getItem('date'))"
 manufacturer = "string();
 create getItem('vendor')"
 model = "string;
 create getItem('model')" />
 </List>

 <xd:declaration>
 external Service service;

 /** Conversion of datetime from the form
 * yyyy-MM-dd to the form yyyy-MM-dd. */
 String convertDT(String dt) {
 Datetime in = parseDate(dt, "yyyy-MM-dd");
 return in.toString("yyyy-MM-dd");
 }
 </xd:declaration>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garageDBElem"
 xd:root = "List">

 <List>
 <Vehicle xd:script = "occurs 0..*;
 create 'SELECT * FROM VozidloTable'">
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other');
 create getItem('type')
 </type>
 <vrn>string(7);
 create getItem('id')
 </vrn>
 <purchase>
 date();
 create convertDT(getItem('date'))
 </purchase>
 <manufacturer>string();
 create getItem('vendor')
 </manufacturer>
 <model>string;
 create getItem('model')
 </model>
 </Vehicle>
 </List>

 <xd:declaration>
 external Service service;

 /** Conversion of datetime from the form
 * yyyy-MM-dd to the form yyyy-MM-dd. */
 String convertDT(String dt) {
 Datetime in = parseDate(dt, "dd-MM-yyyy");
 return in.toString("yyyy-MM-dd ");
 }
 </xd:declaration>
</xd:def>

The method query may be used also for SQL statements with parameters. The method query
has in such case more parametrers. The first parameter is then the SQL query statement and and the parameters
follows: query(SQL_statement, parameter_1, parameter_2, …, parameter_n):

...
<xd:declaration>
 String type = "osobní";
 String model = "Yeti";
 ...
 external Service s;
 ResultSet rs = s.query('SELECT rzID FROM RZ_Table WHERE typ=? AND model=?', type, model);
 ...
</xd:declaration>
...

The arguments of the SQL statement are in the same sequence as the symbols “?” in the SQL statement.

 8.1.6 The source data used as the context used for the construction of XML document

 8.3 Linking databases with X-definitions

8.1.6 The source data used as the context used for the construction of XML document

 8.1.1 Construction of elements

 8.1.2 Construction of attributes and text nodes

 8.1.3 Construction of element from Container

 8.1.4 Construction of Element from Element

80 / 207

 8.1.5 Construction of element from ResultSet

In the chapter 8.1 in most cases were the source data explictitly specified excplicitně specifikovala for each part of
the constructed XML document, ie. for each element, attribute or the text node. For some examples (especially
for Context and Element), options have been described for defining the data source for these two data types. In
this chapter, the implicit behavior will be specified and generalized.

When explicitly specifying a data source that typically produces the entire resulting XML document, it is usually
used an input data source (Element, Context, ResultSet, etc.). The source data will now be used as the context.
The context is usually the element passed to the create section.

The simple examples are given in Chapter 8.1.4, with the create section used only for elements, but not for
attributes or text values. The value of attributes and text nodes was automatically taken from the source data
specified in the create section of the element. In this case, the source data of the respective element has become
a context for creating an attribute value, respectively. text node.

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C341.html

The another property of the create section is to automatically create a text value of an element when only the
text value is entered into the create section. The X-definition list from chapter 8.1.4 can therefore be overwritten
as follows:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script="create source">
 <vrn xd:script="occurs 1..*; create xpath('/root/rec[@id=\'00345\']/car/@vrn', source)">
 string(7)
 </vrn>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

From the text value of the vrn attribute, a new element with a text node value is generated equal to this text
value, and the whole element becomes the context for the vrn element whose value of the text node will be
created.

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C342.html

The same scenario occurs when you obtain data from the database through ResultSet:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <vrn xd:script="occurs 1..*; create service.getItem('rz')">
 string(7)
 </vrn>
 </Accidents>

 <xd:declaration>
 external Service service;
 </xd:declaration>
</xd:def>

Let the following input files be inserted in the next explanation (the root element of the given DOM) into the
corresponding X-definitions as an external Element variable:

http://xdef.syntea.cz/tutorial/en/example/C341.html
http://xdef.syntea.cz/tutorial/en/example/C342.html

 81 / 207

a) variant with elements and attributes

<rec
 id = "00123"
 date = "2013-04-03"
 injury = "2"
 death = "1"
 loss = "120">

 <vrn>1B23456</vrn>
 <vrn>1C23456</vrn>
</rec>

b) variant only with elements

<rec>
 <vrn>00123</vrn>
 <date>2013-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>120</loss>

 <vrn>1B23456</vrn>
 <vrn>1C23456</vrn>
</rec>

As you can see, the names of the attributes as well as the internal elements are the same as the X-definitions
below:

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs 0..*;
 create source"
 id = "string(5)"
 date = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs 0..*;
 create source">
 <vrn>string(5)</vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss>int(0, 100000000)</loss>
 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

It differs only in the name of the root element, which does not matter for the intended purpose (see chapter
8.1.3). Therefore, you can specify the create section only for the Accident element. For its sub-elements and all
attributes (all of which do not have the create section), the data will be taken from the context of the data listed
in the create section of one of the parent elements, ie as the context set the input file represented in the X-
definition variable. That is, the source context automatically becomes a context for the vrn elements as well.

The result will be the following XML documents (up to the order of attributes):

a) variant with elements and attributes

<Accidents>
 <Accident
 id = "00123"
 date = "2013-04-03"
 injury = "2"
 death = "1"
 loss = "120">

 <vrn>1B23456</vrn>
 <vrn>1C23456</vrn>
 </Accident>
</Accidents>

b) variant only with elements

<Accidents>
 <Accident>
 <vrn>00123</vrn>
 <date>2013-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>120</loss>

 <vrn>1B23456</vrn>
 <vrn>1C23456</vrn>
 </Accident>
</Accidents>

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C343.html

As you can see, those descendents (elements) from the context that had the same name (in the example above
were vrn elements) or the text value when a text node was created were automatically used.

http://xdef.syntea.cz/tutorial/en/example/C343.html

82 / 207

When working with a context, it does not matter to the default element, which is defined in the create section
(not necessarily the root element), but the names of its sub-elements and all the attributes that are not listed in
the create sections do matter.

In another example, it can be seen that it does not matter the order of attributes or elements in source data, but
only on their names. The order of the elements is given by the order in the X-definition, not the order in the
source data. The order of the attributes is taqken from the X-definition. Therefore, if the X-definitions listed above
(list of X.def and theExampleFile list) are used for the following input:

a) variant with elements and attributes

<rec death = "1"
 date = "2013-04-03"
 injury = "2"
 id = "00123"
 loss = "120">
 <vrn>1B23456</vrn>
 <vrn>1C23456</vrn>
</rec>

b) variant only with elements

<rec>
 <date>2013-04-03</date>
 <death>1</death>
 <injury>2</injury>
 <vrn>1C23456</vrn>
 <loss>120</loss>
 <vrn>00123</vrn>
 <vrn>1B23456</vrn>
</rec>

outputs will be retrieved again by the NodeCreateOutput2.xml list and the NodeCreateElemOutput2.xml.

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C344.html

Similar rules are also applied by using Context as a data source in the create section. The context is generally used
as a context for creating an element. If the context contains another context as an element, this nested context is
used as a context for subelement construction. Named values are used to construct attributes and the unnamed
string value from the sequential part of the Container object is used to construct the value of text node.

Using the following modified X-definition for the Accident element (sub-element vrn must have at most one
occurrence; for multiple occurrences, the following sample will not work and the procedure in Chapter 8.1.3):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs *; create source"
 id = "string(5)"
 date = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn>
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 Container source = [[
 %id='12345',
 %date = '2000-01-10',
 %injury = '4',
 %death = '2',
 %loss = '1240',
 '1A23456' // the unnamed value will be used to construct the text value of the vrn element
]];
 </xd:declaration>
</xd:def>

The result will be following XML document:

http://xdef.syntea.cz/tutorial/en/example/C344.html

 83 / 207

<Accidents>
 <Accident
 id = "12345"
 date = "2000-01-10"
 injury = "4"
 death = "2"
 loss = "1240">
 <vrn>1A23456</vrn>
 </Accident>
</Accidents>

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C345.html.

The use of Container in the context for the construction of elements and their sub-elements is described in the
chapter 8.1.3.

 8.1.6.1 Using of the method from

8.1.6.1 Using of the method from

 8.1.4.1 Use of xpath method

 8.1.6 The source data used as the context used for the construction of XML document

When constructing more complex elements, it is very often necessary to select a specific object (string value,
element, etc.) from the context and set a new context for the child's construction of the currently processed
element. The from method can be used when the context for creating an element is some other element. In this
case, the method from invokes the xpath expression, but the corresponding XPath expression specified as its
parameter is performed above the current context rather than the entire source XML document.

Using the from method also sets a new context for all the descendants of the currently processed element.
Therefore, if the method returns an element, this element will be used as the context for all descendants until the
context is changed in a child by anoter calli of the from method.

For further examples, the source XML document will be utilized as follows:

a) variant with elements and attributes

<root>
 <rec
 date = "2013-04-03"
 injury = "2"
 death = "1"
 total = "120">
 00123
 <car vrn="1C23456" />
 </rec>
 <rec
 date = "2011-04-03"
 injury = "2"
 death = "1"
 total = "150">
 00345
 <car vrn="1B23456" />
 </rec>
 <rec
 date = "2011-04-03"
 injury = "2"
 death = "1"
 total = "30">
 00456
 <car vrn="1A23456" />
 <car vrn="2A34567" />
 </rec>
</root>

b) variant only with elements

<root>
 <rec>
 <date>2013-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <total>120</total>
 00123
 <List>
 <car>1C23456</car>
 </List>
 </rec>
 <rec>
 <date>2011-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <total>150</total>
 00345
 <List>
 <car>1B23456</car>
 </List>
 </rec>
 <rec>
 <date>2011-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <total>30</total>
 00456
 <List>
 <car>1A23456</car>
 <car>2A34567</car>
 </List>
 </rec>
</root>

http://xdef.syntea.cz/tutorial/en/example/C345.html

84 / 207

An X-definition that converts the data from the example into the desired output according to Chapter 2.4. Let the
above XML input documents be passed through their root element to the following X-definitions as an external
source variable:

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create source">
 <Accident xd:script = "occurs 0..*;
 create from('rec')"
 id = "string(5);
 create from('text()')"
 date = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000);
 create from('@total')">

 <vrn xd:script="occurs 1..*;
 create from('car')">
 string(7); create from('@vrn')
 </vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create source">
 <Accident xd:script = "occurs 0..*;
 create from('rec')">
 <vrn>string(5);
 create from('text()')
 </vrn>
 <date>date()(</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss xd:script = "
 create from('total')">
 int(0, 100000000)
 </loss>
 <vrn xd:script="occurs 1..*;
 create from('cars/car')">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

Now it will be explained in detail the context setting in the above-mentioned X-definitions for the selected create
sections:

- create source sets the context Element to the root of the data source element, ie to the root element;

- create from('rec') the method from executes the XPath expression 'rec' in the current context, ie
in the root element, ie, the result of the XPath expression will be all 'rec' elements from the source XML
document (returned as a NodeList from the xpath method). Subsequently, the method from sets the
context of the created Accident element to the root/rec element of the source document (after creating
one Accident element, the context moves to the following root/rec element and the construction of the
next Accident element begins);

- create from('text()') expression 'text ()' in the current context, ie the method from returns the
value of the root node text node and the id attribute sets the context to the text value obtained by the
XPath expression;

- create from('@total') the method executes the executes the XPath expression '@total' in the
current context, ie the method from returns the value of the total attribute of the root/rec element and
the “loss” attribute sets the context to the value of the “total” attribute;

- create from('cars/car') The method from executes the XPath expression 'cars/car' in the current
context, ie the method returns a list of all /root/rec/cars/car elements and sets it as the context of the
vrn element. The list of elements returned by the method from is subsequently iteratively scrolled and
the each one vrn element is created for a car element in the list.

The elements, attributes, and text nodes for which no create section is specified will be created from the current
context that has been set up by their predecessors. An XML document created based on the X-definition and input
data will look like this:

 85 / 207

a) variant with elements and attributes

<Accidents>
 <Accident
 id = "00123"
 date = "2013-04-03"
 injury = "2"
 death = "1"
 loss = "120">
 <vrn>1C23456</vrn>
 </Accident>
 <Accident
 id = "00345"
 date = "2012-04-03"
 injury = "2"
 death = "1"
 loss = "150">
 <vrn>1B23456</vrn>
 </Accident>
 <Accident
 id = "00456"
 date = "2011-04-03"
 injury = "2"
 death = "1"
 loss = "30">
 <vrn>1A23456</vrn>
 <vrn>2A34567</vrn>
 </Accident>
</Accidents>

b) variant only with elements

<Accidents>
 <Accident>
 <vrn>00123</vrn>
 <date>2013-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>120</loss>
 <vrn>1C23456</vrn>
 </Accident>
 <Accident>
 <vrn>00345</vrn>
 <date>2012-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>150</loss>
 <vrn>1B23456</vrn>
 </Accident>
 <Accident>
 <vrn>00456</vrn>
 <date>2011-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>30</loss>
 <vrn>1A23456</vrn>
 <vrn>2A34567</vrn>
 </Accident>
</Accidents>

The described principle can be tested online here:

- http://xdef.syntea.cz/tutorial/en/example/C501.html

- http://xdef.syntea.cz/tutorial/en/example/C502.html

- http://xdef.syntea.cz/tutorial/en/example/C503.html

A similar but somewhat more complicated example will solve the situation where the input data has a slightly
different meaning: the first record determined by the rec element will represent the highway accident, the second
on the 1st class road and the other on the other roads. In addition, the attributes “date” or the elements “date”
will be created. The date of creation of the output document will be generated in the element “Accidents” by the
built-in method “now()” and it will be converted to the desired format by the method toString (…):

http://xdef.syntea.cz/tutorial/en/example/C501.html
http://xdef.syntea.cz/tutorial/en/example/C502.html
http://xdef.syntea.cz/tutorial/en/example/C503.html

86 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create source"
 date = "date();
 create toString(now(), 'yyyy-MM-dd');">

 <Highway xd:script = "occurs 0..*;
 create from('rec[@id=\'00123\']')"
 id = "string(5);
 create from('text()')"
 date = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000);
 create from('@total')">

 <vrn xd:script="occurs 1..*;
 create from('car')">
 string(7); create from('@vrn')
 </vrn>
 </Highway>

 <FirstClassRoad xd:script = "occurs 0..*;
 create from('rec[2]')"
 id = "string(5);
 create from('text()')"
 date = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000);
 create from('@total')">

 <vrn xd:script="occurs 1..*;
 create from('car')">
 string(7); create from('@vrn')
 </vrn>
 </FirstClassRoad>

 ...
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create source">
 <date> date();
 create toString(now(), 'yyyy-MM-dd');
 </date>
 <Highway xd:script = "occurs 0..*;
 create from('rec[@id=\'00123\']')">
 <vrn>string(5);
 create from('text()')
 </vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss xd:script = "
 create from('total')">
 int(0, 100000000)
 </loss>
 <vrn xd:script="occurs 1..*;
 create from('cars/car')">
 string(7)
 </vrn>
 </Highway>

 <FirstClassRoad xd:script = "occurs 0..*;
 create from('rec[2]')">
 <vrn>string(5);
 create from('text()')
 </vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss xd:script = "
 create from('total')">
 int(0, 100000000)
 </loss>
 <vrn xd:script="occurs 1..*;
 create from('cars/car')">
 string(7)
 </vrn>
 </FirstClassRoad>

 ...
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

In the above X-definition, the XPath expression in the from method was changed to achieve the desired result: In
the X-definition above, the XPath expression was changed to achieve the desired result:

- the method from('rec[@id=\'00123\']') in the current context, it searches for and returns all rec
elements, whose id attribute is 00123;

- the method from('rec[2]') returns the second occurrence of the rec element in the current context.

The generated XML document then has the following contents:

 87 / 207

a) variant with elements and attributes

<Accidents datum = "22.4.2013">
 <Dalnice
 id = "00123"
 date = "2013-04-03"
 injury = "2"
 death = "1"
 loss = "120">
 <vrn>1C23456</vrn>
 </Dalnice>
 <PrvniTrida
 id = "00345"
 date = "2012-04-03"
 injury = "2"
 death = "1"
 loss = "150">
 <vrn>1B23456</vrn>
 </PrvniTrida>

 ...
</Accidents>

b) variant only with elements

<Accidents>
 <date>22.4.2013</date>
 <Dalnice>
 <vrn>00123</vrn>
 <date>2013-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>120</loss>
 <vrn>1C23456</vrn>
 </Dalnice>
 <PrvniTrida>
 <vrn>00345</vrn>
 <date>2012-04-03</date>
 <injury>2</injury>
 <death>1</death>
 <loss>150</loss>
 <vrn>1B23456</vrn>
 </PrvniTrida>

 ...
</Accidents>

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C504.html

Other variants of the method from are:

a) fromElement(Element e) – similar to method from () when element e is used as the current context;

b) fromAttr(c, name) – the method returns the value of the attribute “name” from the Container c.

8.1.6.2 Variants of the method from (fromDB) for a database

a) fromDB(DBConnection con, String SQL_statement [, String parameters]) – method
with similar functionality as the query method (see chapter 6.1.5) that executes the SQL statement
specified on the database connection and returns a ResultSet object. The typical use is in the create
section, where the resulting element is constructed from the a ResultSet. The DBConnection (URL, login,
password) object can be created in the X-Script in the declaration part by the constructor for
DBConnection:

...
<xd:declaration>
 DBConnection con = new DBConnection('jdbc:derby://localhost:3309/sample', 'admin', '123456');
</xd:declaration>
...
<Dalnice xd:script="create fromDB(con, 'SELECT * FROM RoadTable WHERE type=?', 2)" ...>
 ...
</Dalnice>
...

b) fromDB(DBStatement con [, String parameters]) – similar to the previous method, but as a
parameter accepts a SQL statement (DBStatement) with parameters:

...
<xd:declaration>
 DBConnection con = new DBConnection('jdbc:derby://localhost:3309/sample', 'admin', '123456');
 DBStatement st = new DBStatement(con, 'SELECT * FROM RoadTable WHERE type=?');
</xd:declaration>
...
<Dalnice xd:script="create fromDB(st, 2); finally {st.close(); con.close();}" ...>
 ...
</Dalnice>
...

c) fromDBItem(DBConnection con, String SQL_command, String attribute_Name_from_DB
[, String parameters_of_SQL_command]) – the method uses the database connection con and
executes the SQL_command with the_SQL_command parameters. The result is the value of
attribute_name from the SQL query. The following sample lists the highway identifiers in the text node:

http://xdef.syntea.cz/tutorial/en/example/C504.html

88 / 207

...
<xd:declaration>
 DBConnection con = new DBConnection('jdbc:derby://localhost:3309/sample', 'admin', '123456');
</xd:declaration>
...
<Dalnice xd:script="finally con.close()" ...>
 create fromDBItem(con, 'SELECT id, death FROM RoadTable WHERE type=?', 'id', 2)
</Dalnice>
...

8.2 Value of attribute or text node created from value of X-script
variable

 4.7.3 Declaration Section of X-definition

 8.1 Create Section in X-script

In the chapter 8.1, a global variable defined in X-definition in the element xd:declaration was used in the create
section a data source for element construction. Typically, this was a variable containing value of an element or a
Service object.

Similarly (by specifying the name of the variable in the create section), globally defined variables can also be used
to construct attribute values and text nodes, as shown in the following example. The variable, defined in X-Script
globally, has global visibility in all parts of X-Script, not only in the xd: declaration declaration section but also in
the xd: X-script attributes as well as in the text values of attributes and text nodes in the element model :

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs 0..*;
 create true"
 id = "string(5); create id"
 datum = "date(); create datum"
 injury = "int(0, 9999); create injury"
 death = "int(0, 9999); create death"
 loss = "int(0, 100000000); create loss">
 ...
 </Accident>
 </Accidents>

 <xd:declaration xd:scope = ”global”>
 String id = "00123";
 String datum = "22.04.2013";
 String injury = "2";
 String death = "0";
 String loss = "124";
 </xd:declaration>

</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs 0..*;
 create true">
 <vrn>string(5); create id</vrn>
 <date>date(); create datum </date>
 <injury>int(0, 9999); create injury; </injury>
 <death> int(0, 9999); create death </death>
 <loss> int(0, 100000000); create loss </loss>
 ...
 </Accident>
 </Accidents>

 <xd:declaration xd:scope = ”global”>
 String id = "00123";
 String datum = "22.04.2013";
 String injury = "2";
 String death = "0";
 String loss = "124";
 </xd:declaration>

</xd:def>

Since the values of both the attributes and the text nodes are text, the variables that are used to construct them
are the String data type.

Variable values can be obtained by different calculations, conversions, e.g. in user methods, etc. Therefore, they
are usually not specified as constants as in the above example.

Using this X-definition, the following document will be generated:

 89 / 207

a) variant with elements and attributes

<Accidents>
 <Accident id = "00123"
 datum = "2013-04-22"
 injury = "2"
 death = "0"
 loss = "124">
 ...
 </Accident>
</Accidents>

b) variant only with elements

<Accidents>
 <Accident>
 <vrn>00123</vrn>
 <date>2013-04-22</date>
 <injury>2</injury>
 <death>0</death>
 <loss>124</loss>
 ...
 </Accident>
</Accidents>

8.3 Linking databases with X-definitions

 8.1 Create Section in X-script

 5.5 Container

 basic knowledge of database technology and JDBC

This chapter serves as a more comprehensive example of using THE relational databases in X-definitions and using
the context to construct XML documents.

8.3.1 Statement

In X-script, you can first prepare a java.sql.Statement object that can then be sent to the database engine.
Statement is created by the DBStatement prepareStatement method using the DBConnection object and by
calling the queryItem method (String Attribute_name[, String Parameters…]), you can obtain attribute values and
specify the SQL statement parameters:

...
<xd:declaration>
 DBConnection con = new DBConnection('jdbc:derby://localhost:3309/sample', 'admin', '123456');
 DBStatement st = con.prepareStatement('SELECT id, death FROM RoadTable WHERE type=?');
 ResultSet rs = st.query(2);
</xd:declaration>
...
<Highway xd:script="finally {rs.close(); st.close(); con.close()}"...>
 create st.queryItem(id, 2);
</Highway>
...

The meaning of the DBConnection constructor parameters is given in variants of method z in Chapter 8.1.6.2.

The query method called on the Statement accepts only the SQL statement parameters.

8.3.2 Closing resources

When using a database interface in X-definitions, the external resources are opened, which is usually a SQL
statement and a pointer to the result table, ie DBStatement, ResultSet and DBConnection. Closing of the
resources in question is done either automatically or the programmer has to call the close() method on given
object.

The automatic close occurs when the DBStatement, ResultSet, and DBConnection objects are not available in
X-Script via a variable (see the detailed example in Chapter 8.1.5) or when this variable is not delared as external.
ResultSet and DBStatement are closed automatically when the end of result is reached or when the processing of
an element is finished. In general, resources will be closed at the latest end of the X-definition process:

90 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">
 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; create service.query('SELECT * FROM VozidloTable')"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
 </Vehicles>
</xd:def>

However, if the DBStatement, ResultSet, and DBConnection are stored in an external X-Script variable, the source
close must be done by the programmer:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; create cars; finally cars.close()" ... />
 </Vehicles>

 <xd:declaration>
 external Service service;
 external ResultSet cars = service.query('SELECT * FROM VozidloTable');
 ...
 </xd:declaration>

</xd:def>

If the programmer does not close system resources consistently, they will run out and the system may report an
error. If the programmer closes a source that were closed automatically the close command is ignored.

8.4 Construction of template (“fixed”) XML documents

 8.1 Create Section in X-script

All of the previous demos of the X-definitions assumed that the constructed XML document is very variable and
has relatively few fixed (unchanging) data. These examples are typically characterized by creating an X-Script
section in many elements, attributes, and text nodes.

The opposite is the construction of XML documents that have a “static” character and, on the contrary, very few
elements are variables in them. For this purpose, the so-called “template model” may be used.

The template model differs from the current element model by adding the template keyword to the X-Script of an
element model. In the template model, all attributes and text node values are then understood as the constants
that are copied to the result XML document being created (in fact, all constants are automatically converted to
X-Script sections); the structure and number of occurrences of all sub-elements of a given template model are also
constant (again, in fact, the models are generated as required).

If you need to insert a non-constant value in some part od the template model, you need to insert X-Script with a
special keyword $$$script: followed by a X-script to specify a nonconstant value. If the X-script entry puts the
X-Script element, then its attributes, text nodes, and all sub-elements are automatically converted from the
template model.

By using the template model, the X-definition from Chapter 8.7.2 would be simplified and made more concise in
the form below. For simplicity, the iterative construction of the tr elements was modified so that the create
sections were moved from the element xd: sequence directly to the tr element:

 91 / 207

a) the variant for transforming of an XML document
into HTML using an element and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "AccidentsHtml"
 xd:root = "html">

 <html xd:script="template">

 <head>
 <title>List of accidents</title>
 </head>

 <body>
 <table border="1">
 <tr>
 <th>ID</th>
 <th>Date</th>
 <th>Injured [persons]</th>
 <th>Death [persons]</th>
 <th>Loss [1000 KC]</th>
 <th>Participants [vrn]</th>
 </tr>

 <tr xd:script="$$$script: occurs 0..*;
 create from('//Accidents/Accident')">
 <td>string(5); create from('@id') </td>
 <td>date(); create from('@date') </td>
 <td>int(0, 9999);
 create from('@injury')
 </td>
 <td>int(0, 9999);
 create from('@death')
 </td>
 <td>int(0, 100000000);
 create from('@loss')
 </td>
 <td>
 <xd:sequence xd:script="occurs 0..*;
 create from('./rz')">
 string; create from('./text()');
 create ', '
 </xd:sequence>
 </td>
 </tr>
 </table>
 </body>
 </html>
</xd:def>

b) the variant for transforming of an XML document
into HTML using only elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "AccidentsHtml"
 xd:root = "html">

 <html xd:script="template">

 <head>
 <title>List of accidents</title>
 </head>

 <body>
 <table border="1">
 <tr>
 <th>ID</th>
 <th>Date</th>
 <th>Injured [persons]</th>
 <th>Death [persons]</th>
 <th>Loss [1000 KC]</th>
 <th>Participants [vrn]</th>
 </tr>

 <tr xd:script="$$$script: occurs 0..*;
 create from('//Accidents/Accident')">
 <td> string(5);
 create from('./id/text()')</td>
 <td> date();
 create from('./date/text()')</td>
 <td>int(0, 9999); create
 from('./injury/text()')</td>
 <td>int(0, 9999); create
 from('./death/text()')</td>
 <td>int(0, 100000000);
 create from('./loss/text()')</td>
 <td>
 <xd:sequence xd:script="occurs 0..*;
 create from('./rz')">
 string; create from('./text()');
 create ', '
 </xd:sequence>
 </td>
 </tr>
 </table>
 </body>
 </html>
</xd:def>

Template model can be tested online here:

- http://xdef.syntea.cz/tutorial/en/example/C701.html

- http://xdef.syntea.cz/tutorial/en/example/C801.html

8.5 Construction of groups

 4.11 Group Specifications

 8.1 Create Section in X-script

This chapter describes how to construct xd:choice, xd:mixed and xd sequence groups in the X-definition. which
allow you to define a more complex XML document structures.

http://xdef.syntea.cz/tutorial/en/example/C701.html
http://xdef.syntea.cz/tutorial/en/example/C801.html

92 / 207

8.5.1 Strict order of elements (group xd:sequence)

In the xd:sequence group model, which determines the strict order of items in the group, it is also possible to
write the xd:script attribute containig a create section. The value in the create section will then be used to controll
the construction the entire group, ie to create all of its items.

The first example is based on the example of Chapter 8.1.1, which for the purpose of this chapter is extended to
include several sub-elements of the Accident element:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:sequence xd:script="occurs 2..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_B>
 </xd:sequence>
 </Accidents>
</xd:def>

The generated XML element will then take the following form:

<Accidents>
 <Accident_A ...> ...</Accident_A>

 <Accident_B ...> ...</Accident_B>

 <Accident_A ...> ...</Accident_A>

 <Accident_B ...> ...</Accident_B>
</Accidents>

As you can see from the example, the elements of the group (Accident_A and Accident _B elements) were created
in the order in which they were created and just twice (create 2 in the element xd: sequence).

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C311.html.

If a section of element xd:sequence is used as the value to create a list of elements obtained by the xpath method,
the group of elements will be created as many times as the element list contains. Using the from method, the
current XPath context specified in the method in question is set for all elements of the group. An example of use is
given in chapter 8.7. You can also try the following online here:

- http://xdef.syntea.cz/tutorial/en/example/C312.html

- http://xdef.syntea.cz/tutorial/en/example/C411.html.

- http://xdef.syntea.cz/tutorial/en/example/C412.html.

8.5.2 Arbitrary order of elements (group xd:mixed)

To the xd:mixed group model, which specifies the arbitrary order of its items in the group, it is also possible to
write the xd:script attribute containing a create section. The value in the create section will then be used to
controll construction of the entire group, ie to create all of its items.

The first example is based on the example of Chapter 8.1, which for the purpose of this chapter is extended to
include several sub-elements of the Accident element:

http://xdef.syntea.cz/tutorial/en/example/C311.html
http://xdef.syntea.cz/tutorial/en/example/C312.html
http://xdef.syntea.cz/tutorial/en/example/C411.html
http://xdef.syntea.cz/tutorial/en/example/C412.html

 93 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:mixed xd:script="occurs 1..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_B>
 </xd:mixed>
 </Accidents>
</xd:def>

The generated XML element will then take the following form:

<Accidents>
 <Accident_A ...> ...</Accident_A>

 <Accident_B ...> ...</Accident_B>

 <Accident_A ...> ...</Accident_A>

 <Accident_B ...> ...</Accident_B>
</Accidents>

As you can see from the example, the elements of the group (Accident_A and Accident _B) were created just
twice (create 2 in element xd:mixed). Even though the order of the elements in the group is free, they were
created in the order of the X-definition. The construction is therefore similar as xd: sequence group.

Limitations: The minimum number of occurrences listed in the X-script of xd: mixed may be at most 1.

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C321.html.

If in the xd:mixed group the list of elements obtained from the the xpath method is used, then the elements are
created as many times as the element list contains. Using the from method, the current XPath context specified in
the method in question is set for all elements of the group. You can also try the following examples online:

- http://xdef.syntea.cz/tutorial/en/example/C322.html

- http://xdef.syntea.cz/tutorial/en/example/C341.html

- http://xdef.syntea.cz/tutorial/en/example/C432.html

At this point, there will be discussed a difference in XML document processing for xd:mixed in validation and
construction mode. Suppose the following document is available:

<Accidents>
 <Accident_B ...> ...</Accident_B>
 <Accident_A ...> ...</Accident_A>
</Accidents>

And the X-definition with the create section:

http://xdef.syntea.cz/tutorial/en/example/C321.html
http://xdef.syntea.cz/tutorial/en/example/C322.html
http://xdef.syntea.cz/tutorial/en/example/C341.html
http://xdef.syntea.cz/tutorial/en/example/C432.html

94 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:mixed xd:script="occurs 1..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create xpath('Accident_A', source)" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create xpath('Accident_B', source)" ...>
 ...
 </Accident_B>
 </xd:mixed>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

If this X-definition was applied to the input document in the validation mode (ie all create sections would be
ignored), the order of the elements in an XML document obtained by the X-definition corresponds to the
validated input document (the process is controlled by the input data):

<Accidents>
 <Accident_B ...> ...</Accident_B>
 <Accident_A ...> ...</Accident_A>
</Accidents>

But in a construction mode where the process is controlled by the X-definition, the order of the elements of the
constructed document will match the order in the X-definition:

<Accidents>
 <Accident_A ...> ...</Accident_A>
 <Accident_B ...> ...</Accident_B>
</Accidents>

8.5.3 Choice of elements (xd:choice group)

In the xd:choice group model, which allows you to select just one of variants, you can also write the xd:script
containing a create section. The value in the create section is then used to create the entire group, ie to create
one of its variants.

The first example for the purpose of this chapter contains several sub-elements of the Accident element:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:choice xd:script="occurs 2..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_B>
 </xd:choice>
 </Accidents>
</xd:def>

The generated XML element will then take the following form:

 95 / 207

<Accidents>
 <!— Constructed according to the first elementi in the group. -->
 <Accident_A ...> ...</Accident_A>
 <!— Also constructed according to the first elementi in the group. -->
 <Accident_A ...> ...</Accident_A>
</Accidents>

As you can see from the example, the first possible element was always created in the group (the element for
which the sections were created to contain the data to create it) and the other are ignored. This element has
always been the element Accident_A. The element was created two times (see create 2 in element xd:choice).

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C331.html.

If you need to determine which element in the group is to be created, you need to use specific conditions as in the
following example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:choice xd:script="occurs 2..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create c++ == 0" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create c == 2" ...>
 ...
 </Accident_B>
 </xd:choice>
 </Accidents>

 <xd:declaration>
 int c = 0;
 </xd:declaration>
</xd:def>

The generated XML element will then take the following form:

<Accidents>
 <Accident_A ...> ...</Accident_A>
 <Accident_B ...> ...</Accident_B>
</Accidents>

The reason is that the X definition processor moves the element after the element in the appropriate group until
it manages to construct an element (or a text node). Other elements skip over the current iteration of the group
construction. Therefore, the Accident _A element was created at the first creation of the group, the test c++ == 0
returned the true value for the create section and the variable c had the value 1. While the second construct of
the group, the test c++ == 0 returned false and increased the value of the variable c will be 2, the element
Accident_A was not created and therefore continued with another element; test for Accident_B, since c == 2, iss
true, and element will be constructed.

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C332.html.

If the the value from the xpath method in the xd:choice group is used, the list of elements obtained by the XPath
expressionwill be used for construction of items of the group. Using the from method, the current XPath specified
in the method is set for the construction of all elements of the group.

The described principle can be tested online here:.

- http://xdef.syntea.cz/tutorial/en/example/C421.html

- http://xdef.syntea.cz/tutorial/en/example/C422.html.

The following example shows a simple example of use. Suppose, first of all, that the following document is
available:

http://xdef.syntea.cz/tutorial/en/example/C331.html
http://xdef.syntea.cz/tutorial/en/example/C332.html
http://xdef.syntea.cz/tutorial/en/example/C421.html
http://xdef.syntea.cz/tutorial/en/example/C422.html

96 / 207

<Accidents>
 <Accident_B ...> ...</Accident_B>
 <Accident_A ...> ...</Accident_A>
</Accidents>

And the corresponding X-definition with the create sections:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:choice xd:script="occurs 2..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create xpath('Accident_A', source)" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create xpath('Accident_B', source)" ...>
 ...
 </Accident_B>
 </xd:choice>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

Since element Accident _A, which is first handled with the X-definition (in the design mode does not specify the
order of the elements of the input document), is found in the source XML document, this element is also created
in the xd: choice:

<Accidents>
 <Accident_A ...> ...</Accident_A>
</Accidents>

However, if another X-definition is used for the same source data:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:choice xd:script="occurs 2..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create xpath('Accident_C', source)" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create xpath('Accident_B', source)" ...>
 ...
 </Accident_B>
 </xd:choice>
 </Accidents>

 <xd:declaration>
 external Element source;
 </xd:declaration>
</xd:def>

the resulting document will be different because the Nehoda_C element was not found in the source document
and therefore the Accident_A element of the group is not created:

<Accidents>
 <Accident_B ...> ...</Accident_B>
</Accidents>

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C333.html.

8.6 Combination of validation and construction mode

 8.1 Create Section in X-script

The validation mode and the construction mode of X-definitions can be interconnected. The link is implemented
from the X-definition so that when using it in the validation mode, it is possible to invoke the construction of

http://xdef.syntea.cz/tutorial/en/example/C333.html

 97 / 207

another element from its X-Script, or vice versa, when using the given X-definition in the construction mode, the
XML data can be validated in its X-Script. Both options will be explained on simple examples.

Important note: If the X-definifion contains the X-Script creation sections describing the construction of elements,
attributes, text nodes and their values is invoked in the validation mode, all created sections will be ignored and
only the validation will be performed.

8.6.1 Validation in the construction mode

 4.7.2 Head of X-definition

The first example presents a simpler variant, which is validation in the X-definition the construction mode. Let's
take the following X-definition, which contains the source data directly in X-Script (based on the example in the
chapter 8.1.6.1):

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Nehody | root">

 <Accidents xd:script = "create source">
 <Accident xd:script = "occurs 0..*;
 create from('rec')"
 id = "string(5) "
 datum = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <root>
 <rec xd:script = "occurs 0..*"
 id = "string(5) "
 datum = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </rec>
 </root>

 <xd:declaration>
 <![CDATA[
 /* Source XML data. */
 String data = "
 <root>
 <rec id='00123'
 date = '2012-05-03'
 injury = '0'
 death = '0'
 loss = '90'>

 <vrn>1A23456</vrn>
 </rec>
 </root>
 ";

 /* Validation of source data. */
 Element source = xparse(data, "*");
]]>
 </xd:declaration>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Nehody | root">

 <Accidents xd:script = "create source">
 <Accident xd:script = "occurs 0..*;
 create from('rec')">
 <vrn>string(5)</vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss>int(0, 100000000)</loss>
 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <root>
 <rec xd:script = "occurs 0..*">
 <vrn>string(5)</vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss>int(0, 100000000)</loss>
 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </rec>
 </root>

 <xd:declaration>
 <![CDATA[
 /* Source XML data. */
 String data = "
 <root>
 <rec>
 <vrn>00123</vrn>
 <date>2012-05-03</date>
 <injury>0</injury>
 <death>0</death>
 <loss>90</loss>

 <vrn>1A23456</vrn>
 </rec>
 </root>
 ";
 /* Validation of source data. */
 Element source = xparse(data, "*");
]]>
 </xd:declaration>
</xd:def>

98 / 207

In the X-definition, an Accident element is created in the construction mode (the Java Code requires the
construction of the Accident element according to the X definition, see the chapter 9.2). The data for its
construction is obtained from the element source. However, as seen from variants a) and b), the source element
was obtained directly in the X-Script of the X-definition. The xparse method returns the value of the variable
source and therefore this method must be called first before the result element Accident is constructed.

To create the source element, the xparse method has two variants:

- xparse(input_data), creates element as the result of parsing of the input data,

- xparse(input_data, name_of_x-definition), also creates element from the input source data,.
However, it vlalidates the input source according to the model of element declared as root in
the X-definiition with the name from the second parameter. If the actual X-definition should be used you
can specify asterisk (“*”) instead of the name..

Because the xparse method with two parameters was used in the X-definition above, and an asterisk was given as
the second value, a root element model was used according to the X-definition header in the xd:root attribute.

The described principle can be tested online here: http://xdef.syntea.cz/tutorial/en/example/C601.html.

8.6.2 Construction in the validation mode

The second example illustrates the case of element construction during processing of validation mode. Suppose
the following X-definition validates the XML input data specified by the root root element. Initial XML validation is
performed first, and after finishing it (the event event is finally was invoked), the construction of the Accident
element is started:

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "root">

 <Accidents xd:script = "create from('/root')">
 <Accident xd:script = "occurs 0..*;
 create from('rec')"
 id = "string(5) "
 datum = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <root xd:script = "finally
 returnElement(xcreate('Nehody'))">
 <rec xd:script = "occurs 0..*"
 id = "string(5) "
 datum = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </rec>
 </root>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "root">

 <Accidents xd:script = " create from('/root')">
 <Accident xd:script = "occurs 0..*;
 create from('rec')">
 <vrn>string(5)</vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss>
 int(0, 100000000)
 </loss>
 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </Accident>
 </Accidents>

 <root xd:script = "finally
 returnElement(xcreate('Nehody'))">
 <rec xd:script = "occurs 0..*">
 <vrn>string(5)</vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss> int(0, 100000000)</loss>
 <vrn xd:script="occurs 1..*">
 string(7)
 </vrn>
 </rec>
 </root>
</xd:def>

In the X-definition header, it is sufficient to specify the root element in the xd:root attribute. As a context, a
parsed XML document, ie a root element, is automatically used, so the create from ('/root') can be skipped
because the root element does not matter in the root element name.

In the X-definition, the xcreate method was used to construct the Accident element. This will construct the
element whose name is specified as its parameter, according to the model of this element in the X-definition.

http://xdef.syntea.cz/tutorial/en/example/C601.html

 99 / 207

In addition, the returnElement method was used to ensure that the call to the xparse method on the XDDocument
(see Chapter 7.1) does not return the DOM for the parsed root element, but the DOM for the generated Accident
element.

The described principle can be tested online here:

- http://xdef.syntea.cz/tutorial/en/example/C602.html

- http://xdef.syntea.cz/tutorial/en/example/C603.html

- příklad, který realizuje konstrukci v rámci validace: Kapitola 14

8.7 Example of XML transformation into HTML

 4 Description of structure of XML document by X-definition

 8 Construction Mode of X-definition

 8.1 Create Section in X-script

V této kapitole bude ukázán způsob, jak mohou být X-definice využity pro transformaci XML souboru z
ukázkového příkladu se seznamem nehod z kapitoly 2.4 pro něž byla v kapitole 8.1 sestavena X-definice do
struktury jiného XML dokumentu. Předmětným cílovým dokumentem bude HTML dokument s následující
strukturou:

This chapter will be deomonstrated how the X-definitions can be used to transform an XML file from an example
with an accident list from Chapter 2.4 for which an X-definition has been built into the structure of another XML
document in Chapter 8.1. The target document will be the HTML document with the following structure:

<html>
 <head>
 <title>Accidents list</title>
 </head>

 <body>
 <table border="1">
 <tr>
 <th>ID</th> <th>Date</th> <th>Injured [person]</th> <th>Death [person]</th>
 <th>Loss [thousends]</th> <th>Prticipants [VRN]</th>
 </tr>

 <tr>
 <td>00123</td> <td>17.05.2011</td> <td>3</td> <td>0</td> <td>600</td>
 <td>1A23456, 1B23456</td>
 </tr>

 <tr>
 <td>07045</td> <td>30.11.2012</td> <td>5</td> <td>1</td> <td>1300</td>
 <td>2A34567, 2B34567, 2C34567</td>
 </tr>
 </table>
 </body>
</html>

In a Web browser, the bulle displayed as the following table:

Now, for the target HTML (XML) document, an appropriate X-definition will be constructed and then an X-Script
section will be benerated to describe the attributea and text node values for the resulting document and how to
obtain the relevant values.

 8.7.1 X-definition of HTML document

 8.7.2 Create section used to construct a HTML document

http://xdef.syntea.cz/tutorial/en/example/C602.html
http://xdef.syntea.cz/tutorial/en/example/C603.html

100 / 207

 9 Using of X-definitions in Java code

8.7.1 X-definition of HTML document

 8.7 Example of XML transformation into HTML

In Chapter 8.7, the desired target HTML document structure was defined on the sample example, resulting in the
transformation of an XML document with a list of accidents. The X-definition for the required XML document will
be as follows:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" xd:name = "seznamNehodHtml" xd:root = "html">
 <html>
 <head>
 <title> String constant generated here </title>
 </head>
 <body>
 <table border=" String constant generated here ">
 <tr>
 <th> generated String constant </th> <th> generated String constant </th>
 <th> generated String constant </th> <th> generated String constant </th>
 <th> generated String constant </th> <th> generated String constant </th>
 </tr>
 <tr xd:script="occurs 0..*">
 <td>string(5); value taken from the input XML document </td>
 <td>xdatetime('dd.MM.yyyy'); value taken from the input XML document </td>
 <td>int(0, 9999); value taken from the input XML document </td>
 <td>int(0, 9999); value taken from the input XML document </td>
 <td>int(0, 100000000); value taken from the input XML document </td>
 <td>string; value taken from the input XML document </td>
 </tr>
 <table>
 </body>
 </html>
</xd:def>

As you can see, the target HTML document will be largely made up of constant entities. The only variable entity is
the second tr element in the table, which can be repeated in the resulting element (or may not be present at all).

Values that are constant may not be validated using data type checking methods. In this case, the correct
X-definition may be corrected by the programmer.

For variables, the situation is different:

 If it is guaranteed that the input XML document to be transformed into HTML is valid, then in this X-
definition it is no longer necessary to validate the data types using validation methods

o the XML input document for the assurance of the assumption is first validated by the X-
definition defined in the chapter 8.1

 Otherwise, it is possible to check the data types even in the validation mode as in this case.

Instead of the constant or variable values of the attributes and text nodes to be generated, temporary text labels
have been used in the X-definition. In the next chapter, the above-mentioned X-definition will be added the
create sections that will ensure the generation of the resulting HTML document.

 8.1 Create Section in X-script

 9 Using of X-definitions in Java code

8.7.2 Create section used to construct a HTML document

 8.7 Example of XML transformation into HTML

In Chapter 8.7.1, an X-definition was designed to describe the HTML document. The X-definition describes the
structure of the resulting document and the data types of the selected text nodes (attributes would be similar). In
order for the resulting document to contain some specific data (and not just empty elements and attributes) in its
attributes and text nodes, its generation must be defined using X-Script in its create sections. The following
example is performed in case the transformation is performed from a varnable a) XML document, ie proposed by
means of elemets and attributes, and in the case where the transformation is performed from an XML document

 101 / 207

of variant b), that is, designed exclusively by means of elements. The target HTML document will be the same for
both variants:

102 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "dislapyAccidenta"
 xd:root = "html">

 <html>
 <head>
 <title>create 'Accidents list'</title>
 </head>
 <body>
 <table border="create '1'">
 <tr>
 <th>create 'ID'</th>
 <th>create 'Date'</th>
 <th>create 'Injured [persons]'</th>
 <th>create 'Death [persons]'</th>
 <th>create 'Loss [thousends]'</th>
 <th>create 'Paricipants [VRN]'</th>
 </tr>

 /* The element tr is "wrapped" with an
 Element xd:sequence by which they will be
 iteratively create tr elements including
 their sub-elements. */
 <xd:sequence xd:script="occurs 0..*;
 create from('//Accidents/Accident')">
 <tr>
 <td> string(5);
 create from('@id')</td>
 <td> xdatetime('dd.MM.yyyy');
 create from('@datum')</td>
 <td> int(0, 9999);
 create from('@injury')</td>
 <td> int(0, 9999);
 create from('@death')</td>
 <td> int(0, 100000000);
 create from('@loss')</td>
 <td>
 /* Using the xd: sequence element
 iteratively pass all elements rz
 For the currently processed element
 Accident. */
 <xd:sequence xd:script="occurs 0..*;
 create from('./vrn')">
 <xd:text>
 string; create from('./text()');
 </xd:text>
 create ', '
 </xd:sequence>
 </td>
 </tr>
 </xd:sequence>
 </table>
 </body>
 </html>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "displayAccidents"
 xd:root = "html">

 <html>
 <head>
 <title>create 'Accidents list'</title>
 </head>
 <body>
 <table border="create '1'">
 <tr>
 <th>create 'ID'</th>
 <th>create 'Date'</th>
 <th>create 'Injured [persons]'</th>
 <th>create 'Death [persons]'</th>
 <th>create 'Loss [thousends]'</th>
 <th>create 'Paricipants [VRN]'</th>
 </tr>

 /* The element tr is "wrapped" with an
 Element xd:sequence by which they will be
 iteratively create tr elements including
 their sub-elements. */
 <xd:sequence xd:script="occurs 0..*;
 create from('//Accidents/Accident')">
 <tr>
 <td>string(5);
 create from('./id/text()')</td>
 <td> xdatetime('dd.MM.yyyy');
 create from('./datum/text()')</td>
 <td> int(0, 9999); create
 from('./injury/text()')</td>
 <td> int(0, 9999); create
 from('./death/text()')</td>
 <td> int(0, 100000000);
 create from('./loss/text()')</td>
 <td>
 /* Using the xd: sequence element
 iteratively pass all elements rz
 For the currently processed element
 Accident. */
 <xd:sequence xd:script="occurs 0..*;
 create from('./vrn')">
 <xd:text>
 string; create from('./text()');
 </xd:text>
 create ', '
 </xd:sequence>
 </td>
 </tr>
 </xd:sequence>
 </table>
 </body>
 </html>
</xd:def>

In the example above, the construction mode was used to create the X-Script section:

 create 'coonstant' – is used to construct attribute values and text nodes, the subject value will be a
string specified as a constant;

 create from('xpath') – is used to create the appropriate XML document fragment based on the
context that is obtained after the xpath expression invoked in the method from (String). XPath is
executed on the current context, which must be set before executing the X-definition construction
process

o from('//Accidents/Accident') – returns the context;

o from('./vrn') – returns the context specified by the relative path from the currently
processed element to the vrn element;

o from('@id') – returns the context specified by the relative path from the currently processed
element to the vrn element

 103 / 207

 text() – returns the value of the text node for the currently processed element.

The create section specified in the element xd:sequence passes the current context (eg an XML document that is
being transformed) iteratively and sequentially returns the context (ie a specific element including its attributes
and subelements) corresponding to the defined XPath to which the X-definition given as the content of the
element xd:sequence. For the example above, this means that xd:sequence passes through all of the vrn elements
of the transformed XML document sequentially, lists the value of their text node, and enters the comma symbol
(,). An alternative X definition to the above is presented in Chapter 8.4.

Note: If the create section is listed for elements, text nodes and attributes and the X-definition is processed in the
validation mode, then all create sections are ignored

104 / 207

9 Using of X-definitions in Java code

 4 Description of structure of XML document by X-definition

 8 Construction Mode of X-definition

The processor of X-definition runs from the Java program for both validation and construction mode. The
following examples show how to create a Java class to run a validation or construction based on a pre-assembled
X definition.The following classes will be required in the Java class you created available in libraries provided with
X definitions:

import org.xdef.XDDocument;
import org.xdef.XDFactory;
import org.xdef.XDDocument;
import org.xdef.XDPool;

Some parameters for processing X-definitions (eg language mutation, default code page for files, language, report
messages, etc.) can be set before running the X definition processes (see chapter 13.2.3) and affect with System
Properties (see chapter 12). E.g. if the System property “xdef_warnings” is set to “true”,the warning messages are
reported (it is the default value) . if the System property “xdef_warnings” is set to “false” the compiler ignores
warning messages.

 9.1 Running the validation mode

 9.2 Start the XML document construction

9.1 Running the validation mode

 4 Description of structure of XML document by X-definition

First, in the Java program compile the selected set of X-definitions (in our example it is in the file Garage.xdef):

/* Compile the XDPool from the X-definition – here it contains just one X-definition.
 * However, it may be more X=definitions. */
XDPool xpool = XDFactory.compileXD (null, "/path/to/Garage.xdef");

/* Create the instance of XDDocument from the X-definition "garage" from the XDPool. */
XDDocument xdoc = xpool.createXDDocument("garage");

The X-definition (as a document) is loaded from the xdef file and compiled to XDPool object. Then it is created the
object XDDocument used to run a process (eg. validation). The XDPool object is reentrant, so you can use it to
create mode XDDocument objects. Note the XDPool containing compiled X-definition is fully reentrant (ie it all
values are constants (can not be changed), So you can use this object more times (and even it can be stored to a
static variable).

 see 9.6 External variables

The errors detected during the validation process can be written to the standard output, ie System.out, or to a
special stream called ReportWriter that allows you to report errors eg to an external file with reports. Refer to
Chapter 12 for information. To use the default Reporter, you can use the following code:

/*The reporter where are store the report messages generated durnig process. */
ArrayReporter reporter = new ArrayReporter();

 see 13.1 Generate XML file with errors

Now you can start the process ov validation of XML document:

/* Parsing of the source XML data will be controlled by xdoc object (ie. Ccording to trhe X-definition 'garage')
* All recognized errors will be stored to the reporter. */
xdoc.xparse("/path/to/garage.xml", reporter);

Now check for errors. If so, you can print them. Otherwise, the validated XML document corresponds to the X-
definition:

 105 / 207

/* The methoda errorWarnings() returns true if and only if some errors were generated during process. */
if (reporter.errorWarnings()) {
 System.err.println("Errors found in the input date.");
 PrintStream ps = new PrintStream("/path/to/errors.txt");
 reporter.printReports(ps);
 ps.close();
} else {
 /* Store parsed XML element to the file 'xmlResult.xml'. */
 KXmlUtils.writeXml("/path/to/xmlResult.xml", xdoc.getElement());
 System.out.println("OK");
}

The getElement() method invoked on the XDDocument object returns the root element of the resulting XML
document. The writeXml method of the KXmlUtils class writes the XML document specified by the argument into
the file. Note that when you validate an XML input document, all create sections of X-Script are skipped.

 details and a complete overview of all the features that X-definitions are listed in the chapter 16

9.2 Start the XML document construction

 prepared X-definition for construction mode: Chapter 8

First, the selected X-definition is loaded into the Java program (it is assumed that the generated X-definition is
stored in the file displayAccidents.xdef):

/* Compile the file to XDPool. */
XDPool xpool = XDFactory. compileXD(null, "/path/to/displayAccidents.xdef");

/* Create the instance of XDDocument created from the X-definition ‘displayAccidents’. */
XDDocument xdoc = xpool.createXDDocument("displayAccidents");

The XDPool containing compiled X-definition is fully reentrant (ie it all values are constants (can not be changed),
So you can use this object more times (and even it can be stored to a static variable). More in Chapter 9.6.

The errors detected during a validation or construction process can be written to a standard output, ie
System.out, or to a special file For more information, see Chapter 12. Now create the repoter object:

/* Create ArrayReporter for writing errors and messages. */
ArrayReporter reporter = new ArrayReporter();

See also 13.1 Generate XML file with errors

Now construct the XML document:

/* Before the process of constructions set to the XDDocument the context data used for the construction.
 * As the context will be used the XML document stored in the file accidents.xml. */
xdoc.setXDContext("/path/to/seznamNehod.xml");

/* The result will be constructed according to the model “html”. The error messages will be stored to
 'reporter'. */
xdoc.xcreate("html", reporter);

Check if errors were reported. If yes store them to the file ‘errorOutput.txt’. If not, then store the constructed
element to the file ‘xmlResult.xml’:

/* Check if errors or warnings were reported */
if (reporter.errorWarnings()) {
 System.err.println("Errors reported.");
 /* Store error reports to the file */
 PrintStream ps = new PrintStream("/path/to/errorOutput.txt");
 reporter.printReports(ps);
 ps.close();
} else {
 /* Store created XML document to the file 'xmlResult.xml'. */
 KXmlUtils.writeXml("/path/to/xmlResult.xml", xdoc.getElement());
 System.out.println("OK");
}

The getElement() method invoked on the XDDocument object returns the root element of the constructed XML
document. The writeXml method of the KXmlUtils class writes the XML document into the file xmlResult.xml.

106 / 207

 details and a complete overview of all the features that X-definitions are listed in the chapter 16

9.3 Alternate creation of XDPool

 9.1 Running the validation mode

 9.2 Start the XML document construction

If you need to create XDPool from different sources - such as files stored on a local disk, files stored in a database
or X-definition written in the String variable or even from an InputStream, you can use the org.xdef.XDBuilder
class in which you can use the setSource method incrementally add different X-definition source data. The XDPool
object is then created from the XDBuilder object by the compileXD() method as shown in the following example:

/* Create instance of XDBuilder. */
XDBuilder builder = XDFactory.getXDBuilder(prpos); // props may be null or a Properties object

/* Create reporter for error messages about compiling of X-definitions. */
ArrayReporter reporter = new ArrayReporter();

/* Set reporter to bulder. */
builder.setReporter(reporter);

/* Set sources of X-definitions to builder. */
builder.setSource("/path/to/vozovyPark.xdef");
builder.setSource(new URL("http://path.to/vozovyPark.xdef"));
builder.setSource("<xd:def xmlns:xd='http://www.xdef.org/xdef/4.0' xd:name='vozovyPark' xd:root='Vozidlo'>

<Vehicle typ='SUV' rz='1A23456' purchase='01.02.2011' výrobce='Škoda' model='Yeti' /> </xd:def>");

/* Create XDPool; and the next procedure is the same as in the chapters 9.1 and 9.2. */
XDPool xpool = builder.compileXD ();

/* Throw an exception if th reporter contains errors or warnings.*/
reporter.checkAndThrowErrorWarnings();

9.4 Build XDPool with classes containing exteral metods

 4.8 External (Java) Methods

 9.2 Start the XML document construction

 9.3 Alternate creation of XDPool

The Java classes in which external methods used in X-definitions are located, which are by default searched by the
default class loader. In the case you need to use another class loader to retrieve and load thise Java classes, this
loader must be connected to the X-Definition builder. The class loader can be connected to the XDBuilder by the
method setClassLoader::

...

/* Create instance of XDBuilder. */
XDBuilder builder = XDFactory.getXDBuilder(null);

/* Set your class loared*/
builder.setClassLoader(new MyClassLoader());

/* Set source input data. */
builder.setSource("/path/to/vozovyPark.xdef ");
builder.setSource(new URL("http://path.to/vozovyPark.xdef"));
...

You can also add classes with external methods to the compiler as the array of classes and normally compile
X-definitions:

 107 / 207

/* Array with classes containing the external methods. */
Class[] ext = new Class[] {examples.tutorial.VozovyPark.class, tasks.SimpleAccident.class};
/* The compiler will search the external methods in the array of classes. */
XDPool xpool = XDFactory.compileXD(null, "/path/to/vozovyPark.xdef", ext);

9.5 Get result of X-definition process

 run the validation or the construction mode chapter 9.1 or 9.2

The metods xparse or xcreate return the processed element as the return value. So you do net need to use the
method getElement():

Element e;
e = xdoc.xparse("/path/to/garage.xml", reporter);
e = xdoc.xcreate("html", reporter);
e = xdoc.getElement();

Výjimkou je použití metody returnElement v X-Scriptu (viz kapitola 8.6.2), která nastaví element, který vrátí
metody xparse, xcreate i getElement objektu XDDocument.

9.6 External variables

 external (java) methods chapter 4.8.

 run the validation or the construction mode. Chapter 9.1 or 9.2

Similarly as was shown invoking of external methods in the Chapter 4.8 in the corresponding Java classes, the so
called external variables that are declared in the X-definition can be used in the X definition, but their value is set
from the Java code.

The declaration of an external variable in the X-definition must be introduced to the keyword ‘external’. From the
Java code, the value of the external variable can be set before invoking of the validation or construction process
by the ‘setVariable’ method on the XDDocument object.

The following example will expand the example in Chapter 4.8, which called myPrint() external Java method at the
onStartElement event. An integer variable ‘version’ value will be set from the Java program and the myPrint()
method will print it to the standard output:

108 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle
 xd:script = "occurs 0..*;
 onStartElement myPrint();
 finally version = 1;"
 type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />
 </Vehicles>

 <xd:declaration>
 /* External variable. */
 external int version;

 void myPrint() {
 outln("Vrsion is:" + version);
 }
 </xd:declaration>

</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle
 xd:script = "occurs 0..*;
 onStartElement myPrint();
 finally version = 1;"
 <type> enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </type>
 <vrn> string(7) </vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model> string() </model>
 </Vehicle>
 </Vehicles>

 <xd:declaration>
 /* External variable. */
 external int version;

 void myPrint() {
 outln("Vrsion is:" + version);
 }
 </xd:declaration>

</xd:def>

Set the value of an external variable to the xdoc object in the Java code before the validation or construction
process begins. See the following snippet of code:

XDDocument xdoc = ...
/* Set value of variable ‘version’ to XDDocument. */
xdoc.setVariable("version", 5);
...
xdoc.xparse ...

On the other hand, the value of an external variable can be obtained after completion of the validation or
construction process by the getVariable method:

xdoc.xparse ...
/* Get value of variable “version” from XDDocument, */
XDValue x = (XDValue) xdoc.getVariable("version");
/* Get integer value from XDValue, */
int ver = x.integerValue();

The getVariable method returns an object from the XDValue interface that needs to be changed (ie cast) to the
appropriate data type corresponding to the given variable from the X-Definition. A list of all data types is in the
chapter 16.2.

 9.7 External instance methods

 16 Appendix C – supplementary description of X-definitions

9.6.1 Connection to the reelational database

If the data type Service (which corresponds to a JDBC connection type) is required in the X-definition, the
java.sql.Connection data type connection object must be encapsulated in the XDService object (this corresponds
to the Service type in X-definitions) and paste it into an external service data type service variable in X definition:

Java.sql.Connection connection;
...
xdoc.setVariable("service", XDFactory.createSQLService(connection));

As can be seen from the following example, encapsulation can be accomplished by the method
creatingSQLService from the XDFactory class.

 109 / 207

The XDService object can also be obtained from the XDFactory class by entering the URL database, loginsname
and password using the createSQLService method, which has the similar parameters as the
java.sql.DriverManager.getConnection (url, user, password) method:

XDService service = XDFactory.createSQLService(url, user, password);
xdoc.setVariable("service", service);

Declaration of the external variable ‘service’ in the X-definition:

...
<xd:declaration>
 ...
 external Service service;
 ...
</xd:declaration>
...

9.7 External instance methods

 4.5 Events and Actions

 4.7 Sample of Complete X-definition

 4.8 External (Java) Methods4.8.2

Several variants of implementation and use of external X-definition methods have been described in Chapter 4.8.
In all cases these were static methods (methods with the keyword static). This chapter describes how to use
objects and their instance methods that can be called from X-Definition using external (static) methods.

Let's have the Java class with the myPrint class method, the getInstanceName instance method, and the
instanceName instance variable:

public class Garage {

/** Instance field. */
private final String instanceName;

/**
 * Construktor.
* @param name the name assigned to this instance of this class.
 */
public Garage(String name) {
 instanceName = name;
}

/**
 * Instance method.
 * @return string wirh the name from the instance of this class.
 */
public String getInstanceName() {
 return instanceName;
}

/**
 * External method used in the X-definition.
* @param xnode the object representing the current processed node.
* @param output text to be printed.
 */
public static void myPrint(XXNode xnode, String output) {
 // Get the user object containing the instance of this class.
 Object obj = xnode.getUserObject();
 if (obj != null) {
 String iName = ((Garage)obj).getInstanceName();
 System.out.printf("The name of instance: %s \n", iName);
 }
 String spz = xnode.getXXElement().getAttribute("rz");
 System.out.printf("Info=%s; Vehicle registration=%s", output, spz);
}

As you can see, compared to the version in Chapter 4.8.2, the myPrint method will be called from the X-definition
in the same way. In the body of the method, the getUserObject() method is called on the XXNode object, which

110 / 207

returns any object (java.lang.Object) associated with the appropriate X definition (the association must be
performed before the validation or construction of the XML document - see below). After casting it on Garage,
you can call its instance method getInstanceName().

Any object can be associated with X-Definition by the setUserObject(Object) method through XDDocument
(association is done after creation of XDDocument but before invoking the X-definition process (ie. xparse or
xcreate method):

...

/* It will be used the X-definition 'garage'. */
XDDocument xdoc = xpool.createXDDocument("garage");

/* Assign the user object ot the XDDocument. */
xdoc.setUserObject(new Garage("Instance 1"));

...

When calling an external (class) myPrint method in the following X-definition, it invokes the instance method
getInstanceName through which will be accessed the instanceName variable:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">
 <xd:declaration>
 external method void examples.tutorial.Garage.myPrint(XXNode, String);
 </xd:declaration>

 <Vehicles>
 <Vehicle
 xd:script = "occurs 0..*; onStartElement myPrint('Started process of the element Vehicle. ')"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
 </Vehicles>
</xd:def>

It will print:

JThe name of instance: Instance 1
Info Started process of the element Vehicle; Vehicle registration=...

9.8 Validation of data with a database in a XML document

 4.10 User Defined Methods for Checking Data Types

 5.5 Container

 9.6 External variables

The following example will expand the example of the X-definition for the list of traffic accidents in Chapter 4.1.
For the registration tag element vrn, a validation method will be added to verify whether the registration tag in
the validated document according to the X-definition list is in the XML document:

 111 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs 0..*"
 id = "string(5)"
 datum = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">
 <vrn xd:script="occurs 1..*">
 checkVrn()
 </vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 external Element vehicles;
 Container vehicle;

 /* Check if VRN is in the database */
 boolean checkVrn() {
 /* Value of VRN. */
 String vrn = getText();
 vozidlo = xpath(
 'Vehicle[@rz="'+vrn+'"]', vehicles);
 if (vozidlo.getLength() == 0) {
 outln('VRN' + vrn +
 ' is not registred.');
 Return false
 }
 /* VRN was found in the database. */
 return true;
 }
 </xd:declaration>
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents>
 <Accident xd:script = "occurs 0..*">
 <vrn>string(5)</vrn>
 <date>date()</date>
 <injury>int(0, 9999)</injury>
 <death>int(0, 9999)</death>
 <loss>int(0, 100000000)</loss>
 <vrn xd:script="occurs 1..*">
 checkVrn()
 </vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 external Element vehicles;
 Container vehicle;

 /* Check if VRN is in the database */
 boolean checkVrn() {
 /* Value of VRN. */
 String vrn = getText();
 vozidlo = xpath(
 'Vehicle[@rz="'+vrn+'"]', vehicles);
 if (vozidlo.getLength() == 0) {
 outln('VRN' + vrn +
 ' is not registred.');
 Return false
 }
 /* VRN was found in the database. */
 return true;
 }
 </xd:declaration>
</xd:def

In the example above, the checkVrn method was defined to check whether the currently processed registration
tag (from the vrn attribute value or the vrn element text value) occurs in the XML element 'vehicles'. You can also
use the method error('...') which writes the the text in its parameter into the error report file and returns false:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">
 ...
 <xd:declaration>
 external Element vehicles;
 ...
 boolean checkVrn() {
 String vrn = getText();
 Container vehicle = xpath('Vehicle[@rz="' + rz + '"]', vehicles);
 if (vehicle.getLength() == 0) { // not found
 return error('VRN' + vrn + ' is not registred.');
 }
 return true;
 }
 </xd:declaration>
</xd:def>

The check is performed using xpath, which searches an element in the XML document with the list of vehicles, the
vehicle whose attribute, element vrn has a value corresponding to the currently processed vehicle registration
from the list of accidents. The xpath (XPath, Element) method accepts two parameters, a path in an XML
document specified by xpath expression and the default element from which to search by the specified xpath.

If a Vehicle tem exists in the XML document, the result of XPath expression is inserted into the Context data
structure (see Chapter 5.5). If the desired element is not found, the Context data type variable is left empty, ie the
number of items obtained by the getLength () method is zero.

112 / 207

The XML document is accessible in X-definition the external variable vehicles. The specified variable must be set
from the Java class to run validation of the appropriate XML document with the list of crashes before the
validation starts:

/* XML parser reads the XML document with the list (a database) of vehicles and its vrn. */
org.w3c.dom.Element el = KXmlUtils.parseXml("/path/to/garage.xml").getDocumentElement();

/* The root element is set to the external variable vehicles in the XDDocument (X-definition). */
xdoc.setVariable("vozidla", el);

 10 Structuring of X-definitions

 14 Appendix A – complete example

 16 Appendix C – supplementary description of X-definitions

9.9 XDPool in a binary data file

 9.1 Running the validation mode

 9.2 Start the XML document construction

The X-definition technology allows you to save the compiled XDPool object created fro source X-definitions into a
binary file (or generate a Java class) and its further use when processing XML data. This property is especially
important when X-definitions source data are extensive or repeatedly used, and the continued translation of
X-definitions into an XDPool object would be time consuming. In such cases, it is preferable to use the result of
X-definition, which is stored in a binary file whose read-in is faster than the compilation of X-definitions. Thiis is
enabled because XDPool object implements the interface Serializable.

The generated XDPool is saved to the binary file:

/* Compile X-definition and create the XDPool object. */
XDPool xpool = XDFactory.compileXD(null, "/path/to/vozovyPark.xdef");

/* Save the XDPool object to the file. */
ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("/path/to/vozovyPark.xp"));
out.writeObject(xpool);
out.close();

For further use, it is enough to create XDPool from the given binary file. The time to create an instance of the
XDPool object will be much shorter by doing this because the X-definition source code will not be re-compiled:

/* Read XDPool from the file. */
ObjectInputStream in = new ObjectInputStream(new FileInputStream("/path/to/vozovyPark.xp"));
XDPool xpool = (XDPool) in.readObject();
in.close();

/* Now you can work with the xpool object in a common way, ie you can create XDDocument, etc. */
...

The version and build number of X-definition library must always be compatible with the version when the
binary file was created. With each new version and build number of X-definition library, it is therefore
recommended to recreate the binary file from the source X-definitions data.

9.10 Continuous XML document writing

 9.1 Running the validation mode

 9.2 Start the XML document construction

When processing an XML document, the processed DOM objects are constructed and stored by default. Only after
completing the validation or construction process the entire XML document is returned as a result. For very large
files, the default behavior needs to be modified (due to a lack of memory).

One possible modification is the use of the forget keyword in the X-script of element models to ensure that the
corresponding DOM object is released from memory after processing of the model- see Chapter 4.6. In order for a

 113 / 207

processed element whose model has the keyword forget to be written to the output before its release from
memory, it is necessary to ensure that the X-definition processor writes DOM objects continuously to an external
file.

The java.io.OutputStream (in Java) object is reserved for this entry. XmlOutStream (in X-Script), which
corresponds to the interface org.xdef.XDXmlOutStream. [Doc1].

9.10.1 Automatic write to OutputStream

By using the OutputStream, it is possible to ensure automatic recording of the processed DOM objects. The
generated OutputStream (e.g. file) is passed by the void setStreamWriter(OutputStream out, String encoding,
boolean writeDocumentHeader) to the XDDocument object that will automatically continuously write all
processed objects to the specified output stream. In addition, if the keyword forget is in the element models, the
processed and written elements are released from memory after being procewssed:

...

/* Create XDDocument from XDPool. */
XDDocument xdoc = xpool.createXDDocument("garage");

/* Prepare output stream. */
OutputStream out = new FileOutputStream(new File("AccidentsOut.xml"));

/* Assign the output stream to the XDDocument. */
xdoc.setStreamWriter(out, "UTF-8", true);

/* Start X-definition process xdoc.xparse(...) or xdoc.xcreate(...). */

/* Close the output stream. */
out.close();
...

9.10.2 Incremental writing using XmlOutStream

 9.6 External variables

 16.7 Methods implemented in X-Script

Output stream can also be written "manually" from X-script. In the X-script, an XmlOutStream variable vcan be
created for this purpose:

a) either directly in the X-script:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "finally closeStream()">
 <Accident xd:script = "occurs 0..*; finally writeToStream()"
 id = "string(5)"
 datum = "date()"
 injury = "int(0, 9999)"
 death = "int(0, 9999)"
 loss = "int(0, 100000000)">

 <vrn xd:script="occurs 1..*">string(7)</vrn>
 </Accident>
 </Accidents>

 <xd:declaration>
 /* Create the output stream. */
 XmlOutStream out = new XmlOutStream("AccidentesOut.xml");
 boolean first = true;

114 / 207

 ...

 /* The method called in the finally action, ie. after the element is processd. */
 void writeToStream() {
 if (first) {
 /* Write the root element. */
 out.writeElementStart(new Element("OutputResult"));
 first = false;
 }

 /* Write the subelement. You can also add attributes and text nodes. */
 Element el = new Element("Nehoda");
 el.setAttr("id", toString(@id));
 ...
 out.writeElement(el);
 }

 /* The method invoked in the action finally sekci after the whole XML document was processed. */
 void closeStream() {
 /* Write the end tag of the root element. */
 out.writeElementEnd();

 /* Close the output stream. */
 out.closeStream();
 }
 </xd:declaration>
</xd:def>

The output XML file can look like this:

...
<OutputResult>
 <Accident id="00123" ... />
 <Accident id="00234" ... />
 ...
</OutputResult>

b) or add as an external variable:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 ...

 <xd:declaration>
 /* The output stream is in the external variable. */
 external XmlOutStream out;

 ...

 </xd:declaration>
</xd:def>

...

/* Prepare the output stream. */

XDXmlOutStream out = XDFactory.createXDXmlOutStream("AccidentsOut.xml", "UTF-8", true);1

/* Set the external variable to the XDDocument. */
xdoc.setVariable("out", out);

...

1 The createXDXmlOutStream (String file, String encoding, boolean writeDocumentHeader) method has parameters:
file containing a path to the generated stream; encoding indicates a code table where characters are stored in the
stream (the default is UTF-8). The writeDocumentHeader parameter, if true, ensures that the XML header is written
to the output stream.

 115 / 207

10 Structuring of X-definitions

 4 Description of structure of XML document by X-definition

Extensive X-definitions may become less well-arranged, and therefore need to be internally structured. For this
purpose, X-definition technology have options to extract part of the element model description and move it to
another location, take the element models from another X-definition, or replace parts of the X-definition macros.

To ensure these modifications and constructions, the X-script links are used in the X-definitions, which generally
contain references to the parts of X-definitions listed elsewhere (in another part of the same file or in another
file). The link then takes the values from the place to which it refers.

10.1 Reference to another element model in X-definition

 4.7 Sample of Complete X-definition

The first example will be to move a part of the element model to another location within the X-definition.
Specifically, it will move the model of the Vehicle element from examples to construct an XML document. For this
purpose, the keyword ref can be used, referring to the referenced model for the relevant element model. The
X-definition in Chapter 4.7 will have the following form, after maintaining the same functionality:

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; ref Vuz"/>
 </Vehicles>

 <Vehicle type= "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*;
 ref Vuz" />
 </Vehicles>

 <Vehicle>
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </type>
 <vrn>string(7)</vrn>
 <purchase> date() </purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </Vehicle>
</xd:def>

From the example above, it is clear that the reference helps keep the X-definition entry readable by allowing the
structural part to be separated (the XML tree defined by the Vehicles element) from its full content (element
Vehicle).

The above example evaluates the X-definition in such a way that the Vehicle element will inherit all of its sub-
elements as well as all its attributes, including all definitions of data types, actions, etc. If the Vehicle element has
the number of occurrences, this number will be covered by the number given for the element Vehicle. For this
reason, the number of occurrences is not specified in the Vehicle model.

References between element models also allow reuse of one element model and to specify extension of the
referenced model. If it is now considered a case where it will be necessary to add the element Bus, whose model
will be identical to the model for the Vehicle element, respectively, in the above-mentioned X-definition. for the
Vehicle, except that it is necessary to specify its capacity for the number of passengers for the Bus element, the
reference can be used to inherit all attributes, model elements for the Vehicle and add new features:

116 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; ref Vehicle"/>
 <Bus xd:script = "occurs 0..*; ref Vehicle"
 passenger="int(0,200)"/>
 </Vehicles>

 <Vehicle type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />
</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*;
 ref Vehicle" />
 <Bus xd:script = "occurs 0..*; ref Vehicle">
 <passenger>int(0,200)</passenger>
 </Bus>
 </Vehicles>

 <Vehicle>
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </type>
 <vrn>string(7)</vrn>
 <purchase> date() </purchase>
 <manufacturer> string() </manufacturer>
 <model>string()</model>
 </Vehicle>
</xd:def>

Without using a reference mechanism between element models, the same model that was already created for the
Vehicle element would have to be described for the Bus element model, with the addition of only the attribute or
attribute. elelement traveling.

In the same way, it is possible to refer to groups of elements that can act as a model. The following example
demostrates how a reference is made to the model of the xd:mixed group of the Accident element sub-
element:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:mixed xd:script="ref Accident" />
 </Accidents>

 <xd:mixed xd:name="Accident" xd:script="occurs 1..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_B>
 </xd:mixed>
</xd:def>

In order for the group to act as a model and be referenced, it must specify the xd:name attribute specifying its
name.

In the example above, the entry is equivalent to the entry:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:mixed xd:script="occurs 1..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_B>
 </xd:mixed>
 </Accidents>
</xd:def>

Even for element groups, the element (group of element models) to which it refers must be the direct descendant
of element xd: def.

 117 / 207

 10.2 Collection of X-Definitions

 10.4 Macros

10.1.1 Alternative references to groups

The example from the previous chapter can also be written so that the xd:mixed element will act as a sub-element
of another element to which the reference inserting its descendants will be directed by using the element
xd:includeChildNodes and the ref attribute, ie xd:mixed:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "accidents"
 xd:root = "Accidents">

 <Accidents xd:script = "create 1">
 <xd:includeChildNodes ref="ref NehodyA_B" />
 </Accidents>

 <AccidentsA_B>
 <xd:mixed xd:script="occurs 1..2; create 2">
 <Accident_A xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_A>

 <Accident_B xd:script = "occurs 1..1; create 1" ...>
 ...
 </Accident_B>
 </xd:mixed>
 </AccidentsA_B>
</xd:def>

10.2 Collection of X-Definitions

 4.7 Sample of Complete X-definition

 10.1 Reference to another element model in X-definition

In the case that a task is more extensive and more separate X-definitions have to be created for this purpose, it
can be placed in separate xdef files or embedded into a single xdef file. The collection of X-definitions is
determined by the xd:collection element. As a sample example, X-definitions are recorded using elements into a
single file:

118 / 207

<xd:collection xmlns:xd = "http://www.xdef.org/xdef/4.0">
 <!-- First X-definition, garage. -->
 <xd:def xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
 </Vehicles>
 </xd:def>

 <!-- Second X-definition, garageElem. -->
 <xd:def xd:name = "garageElem"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*">
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </Vehicle>
 </Vehicles>
 </xd:def>
</xd:collection>

As can be seen above, the X-definition collection contains two X-definitions that differ in structure. Therefore, the
whole collection can be modified so that the definition of the content of the X-definitions, defined attributes,
respectively. elements and their data types, for example, to move X-Definition to the X-Definition of the
VehiclePark and, with reference, the Vehicle element will refer to its content in the X-Definition of the Porsche.
The reference to the Element element element found in the XDef X-definition is written using ref as
ref XDef#Element.

The modified example will look like this:

<xd:collection xmlns:xd = "http://www.xdef.org/xdef/4.0"

 <xd:def xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; ref Vuz" />
 </Vehicles>

 <Vehicle type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

 <VehicleElem>
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </VuzElem>
 </xd:def>

 <xd:def xd:name = "garageElem" xd:root = "Vehicles">
 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; ref garage#VehicleElem" />
 </Vehicles>
 </xd:def>

</xd:collection>

 10.3 X-definitions in separate files

 119 / 207

10.2.1 Scope (visibility) of global variables and methods

Variables and methods that are defined in the X-script of one X-definition as global are also visible from other
X-definitions that are compiled together. From the X-script of an another X-definition, these variables and
methods are accessed as if they were explicitly defined in the X-script of that X-definition.

For this reason, two different X-definitions with two identically named global variables or methods will report an
error.

Dependencies between variables and methods from different X-definitions will attempt to resolve them
automatically, and X-script commands will reorganize in sequential order so values of all desired variables are
available at the level of each command. If this can not be done (typically when a cycle is detected between
variables dependencies), an error is generated. After automatic reordering of commands, initialization of variable
variables is always first performed. The reason is that the X-script of all X-definitions is merged into a block.

10.3 X-definitions in separate files

 9 Using of X-definitions in Java code

 10.2 Collection of X-Definitions

If both X-definitions in Chapter 10.2 where they are part of one collection, are placed in separate xdef source files,
then these are reflected only in the way of creating the XXDPool in the Java program. If both of these X-definitions
are located in xdef files as follows:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; ref Vuz" />
 </Vehicles>

 <Vehicle typ = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

 <VehicleElem>
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </VuzElem>
</xd:def>

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garageElem"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; ref garage#VehicleElem" />
 </Vehicles>
</xd:def>

the compileXD method will be used to create the XDPool object in the Java program, which accepts a field of
paths to xdef source files with individual X-definitions:

/* Create XDPool from all X-definitions. */
XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef", "/path/to/garageElem.xdef");

All X-definitions compiled to the XDPool are visible in all other X-definitions from this pool.

120 / 207

The other way to add another X-definition is to use the xd:include attribute in the X-definition header that allows
you to join a specific X-definition source (specified in the xd:include attribute using the URL). In the xd:include
attribute, you can specify multiple comma-separated URLs or file paths to add multiple X-definitions:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garageElem"
 xd:root = "Vehicles"
 xd:include = "path/to/garage.xdef">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*; ref garage#VehicleElem" />
 </Vehicles>
</xd:def>

/* Create XDPool – note only one source X-definition is specified in the parameter. */
XDPool xpool = XDFactory.compileXD(null, new String[] {"/path/to/vozovyParkElem.xdef"});

Example of compilation of more X-definitions:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garageElem"
 xd:root = "Vehicles"
 xd:include = "path/to/garage.xdef,
 http://www.myexamples.com/xdef/example/TestDef.xdef,
 file://path/to/Test2Def.xdef">
...

If an X-definition file is located in a local file system, the prefix "file: //" can be omitted, and for wildcard
specification can be used (ie. "*" for any sequence of characters and "?" for one character). Wildcards are only
applied to the appropriate directory. E.g. write path /to/*.xdef will select all files with xdef file name extension
from the ./path/to directory.

 10.4 Macros

 10.5 Structure comparison

10.4 Macros

 4 Description of structure of XML document by X-definition

Macros in X-definitions are used to write strings or parameterized strings that replace all calls to the appropriate
macros before X-definitions are compiled. In a X-definition, any number of macros that can be distinguished by
their name can be defined. Each macro is defined using the element xd:macro which is in the xd:declaration
element with the required attribute name:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garageElem"
 xd:root = "Vehicles"
 xd:include = "path/to/garage.xdef"><xd:def>
 <xd:declaration>
 <xd:macro name="reqStr7">
 required string(7);
 </xd:macro>
 </xd:declaration>
...
</xd:def>

Note: to ensure the backward compatibility with the older versions of X-definition the macros may be declared also
as the direct descendant of element xd:def:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0" ...>
 <xd:macro name="reqStr7">
 required string(7);
 </xd:macro>
...
</xd:def>

The example below defines a macro with the name reqStr7, when the call to the subject macro will be replaced
with the string "required string(7);" which in the following example is used to define the data type of the
attribute, respectively element vrn:

 121 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script="occurs *; ref Vehicle"/>
 </Vehicles>

 <Vehicle type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')"
 vrn = "${reqStr7}"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

 <xd:declaration scope = “local”>
 <xd:macro name="reqStr7">
 required string(7);
 </xd:macro>
 <xd:declaration>

</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs; ref Vehicle" />
 </Vehicles>

 <Vehicle>
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other')
 </type>
 <vrn>${reqStr7}</vrn>
 <purchase> date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </Vehicle>

 <xd:declaration scope = “local”>
 <xd:macro name="reqStr7">
 required string(7);
 </xd:macro>
 <xd:declaration>

</xd:def>

The macro is referenced by entering its name into compound parentheses “{” and ”}”, which are denoted by the
“$” (dollar) symbol as shown in the example above. E.g. in variant a), the vrn = "${reqStr7}" attribute value will be
replaced by vrn = "required string (7);".

Therefore, the use of macros can also be used to provide greater readability and easier maintenance of the
X-definition code, but also for repeated and consistent declarations of variable types or other constant strings.
You can also place a function call in a macro, such as calling a query with a SQL query into a relational database
that returns ResultSet with source data for the construction of the elements of the Accident:

...
<Accident xd:script="0..*; create ${m_si}">
 ...
</Accident>

...
<xd:declaration>
 <xd:macro name="m_si">
 service.query("SELECT ...");
 </xd:macro>
<xd:declaration>
...

10.4.1 Macros with parameters

For strings that have a fixed structure up to the final number of substrings (parameters), parameterized macros
can be used. Each parameterized macro has additionally attributes corresponding to the names of the overriding
parameters in its element, and their value represents the default value of the relevant parameter. The
parameterized macro is called with a comma-separated list of parameter names with their values as shown in the
following example, which in addition to the previous example of the X-definition defines the default values of the
individual attributes:

122 / 207

a) variant with elements and attributes

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs *; ref Vuz"/>
 </Vehicles>

 <Vehicle type = "enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other');
 onFalse ${typErr(attr='type')}"
 vrn = "${reqStr7}; onFalse
 ${typErr(attr='vrn',msg='7 chars')}"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

 <xd:declaration>
 <xd:macro name="reqStr7">
 required string(7);
 </xd:macro>

 <xd:macro name="reqStr7" atr="?" msg="">
 outln("Incorrect attribute value: " +
 #{atr} + " (" + "#{msg}" + ").");
 </xd:macro>
 </xd:declaration>

</xd:def>

b) variant only with elements

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script="occurs *; ref Vehicle" />
 </Vehicles>

 <Vehicle>
 <type>enum('SUV', 'MPV', 'personal',
 'truck', 'sport', 'other');
 onFalse ${typErr(attr='type')}
 </type>
 <vrn>${reqStr7}; onFalse ${typErr(attr='vrn',
 msg='7 chars')}</vrn>
 <purchase> date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </Vehicle>

 <xd:declaration>
 <xd:macro name="reqStr7">
 required string(7);
 </xd:macro>

 <xd:macro name="reqStr7" atr="?" msg="">
 outln("Incorrect attribute value: " +
 #{atr} + " (" + "#{msg}" + ").");
 </xd:macro>
 </xd:declaration>

</xd:def>

The parameterized macro in the example above is called typeErr and has two parameters, atr and msg. The
default value of the atr parameter is “?” (question mark) and msg is a blank string. In the macro definition (in
the xd:macro element), the “#” and brackets “{“ and “}” are accessed to the individual parameters, with the
name of the specific parameter.

If the value of any of the parameters is not specified when a macro is called, its default values are used. For
example, calling the ${typErr (atr = 'type')} will be replaced with the string outln("Incorrect attribute value: " +
"type" + " (" + "" + ").");. If the parameter “atr” is not specified, then the macro definition will be
replaced with a string containing only the symbol “?”.

10.5 Structure comparison

 4 Description of structure of XML document by X-definition

 10.1 Reference to another element model in X-definition

The X-definition technology allows you to develop X-definitions separately (eg multiple development teams).
Because these separate teams can share some parts of the X-definitions, but at the same time need to have the
right to change these parts, it will solve this request by allowing each team to use their own X-definition
implementation, and by linking all the X-definition will ensure that the shared parts of the XML document
match. In order to ensure compliance, use either the implements or uses keyword, which, like the reference
(see chapter 10.1), refer to the specified element model and are referenced in the relevant X-Script section.

When using the specification of referencing “implements”, the names, namespaces, and occurrences of all
objects in the element model are compared. Attributes and text values also compare their data types.

By using the specification of referencing “uses”, unlike “implements”, the names and occurrences of the
referenced element model may vary. However, the names and occurrences of his descendants and attributes
must be the same.

For both types of references, the structure (hierarchy) of the referenced models must match, the declaration of
attributes and text nodes, their data types, and the same number of reported occurrences must be identical.

The following example is based on chapter 10.3, where two X-definitions are placed in separate files. In
contrast to the initial example of this chapter, the following example is performed only for the X-definition

 123 / 207

assuming an XML document design using elements, with one attribute added to the VehicleElem element to
demostrate the complexity of the example (for the X-definition case for XML documents made up of elements
and attributes the solution will be similar):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0
 xd:name = "garageElemOne"
 xd:root = "Vehicles">

 <VehicleElem xd:script="occurs *" id="int()">
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </VuzElem>
</xd:def>

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garageElemTwo"
 xd:root = "Vehicles">

 <VehicleElem xd:script="occurs *; implements garageElemOne#VehicleElem" id="int()">
 <type>enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')</type>
 <vrn>string(7)</vrn>
 <purchase>date()</purchase>
 <manufacturer>string()</manufacturer>
 <model>string</model>
 </VuzElem>
</xd:def>

In the example above, there are two X-definitions, each one can be developed individually by another
programmer. The programmer of the X-Definition garageElemTwo uses the “implements” section which
ensures that its VehicleElem model structure will always be the same as the VehicleElem model from the X-
Definition garageElemOne. In the case of a disagreement, an error is detected that is detected already in the X-
definition compilation, thus notifying the different implementation of the model in question.

A similar statement is valid to the reference specification “uses”, except that the root element VuzElem in the
second X-definition can have any name and also a different number of occurrences.

124 / 207

11 Events in X-Script

 4 Description of structure of XML document by X-definition

 8 Construction Mode of X-definition

This chapter thoroughly describes how to validate and construct an XML document and tells what X-Script
events are generated in each phase. Since the validation and design modes vary, both modes are described
separately.

11.1 Events in the validation mode

In the validation mode, the validation process is controlled by an XML input document. When validating an
XML document, the X processor follows the definitions in the following order:

1. Beginning of root element processing: This is the moment when you start the validation from a Java
class or from X-definition by th xparse methods. At this point, only the name of the root element of an
XML document is known, and the corresponding X-definition is selected in which the model in
question is marked as root.

Events that may occur are:

 match: occurs before further processing when a model is selected;

 init: occurs after match;

 onIllegalRoot: occurs if an element model whose name is not found in the list of root
elements specified in xd:root attributet in the X-definition header.

Both events can be described in the X-definition header in element xd:def in the xd:script attribute. At
this point, only the name of the root element and its attributes is available to X-script commands.
According to the X-definition found, further processing continues. If an X-definition is not found and
the onIllegalRoot event is not reported, an error will be reported and the validation will terminate
immediately.

2. Beginning of an element processing: At this point, processing of an element from the input validated
XML document begins.

Events that may occur are:

 match: occurs if the model is searched in the X-definition;

 init: occurs if the model is found in the X-definition;

 onExcess: occurs after checking whether the occurrence of the element exceeds the
maximum allowed number. If an onExcess section in the X-Script of the element is not
specified, an error is reported, otherwise the action specified in this section is performed;

 onIllegalElement: occurs if the element description is not found in the X-definition or
when this element is defined as “illegal”. If this event is described in X-Script, the action will
be performed, otherwise an error will be reported.

X-Script now has all the attributes of the element, but still in its unprocessed form.

3. Process the list of attributes: The next step is processing of the list of attributes in the order how they
was declared in the model.

Events that may occur are:

 match: it occurs if an attribute is searched in the X-definition.;

 onIllegalAttr: it occurs if an attribute is not acceptable by definition. If the attribute is
not declared in the definition or if it is declared illegal, the specified action is called. If the
action is not declared, an error is reported;

 125 / 207

 onTrue: followed by the invocation of the content validation code. If the validation result is
"true", this event occurs and the specified action if specified, is performed;

 onFalse: the event occurs again after validating the content with the negative result. If the
onFalse action is not described, an error is reported, othewrwise the specified action is
performed. The onFalse event occurs only if the attribute is contained in the input data but its
value is empty and the option “acceptEmptyAttributes” is true;

 onAbsence: the event occurs if the attribute is described in the X-definition but is missing in
the input data. When the onAbsence action is described, the value of the attribute can be set
from X-Script by the specified action for example (however, in this case, it is recommended to
clear the actual reporter's error using the clearReports method, otherwise an error will be
reported). If an action is not described, an error is reported.

4. Element Content Processing (onStartElement event): After onset of element start and list of
attributes, the onStartElement event occurs. At this point, the resulting element is already available
after checking and processing its attributes, but still without descendants of this element. In the action
that you invoke, you can, for example, process relationships between attributes etc. This event occurs
even if the element has no child nodes.

5. Element occurrence. An element that has been read in the input data as the descendant of the
currently processed element continues processing the subject under step 2.

6. Text value occurrence: The occurrence of an element's child text node is handled in a similar way as
the occurrence of a new attribute. If the text value is defined as illegal, the onIllegalText event (instead
ofIllegalAttr for attributes) occurs. Other events and actions are the same as for attributes.

The text value is handed over to the processing only when the links to any entities have been resolved.
If multiple text values follow in the input data, these values are concatenated in one value, which also
applies to CDATA sections.

7. Exit element processing: After processing the inner nodes of the element, it is checked that the
processing result contains the required minimum number of inner elements and text values. If not, an
onAbsence events, as described in the X-Script of the element model, occurs. If not described, relevant
errors are reported.

After checking the element's content, the event finally occurs. The actions of event “finally” are first
done for all attributes and eventually. Finally, if the forget action is specified, the contents of the
element are deleted from the memory and deleted from the parent XML node (ie, this element will
not be part of the created XML document). However, the number of occurrence counters will remain
set.

8. If an XML document is processed in source form, an onXmlError event may occur. Actions for serving
this event can be specified in the xd:script attribute of X-definition header. If it is written in the X-
definition, it is possible to decide in the X-script whether the processing should proceed or the error
may be treated in some way. If the action is not specified, processing is terminated as a fatal error and
an error record is written to the reporter.

Upon completion of root element processing, the action of the event finally described in the X-script of the
relevant X-definition is called. If validation is invoked from the program, the generated XML document is
returned.

11.2 Construction mode events

In the construction mode, the construction process is controlled by X-definition. Instead of processing and
controlling the input data, the resulting object is created according to the instructions described in the X-
definition (in the Create Sections). The input data may have a completely different structure or even may not
exist at all. If it exists, the input data can be passed as an XML element object..

In constructive mode, the onExcess, onIllegalElement, onIllegalAttr, and onIlelegalText events should not occur
for a properly defined X definition. The processing steps are as follows:

126 / 207

1. Element mode selection: In the X-definition, the model of the constructed root element is selected
according to the parameter in the xcreate method. If the element's root model is not found, the
onIllegalRoot event occurs, the corresponding action is executed and the process is terminated.
Otherwise, the corresponding element model is selected and proceeds to step 2.

2. The action create is executed from the X-script of root element model. If the action is not described,
an element of the corresponding name is searched for in the input data (if such elements in the input
data are more than the maximum number of occurrences allowed, only the corresponding number is
selected). Otherwise, the same events occur as in the validation mode in step 2 (except the onExcess
event that does not occur in this mode).

3. The create actions described in the element model attribute list are performed. After the list of
attributes is created, it continues in the same way as in the validation mode in step 3.

4. The actions create for all descendants of the element model will be executed. Then, the processing
follows as in steps 4 through 6 in validation mode.

5. The processing is the same as in step 7 in validation mode.

 127 / 207

12 Debugger

 4 Description of structure of XML document by X-definition

 11 Using of X-definitions in Java code

Since X-definitions contain the functional code, X- definition offers a debugger that allows you to stop
executing commands defined in the X-script in the specified locations, and to track the data content of the
individual variables.

Two basic steps are required to run debugging mode:

1) Turn on the debugging mode with IDE editor. This mode is enabled by setting the property
"xdef_debug" to the value "true" and the property “xdef_display” on “errors”. Then if there are found
errors during compilation of X-definitions a window with the source of X-definition and with error list
is shown. You can correct errors, recompile X-definitions and run the project with corrected errors.
Acter compilation the debugger window is shoen and you can set break points. The program is
stopped at a break point and you can see actual data.The property you can pass to the Java in the
Properties object:

...
Properties props = new Properties();
props.setProperty(“xdef_debug”, “true”);
props.setProperty(“xdef_display”, “true”);
XDPool xp = XDFactory.compileXD(props, "/path/to/*.xdef");
...

Note if the argument with Properties in the compilation command is null then properties are retrieved
from System.getProperties (), which can be set from the command line.

2) Turn on the debugging mode in the system console. If the property “xdef_display” is set to “false” (it
is default value) and the debugging mode is enabled only by setting the property "xdef_debug" to the
value "true" the console debugger is invoked. You can add breakpoints

3) Add breakpoints or debug prints to X-Script..

You can also add special “trace()” or “trace(String)” methods to X-Script, which in the debug mode causes the
program to print on the standard console or on the debugger window the information about the location
where it was called and eventually the value specified as its parameter. You can also write a “pause()” method
that prints the information and stops the program and waits for the user to continue. Both methods are
ignored if the debug mode is not set.

In the above examples of command statements, the Java program from Chapter 4.8.1 was added, with
debugging support commands as outlined above. An X-definition with debugging methods was used:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle
 xd:script = "occurs 0..*;
 onStartElement {
 trace('This is before method myPrint()');
 myPrint('my input')
 }"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
 </Vehicles>

 <xd:declaration>
 int count = 0;

128 / 207

 void myPrint(String s) {
 if (1 < 2) {
 pause();
 outln(s);
 count++;
 }
 }
 </xd:declaration>
</xd:def>

The following is displayed on the console or in the debugger window:

TRACE "This is before method myPrint()"; /Vehicles/Vehicle[1]; pc=6
PAUSE /Vehicles/Vehicle[1]; pc=1

The lines with the word “TRACE” are result of the trace() method. The lines with “PAUSE” are result of the
pause() method. The position is written as xpath and pc is a program counter of the compied code. In the
pause you can enter other debugger commands.

 129 / 207

13 Processing and reporting errors

 4 Description of structure of XML document by X-definition

 9 Using of X-definitions in Java code

This chapter discusses the possible processing of error messages generated during the compilation of X-
definition, validation, or XML document writing, and is based on and quoted from [Doc4].

Error and information messages are passed through a reporter that allows you to write a processing report in
the form of org.xdef.sys.Report to the files or work memory of your computer. In chapters 9.1 and 9.2, the
org.xdef.sys.ArrayReporter was used to process error messages, which stores all messages into the computer's
memory.

The X-definition technology offers several other ways to report errors, warnings, or information reports. One
option is to use the X-Script method “error” (see chapter 13.3), or to construct an XML document containing a
description of the detected errors (see chapter 13.1) or to use the generally applicable X-definition error
message mechanism, ie. reporter (see chapter 13.2).

Although the reporter is not required to use X-Definitions, this mechanism is used to report X-definition or
XML document processing errors through X definitions. Therefore, it is recommended to read at least the
chapters 13.1 and 13.2 for understanding error and warning messages.

13.1 Generate XML file with errors

 5.5 Container

 8 Construction Mode of X-definition

 12 Debugger

An error or information message can be generated and written into a separate XML file directly when
performing the validation or construction of the required XML document. Generating an XML file with reports
can be done using construction mode and, together with the processing of the main XML document, is a
combination of validation and construction (see chapter 8.6). Normally, the X-definition processor generates
file with the recognized errors and warnings. However, you can also create your own report file as is described
in the following chapters.

13.1.1 Creating of error data (two-phase)

The following sample will generate XML with errors in the following form:

<Errors>
 <Error Vrn="1A23456" CodeError="12" />
 <Error Vrn="2B34567" CodeError="27" />
</Errors>

Because the XML file will be created in constructive mode, it is necessary to add a bug element model to the
appropriate X definition. It will also define the Vehicles element model in Chapter 4.7. Additionally, an error
method will be defined in the declaration section, which will construct one error record, ie. one Error element
(the variant for XML document design only by the elements will look similar):

130 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 1..*; onStartElement vrn=(String) @vrn; onAbsence myError(501)"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other'); onFalse myError(10)"
 vrn = "string(7) ; onFalse myError(11)"
 purchase = "date(); onFalse myError(12)"
 manufacturer = "string(); onFalse myError(13)"
 model = "string; onFalse myError(14)" />

 <Errors xd:script = "create errors">
 <Error xd:script = "occurs +"
 Vrn = "string(7)"
 CodeError= "int()"
 Line = "int()"
 Column = "int()" />
 </Errors>
 </Vehicles>

 <xd:declaration>
 /* Create an empty Container. */
 external Container errors = [];

 /* Saved value of vrn */
 String vrn;

 /** Write item to the Container “errors”.
 * @param code error code.
 */
 void myError(int code) {
 Context c = []; /* temporary Container */
 /* Set values from parameters to the temporary Contaner. */
 c.setNamedItem("Vrn", vrn);
 c.setNamedItem(CodeError", code);
 /* Add the temporary Container c to errors. */
 errors.addItem(c);
 }
 </xd:declaration>
</xd:def>

The "myError" method is called as an action of onFalse in the case of an error value of the attribute,
onAbsence in the case of a missing element etc. The individual error messages are stored in the external
variable "errors" of the data type Container using the "myError" method.

In the X-Script, two embedded methods, getSourceLine and getSourceColumn, were used to return the
current parser position (row and column) of the XML document.

The onStartElement event was used to save the vehicle registration number, in which the value of the vrn
attribute was stored in a variable of the same name.

In the first phase, X-definition is first used to validate an XML document with a list of vehicles, and in the
second phase, it is subsequently verified whether any errors have been generated. If so, then the XML program
explicitly generates XML document construction with errors:

import org.xdef.sys.ArrayReporter;
import org.xdef.xml.KXmlUtils;
import org.xdef.XDDocument;
import org.xdef.XDFactory;
import org.xdef.XDPool;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.PrintStream;

public class GarageError {
 public static void main (String[] args) {
 /* Compile X-definition source to xpool. */
 XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef");

 /* Create xdoc for validation of input data. */
 XDDocument xdoc = xpool.createXDDocument("garage");

 131 / 207

 /* Create ArrayReporter where to write recognized errors. */
 ArrayReporter reporter = new ArrayReporter();

 /* Validate the input data in 'garage.xml'. */
 xdoc.xparse("/path/to/vozovyPark.xml", reporter);

 /* Get the variable “errors” from xdoc. */
 XDContainer errors = (XDContainer) xdoc.getVariable("errors");

 /* Check if the container errors is not empty. */
 if (errors.getXDItemsNumber() > 0) {
 System.err.println("Incorrect imput data.");

 /* Create an XML document with errors. The variable errors still exists in the xdoc. */
 result = xdoc.xcreate("Errors", reporter);

 /* Write XML document with errors to a file. */
 KXmlUtils.writeXML("/path/to/garageErrors.xml", result);
 } else {
 /* Write validated document to the file 'xmlResult.xml'. */
 KXmlUtils.writeXml("/path/to/xmlResult.xml", xdoc.getElement());
 System.out.println("OK");
 }
 }
}

13.1.2 One step construction of error data

 13.1.1 Creating of error data (two-phase)

In the example from Chapter 13.1.1, a list of error messages was created during validation, and the XML report
file was generated in the next step in the Java program. The reported error file can be created directly using the
X-script and without calling the next step.

The solution is to add a method to the X-script that invokes the appropriate XML file construction and call this
method from the event of the X-definition root element:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 1..*; onAbsence myError(501); onStartElement vrn=(String)@rz;
 finally createErrors()"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other'); onFalse myError(10)"
 vrn = "string(7) ; onFalse myError(11)"
 purchase = "date() ; onFalse myError(12)"
 manufacturer = "string(); onFalse myError(13)"
 model = "string; onFalse myErrora(14)" />

 <Errors xd:script = "create errors">
 <Error xd:script = "occurs 1..*"
 Vrn = "string(7)"
 CodeError = "int()"
 Line = "int()"
 Column = "int()" />
 </Errors>
 </Vehicles>

 <xd:declaration>
 /* Create an empty Container. */
 external Context errors = [];

 /* Saved value of vrn */
 String vrn;

 /* The XML element with errors. */
 external Element xErrors;

132 / 207

 /** Write item to the Container “errors”.
 * @param code error code.
 */
 void myError(int code) {
 Context c = []; /* temporary Container */

 /* Set values from parameters to the temporary Contaner. */
 c.setNamedItem("Vrn", vrn);
 c.setNamedItem(CodeError", code);
 c.setNamedItem("Line", getSourceLine());
 c.setNamedItem("Column", getSourceColumn());

 /* Add the temporary Container c to errors. */
 errors.addItem(c);
 }

 /**
 * Check if an error message was generated by the X-definition processor or if tne Container errors
 * is empty and start the construction mode with the model “Errors”. If the container is empty but
 * an error was generated by the X-definition processor an empty XML document is generated to the
 * xErrors.
 */
 void createErrors() {
 if (errors() || errors.getLength GT 0) {
 xErrors = xcreate("Errors");
 } else {
 xErrors = null;
 }
 }
 </xd:declaration>
</xd:def>

The error() method returns the true value if an error message was generated by X-definition processor.
Therefore, if there are such errors and the error method has not been invoked, an empty XML document
xErrors will be created.

In the Java code will be data taken from the xErrors:

import org.xdef.sys.ArrayReporter;
import org.xdef.xml.KXmlUtils;
import org.xdef.XDDocument;
import org.xdef.XDFactory;
import org.xdef.XDPool;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.PrintStream;

public class GarageErrors {
 public static void main (String[] args) {
 /* Compile X-definition source to xpool. */
 XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef");

 /* Create xdoc for validation of input data. */
 XDDocument xdoc = xpool.createXDDocument("garage");

 /* Create ArrayReporter where to write recognized errors. */
 ArrayReporter reporter = new ArrayReporter();

 /* Validate the input data in 'garage.xml'. */
 xdoc.xparse("/path/to/garage.xml", reporter);

 /* Get the variable “errors” from xdoc. */
 XDContext errors = (XDContext) xdoc.getVariable("errors");

 /* Check if the container errors is not empty. */
 if (errors.getXDItemsNumber() > 0) {
 System.err.println("Incorrect imput data.");

 133 / 207

 /* Write XML document with errors to a file. */
 KXmlUtils.writeXML("/path/to/garageErrors.xml", xdoc.getVariable("xErrors").getElement());
 } else {
 /* Write validated document to the file 'xmlResult.xml'. */
 KXmlUtils.writeXml("/path/to/xmlResult.xml", xdoc.getElement());
 System.out.println("OK");
 }
 }
}

Another procedure for constructing an XML file with error messages has been chosen in the example in
Chapter 14 where XML is made by writing XML objects through the output stream in external methods.

Another option would be to construct an element, ie a DOM object, in an external method and pass it on to the
KXmlUtils utility.

13.2 Reporter

 12 Debugger

In case you need to define a custom set of error messages generated in validtion or constructing of XML
documents, the X-definition technology provides a mechanism for defining multilingual error messages. There
are three main tools for this purpose: reports, report tables, and reporters. This tools are so general that they
allow the use of reported messages from X definition definitions or in any application, not just when processing
XML data.

This whole chapter is based on and quotes from [Doc4].

13.2.1 Reports

Reports are objects that are used to handle text messages. Each report is:

 modifiable – ie. it may contain a modifiable part, the so-called model text. Modifications are provided
by modifiable text values and parameters with a specific value;

 localizable – ie. it may exist in multiple language variants;

 unifiable – ie each report can be uniquely identified using identifiers.

Each report is of a type that expresses the purpose for which the report serves (e.g., an error, warning, or an
informative message). Language localization of reports is done through so-called report tables (see chapter
13.2.2), which are managed by the system manager (see chapter 13.2.3).

13.2.1.1 Report identifiers

Each report is uniquely identified by its identifier. The identifier is made up of:

 prefix – serves to identify the report table to which the report belongs. The prefix must consist of
large ASCII characters with a length of 2 to 10 characters;

 identification part – is a unique identifier within the report table. It must start with an ASCII character
that is not a capital letter, followed by any sequence of small as well as large ASCII letters, digits, or
underscores (_)..

Examples of valid identifierfor the prefix „VHCL“: VHCL001, VHCL_vrn, VHCLcolor, VHCL0120_1 etc.

13.2.1.2 Model text, parameters and links

The report model template is the text string can contain parameters and possibly links to other reports. A text
string can contain characters in any UTF alphabet.

The parameter of report template model starts with "&" and bracket "{" followed by parameter name and
ending with closing bracket "}". Usually the parameter name is a number corresponding to the report mehod

134 / 207

argument number. However, the parameter name may also begin with an ASCII letter, a digit, or an underscore
"_" followed by any sequence of ASCII letters, digits, or underscores.

Examples of text models with parameters:

 Vehicle "&{0}" was not found in the database &{1}

In order to be able to handle cases where the parameter is not specified for the model text, the parameter can
be added to separate brackets after the parameter the given parameter only. This text is writte to the resut
text only if the value of the parameter is missing:

 Vehicle "&{0}" was not found&{1}{ in the database }

If it is now assumed that the parameter &{0} with the value "1A23456" and &{1} with the "alpha" value will now
be assumed in the modification text (text containing the parameter values, see chapter 13.2.1.3), then the
following text will be reslut:

 Vehicle "1A23456" was not found in database alfa

 Vehicle "1A23456" was not found in database alfa

However, if the parameter &{1} is not included in the modifying text, then the result is the following:

 Vehicle "1A23456" was not found in database

 Vehicle "1A23456" was not found

For a given parameter, it is possible to include another text in the model text into another pairs of brackets
(second in the order), which will then be listed after the relevant parameter if included in the modification text:

 Vehicle "&{0}" was not found &{db}{ in database }{ of the application beta.}

For parameter &{0} with the value "1A23456" and &{1} with the value "alpha", after the modification, the
resulting text will be as follows:

 Vehicle "1A23456" was not found in database alfa of the application beta.

Without the & {1} listed parameter, the result will be:

 Vehicle "1A23456" was not found

References to other reports assume the existence of the appropriate report table to which the referenced
reports belong. Writing a link to another report model is similar to a parameter, but starts with a three-
character "&{#" followed by the identifier of the report and is completed with a bracket "}".

Let there be a table of XX reports with an XX123 report that will list information about the position of an source
XML object:

XX123: &{line}{ on the line }&{xp}{, xpath=}

Next, we have the following model of text referenced to report XX123:

 Unknown vehicle registration number '&{0}'&{#XX123}

For parameters &{0} with "2B34567", &{line} with "125" and &{xp} with "/Vehicles/Vehicle[17]" the result will
be:

 Unknown vehicle registration number '2B34567' na řádce 125, xpath=/Vozy/Vozidlo[17]

13.2.1.3 Modification of the model text of the report

Chapter 13.2.1.2 lists various variants of model texts containing parameters and ways of their construction.
Below is a structure of modification strings that is used to assign values to parameters in model text.

In the text model frm the previous chapter:

 Vehicle "&{0}" was not found in database &{1}

the entry of the modification string that assigns the value "1A23456" of the parameter &{0} and the value
"alpha" of the parameter &{1) is given below:

 &{0}1A23456&{1}alfa

 135 / 207

As can be seen from the example, the modification string only lists the parameters "&{" followed by the
parameter name, bracket "}", and the value of the parameter. Parameters are not separated by any additional
characters.

13.2.1.4 Reporting Links in the Modification String

In some cases, it is also necessary to refer to the report directly from the modification chain. The entry of the
link is inserted as a sequence of characters "&{#" followed by the identifier of the report ending with the
parenthesis "}".

The following sample assumes the existence of the STT02 report whose model text value is:

 crashed&{state}{/}

We also have a text model report:

 State of vehicle: &{state}

For the modification string:

 &{state}{#STT02}

The result after modification will be:

 Stav vozidla: crashed

After adding any parameters for the STT02 report to the modification string:

 &{state}{#STT02 &{state}OK}

The result after modification will be:

 State of vehicle: crashed/OK

The X-Definition resource library has eg. a message table with a "SYS" prefix, in which the SYS000 report is
declared, which adds the line number, column, and xpath of the currently processed location in the XML
document. In the previous chapters, it is similar to the sample report XX123 in chapter 13.2.1.2 whre the
mpodel text can be modified as follows:

 Unknown vehicle registration number '&{0}'&{#SYS000}

13.2.1.5 Report Types

Report type specifies the purpose for which the report serves. X-definition technology supports the following
types of reports:

 ERROR – error message;

 FATAL – fatal error;

 LIGHTERROR – less serious errors;

 WARNING – warning messages;

 EXCEPTION – exceptions;

 KILL – report about the violent end of the program;

 TRACE – the program debugging report;

 AUDIT – auditing information;

 TEXT – text message;

 INFO – information message;

 UNDEF – nedefinovaný typ reportu.

 The setting of the desired report type is described in chapter 13.2.1.8.

When reporting a report, its type is always the first letter of the type name followed by the report identifier
and the modified text.

136 / 207

The following example lists the ERROR report with VHCL001::

E VHCL001 Vehicle "1A23456" was not found in database alfa

For the following report type, the initial letter type and the report identifier is not printed; only the text is
printed after the modification is made:

 TEXT – report contains a general text;

13.2.1.6 User report tables

Report tables are stored in source form as properties files in the resources library in the org.xdef.msg
package, which is a part of the distributed X-definition file jar. The name of the file with report table starts with
the prefix name follpwed with the character “_” (underscore) and the 3 letters ISO name of the language. The
name extension must be “properties” (see chapter 13.2.1.9).

Example of the source report table, the English version file SYS_eng.properties:

Description of messages.
SYS_DESCRIPTION=Messages for basic messages of the cz.syntea.xdef package
Prefix of messages.
_prefix=SYS
ISO name of language of this reports.
_language=eng
ISO name of the default language.
_defaultLanguage=eng
Localized name of language.
SYS_LANGUAGE=English

*************** Messages: ***************
SYS000=&{line}{; line=}&{column}{; column=}&{sysId}{; source="}{"}&{xpath}{; xpath=}&{xdpos}{; X-position=}
SYS010=Compiled: &{c}, build version: &{v}, date: &{d}
SYS012=Errors detected&{0}{: }
SYS013=Too many errors
...
SYS015=Can't access system seq. ID file &{0}
SYS033=Parser can't continue; too many nested includes&{#SYS000}
SYS034=IO error detected on &{0}&{1}{, reason: }
...
SYS064=Datetime mask error: missing closing character&{0}{: "}{"}&{1}{, position: }
...

The user can also create a similar custom report table which must be available in the classpath
org.xdef.msg.

13.2.1.7 Timestamp

The X definition technology allows you to attach the time information when a report was created (by the
setTimestamp method on the report object) to the report. The time stamp is inserted into the report object
as a long integer corresponding to the number of milliseconds beginning in 1990. If the time report is not
connected to the report, the value is set to zero.

13.2.1.8 Programing of reports in Java

The reports are implemented using the org.xdef.sys.Report class. For the most common case, the constructor
has the following form:

Reporter(byte type, String reportID, String text, String modification)

 type – corresponds to one of the constants for types: Report.ERROR, Report.FATAL, etc;

 reportID – report identifier, eg VHCL001;

 text – the default model text to be used when a report is not found in any table of reports (may be null
if the report model exists);

 modification – modification string, eg &{0}1A23456&{line}125&{column}10&{xpath}{/root}.

 137 / 207

Reports can be created using static methods of the class Report. The following sample creates a report with the
ERROR type:

Report r1 = Report.error("VUZ001",
 "Unknown vehicle '&{0}' in database &{1}", "1A23456","ALFA" &{line}125&{colunn}10&{xpath}{/root}");

Note that the parameter names with the sequence number only are set as parameters of the method. The
named parameters can be added as a parameters after the list of sequential parameters. However, you can
write the whole modification text as only one parameter:

Report r1 = Report.error("VUZ001",
 "Unknown vehicle '&{0}' in database &{1}", "1A23456&", "ALFA&{line}125", "&{column}10&{xpath}{/root}");

Note instead of the method error you can use eg. method fatal, warning etc.

This way, you can use reports that are not yet in the spreadsheets and can be added later in the development
of the application. These are so-called unregistered reports. If a table already exists, it is allowed instead of the
report text id to specify a null value that causes the report to be generated from the text model in the report
table (see chapter 13.2.2).

13.2.1.9 Registered and unregistered form of reports

Chapter 13.2.1.8 lists examples of creating reports using identifiers defined as text strings. However, most
applications use a stable set of reports, so it is also possible to use constant identifiers instead of text values -
but first, you need to “register” reports through report tables.

Report tables in which reports are contained are written in their basic form as a property file (see chapter
13.2.2). However, access to the appropriate files when running an application may not be effective. Therefore,
the report table can be registered and a Java class that is automatically generated from the source property file
(see chapter 13.2.2.1). Registered reports are then accessible more quickly and with certainty that they exist,
so when using registered reports, the model text is not mentioned because it has to be in the corresponding
table of reports in the generated Java class. Instead of a string-shaped identifier, the Report ID is used to
construct a report (which is a long number and is taken from a registered table in the generated Java class. The
Java identifier of a report corresponds to the report identifier.

If the report table VHCL was not registered the Java code will be:

import org.xdef.sys.Report;

public class RegisteredReportExample {
 ...
 // The report identifier must be in the string form and there must be also

// the pasrameter with the report model text. However, if the table or reports existe
// the parameter with the report model text may be null.

 Report r = Report.fatal("VHCL001", "Unknown vehicle '&{0}'", "1A23456");
 ...

Example of the Java source using a registred report table:

import org.xdef.msg.VHCL; // registred reports with the prefix VHCL
import org.xdef.sys.Report;

public class RegisteredReportExample implements VHCL {
 ...
 // Text with the report model text is missing because the report is in the registered table
 // Ihe identifier of the report is VHCL001
 Report r = Report.fatal(VHCL001, "1A23456");
 ...

13.2.2 Tables of reports

Report tables describe the text versions of individual reports in different language versions. The report table is
in the form of properties in its source form.

For each report identifier, there is just one item in the report table, designated by the property name which
matches the appropriate report identifier. The property value ontains a report text model.

138 / 207

Each report table must have a property item with the name of the table prefix (property "_prefix") and the
property item describing the language version of text models in the form of ISO code (property "_language").
The language code must be ISO-639-2, ie it must be three letters with small ASCII letters (for example, English
"eng", Czech "ces", German "deu", etc; see http://www.loc.gov/standards/iso639-2). The name of items
describing the text models reprezents the reports in specific language, as shown in the following samples of the
report tables

Each language version of the table should have defined all reports. As the default language, English is set, so
there must be an English mutation for each report table. If the desired language mutation is not found by the
application, the default language version of the report table will be used.

Example of the English version of table (file name: VHCL_eng.properties):

_language=ces
_prefix= VHCL
VHCL001 eng=Vehicle "&{0}" wasn't found &{1}{ in database }
VHCL002 eng=Vehicle "&{0}" wasn't found &{1}{ in directory }
VHCL016 eng=Database &{0} not found.
 ...
VHCL237 eng=Vehicle type &{t} not supported.
 ...
VHCL580a eng=The total damage by accident &{0} CZK
VHCL580b eng=The total damage by accident &{0} EUR
VHCL580c eng=The total damage by accident &{0} USD
 ...
VHCL905 eng=System error

The Czech version of report table VHCL (file name: VHCL_ces.properties):

_language=ces
_prefix=VHCL
VHCL001=Vozidlo "&{0}" nebylo nalezeno &{1}{ v databázi }
VHCL016="Databáze &{0} nenalezena.
VHCL237=Vozidlo typu &{0} není podporováno.
VHCL580a=Celková škoda při nehodě &{0} Kč
VHCL580b=Celková škoda při nehodě &{0} EUR
VHCL905=Chyba systému

Note that in the English version of the report table is also a VUZ580c report, which will be used even if the
target language is set to Czech (because this report is missing in the Czech version).

13.2.2.1 Registering report tables

You can register the report tables using the org.xdef.sys.RegisterReportTables class by running the
main methods. You can define the following parameters::

 -i followed by a list of source XML files with report tables ("wildcard" characters can be used to select
multiple files, ie "*", "?", etc.);

 -o followed by a directory where the Java classes are to be generated;

 -c determining the encoding of the input file (default setting is taken from the system setting);

 -d sets the default report language (default is English).

The RegisterReportTables utility will generate Java-classes with report tables in the specified output
directory. In order to ensure uniqueness or, the uniqueness of the report tables, the generated Java classes
should be placed in the org.xdef.msg package. Each prefix corresponds to one class with a list of report
identifiers. The name of the generated class matches the table prefix name.

For the example from Chapter 13.2.2, the following class would be generated:

org.xdef.msg.VUZ.java

13.2.3 System report manager

Access to reports from their report taebles is provided by the system manager through the
org.xdef.sys.SManager class. When JVM starts, only one instance of this class is created automatically.
The system manager ensures availability of reports tables, setting the anguage environment, system

http://www.loc.gov/standards/iso639-2

 139 / 207

properties, and more. The manager also allows users to add or delete the actual report tables. Initial settings
are taken over by the manager from system properties. The manager instance is accessible through the
SManager.getInstance() method.

The following example shows how to obtain a manager instance and add report tables with the VHCL prefix for
English and Czech, and set up Czech as the default language. Report tables can be imported from both the local
repository or from the Internet, for example:

SManager manager = SManager.getInstance();
manager.setProperty("xdef.msg.VHCL_eng", "http://www.syntea.cz/xdef/VHCL_eng.properties");
manager.setProperty("xdef.msg.VHCL_ces", "C:/path/to/VHCL_ces.properties");
manager.setLanguage("ces");

All properties that have been set up by the system manager may, of course, also be taken over before being
initialized from System.properties.

In the case of multi-threaded programming, when each thread uses a different language, it is necessary to
synchronize the part of the program that works with the system manager settings.

13.2.4 Reporters

Reports (Chapter 13.2.1) and report tables (Chapter 13.2.2) allow you to create reports within a given
application. These rports can be handled as character strings, or you also need to create files of such messages.
To create report files are available so called reporters

Reporters are available as Java-classes, which implements following interfaces:

a) org.xdef.sys.ReportWriter;

b) org.xdef.sys.ReportReader.

X-definition has the following implementations of reporters:

 org.xdef.sys.ArrayReporter implements both interfaces, ReportWriter and the
ReportReader. This reporter writes messages to the memory and it is able both, to write reports or
to read reports.

 org.xdef.sys.FileReportWriter writes reports to a file;

 org.xdef.sys.FileReportReader reades reports from a file;

 org.xdef.sys.NullReportWriter this reporter reports "throws away";

13.2.5 Reports in exceptions

In the case of generating a program exception, it is necessary to pass the generated report describing the cause
of the error to the parent control structure just by the exception. Reports can pass on those exceptions that
implement the org.xdef.sys.SThrowable interface.

The text that the program exception carries will be the relevant report, and it is possible to continue working
with the report when the exception is captured. The X-definition library has the following exceptions that can
handle reports (this is an extension of the basic exceptions from the j java.lang package.

 org.xdef.sys.SError;

 org.xdef.sys.SException;

 org.xdef.sys.SExternalError;

 org.xdef.sys.SIllegalArgumentException;

 org.xdef.sys.SIOException;

 org.xdef.sys.SNullPointerException;

 org.xdef.sys.SParseException;

140 / 207

 org.xdef.sys.SRuntimeException;

 org.xdef.sys.SUnsupportedOperationException;

 org.xdef.sys.SDOMException.

The following example shows using a report exception:

try {
 String pojistovna;
 ...
 throw new SException(VUZ057, "&{as}" + pojistovna);
 ...
} catch (SException ex) {
 if ("VHCL057".equals(ex.getID())) { ... }
}

13.2.6 Example of use

The following is a sample of the simple reporting of error reporting reports.

The sample tables (in Czech and English versions) as defined in chapter 13.2.2 will be used as report tables,
with only those reports explicitly mentioned here.

Consequently, it is appropriate to register the tables of reports, which are now only in the source form in XML
files (see chapter 13.2.2.1):

java -cp org.xdef.sys.RegisterReportTables -i /path/to/VHCL*.properties -o /path/to/src/org/xdef/msg

Now you can use the reports in the following program demo that searches for the entered registration mark in
the database and calculates the total damage recorded for the vehicle from traffic accidents:

import org.xdef.msg.VHCL; // registered reports with the VHCL prefix
import org.xdef.sys.*;

public class VehicleAccidents implements VHCL {

 public static void main(String[] args) {
 // Create reporter
 ArrayReporter reporter = new ArrayReporter();

 // Put the unregistered message do reporter
 reporter.putReport(Report.text(null, "Start programu", null));

 // check the vehicle registration number
 String vrn = "1A23456";

 // Run validation of XMLdata
 XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef");
 XDDocument xdoc = xpool.createXDDocument("garage");
 xdoc.xparse("/path/to/vozovyPark.xml", reporter);

 // add user report messages to the reporter
 try {
 // the method getTotalLoss should return the total loss for the given vrn
 // The method throws am exception the vrn is not returned from the database.
 int total = getTotalLoss(rz);
 // zápis informace o celkové škodě do reportéru
 report.putReport(Report.info(VHCL580a, "&{total}" + total));
 } catch (Exception ex) {
 if (ex instanceof NoSuchRzException) {
 // vrn not found
 reporter.putReport(Reporter.error(VHCL001, "&{rz}" + rz));
 } else if (ex instanceof DatabaseException) {
 // the databse is not available
 // in the report VHCL016 will not be the database name and the parameter
 // will be ignored
 reporter.putReport(Reporter.error(VUZ016, null));
 }
 }

 141 / 207

 // check if an error report was generated
 if (reporter.errors()) {
 // write mesage
 System.err.println(reporter.printToString());
 } else {
 // No error reports generated; write the report SYS069 (“No errors found”)
 report.putReport(Report.text(SYS069));
 System.out.println(reporter.printToString());
 }
 }
}

Both exceptions (DatabaseException a NoSuchRzException must implement the SThrowable
interface, see 13.2.5).

Through the reporter, you can also access individual reports as shown in the following code snippet [Doc1]:

import org.xdef.msg.VHCL; // registered reports with the VHCL prefix
import org.xdef.sys.*;

public class VehicleAccidents implements VHCL {

 public static void main(String[] args) {
 // Create reporter
 ArrayReporter reporter = new ArrayReporter();

 ...
 // chack if there are error reports
 if (reporter.errors()) {
 // prepare report reader
 ReportReaderInterface reader = reporter.getReportReader();

 // print reports
 Report rep;
 while ((rep = reader.getReport()) != null) {
 System.err.println(rep.toString());
 }
 } else {
 // No error reports; write the report SYS069 (“No errors found”)
 report.putReport(Report.text(SYS069));
 System.out.println(reporter.printToString());
 }
 }
}

In the example of VehicleAccidents.java listed above, an interface implementation technique was used
to use the VHCL repository table. Such a solution is too static, and it is better to use the system manager to
retrieve the corresponding report tables, as shown in the following example:

public class VehicleAccidents2 {

 public static void main(String[] args) {
 // prepeare files with the reports
 String[] messages =
 new String[] {"/path/to/VHCL_ces.properties", "/path/to/ VHCL_ces.properties "};

 // Create report tables – (the default language will be english (eng)
 ReportTable[] rt = SManager.createReportTables(messages, "eng", null);

 // prepare report manager
 SManager sm = SManager.getInstance();

 // add report tables
 sm.addReportTables(rt);
 rt = null;

 // set supported languages
 sm.setLanguage("eng");
 sm.setLanguage("ces");

 // prepare reporter
 ArrayReporter reporter = new ArrayReporter();

 // put the unregistered report to the reporter
 reporter.putReport(Report.text(null, "Programu started", null));

142 / 207

 // the vehicle registration number
 String vrn = "1A23456";

 // zde může probíhat běžná validace nebo konstrukce XML dokumentu – hlášení bude do
 // reportu vkládat automaticky nebo budou generována metodou error z X-Scriptu
 XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef");
 XDDocument xdoc = xpool.createXDDocument("garage");
 xdoc.xparse("/path/to/garage.xml", reporter);

 // add messages to the reporter
 try {
 // Suppose the method getTotalLoss returns for the vrn the total loss.
 // The metoda throws an exception if the databes is not available
 // (DatabaseException) or if the vrn not exists (NoSuchVRNException)
 int total = getTotalLoss(vrn);
 // write report
 report.putReport(Report.info(VHCL580a, "&{total}" + total));
 } catch (Exception ex) {
 if (ex instanceof NoSuchVRNException) {
 reporter.putReport(Reporter.error(VHCL001, "&{vrn}" + rz));
 } else if (ex instanceof DatabaseException) {
 reporter.putReport(Reporter.error(VHCL016, null));
 }
 }

 // check if an error was reported
 if (reporter.errors()) {
 System.err.println(reporter.printToString());
 } else {
 report.putReport(Report.text(SYS069));
 System.out.println(reporter.printToString());
 }
 }
}

13.3 The error method

 12 Debugger

 13.2 Reporter

The reports can also be written from X-Script to the reporters. For this purpose, the error method is reserved
in the following variants:

 error(String s) – writes an error message to a reporter specified when running a validation or
construction from a Java program and returns a value of false;

 error(String s, String m, String t) – writes an error message corresponding to the report
with identifier s, modification text m and modifier t to the reporter and returns false. The
modification text is used in case the report is not found in the report table.

An example of using the method is given in the following example (X-definition is based on the example of
chapter 4.10 and the table of reports are taken from chapter 13.2.2):

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other'); onFalse typErr()"
 vrn = "vrn(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />
 </Vehicles>

 143 / 207

 <xd:declaration>
 /** Check the form of a vehicle registration number.
 * @param len number of characters for VRN.
 * @return true, if VRN is correct, otherwise return false.
 */
 boolean vrn(int len) {
 String text = getText();
 if (text.length() != len) {
 return error(text + " has incorrect format. Required is " + len + " characters.");
 }
 return true;
 }

 /** Put the error the vehicle is incorrect. */
 void typErr() {
 String typ = getText();
 // error(String s, String m, String t)
 error("VHCL237", "Vehicle type &{t} is not supported", "&{t}" + typ);
 }
 </xd:declaration>
</xd:def>

Input XML document:

<Vehicles>
 <Vehicle
 Type = "traktor"
 vrn = "1A23456"
 purchase = "2011-02-01"
 manufacturer = "Škoda"
 model = "Yeti" />
</Vehicles>

The error outout will be:

E VRN237: The vehicle type tractor is not supported.

13.4 Automatically generated errors

The errors that are detected by an X-definition tool when validating or constructing an XML document, such as
type checking, and not treated in X-Script, such as onFalse, are automatically written to the appropriate
reporter that was specified as the xparse or xcreate method parameter of the XDDocument object.

If a null value has been entered instead of a reporter, then if they have been generated some errors, they are
returned from the xparse or xcreate method as an exception to SRuntimeException.

13.4.1 Generating into a reporter

For a Java code when a reporter is assigned to the X-definitions, all messages are written to the appropriate
reporter:

// Create ArrayReporter
ArrayReporter reporter = new ArrayReporter();

// Validate XML document according to the X-definition
XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef");
XDDocument xdoc = xpool.createXDDocument("garage");
xdoc.xparse("/path/to/garage.xml", reporter);

...

144 / 207

// using the error method, you can see if any error reports have been written to the reporter
if (reporter.errors()) {

// In the reporter are FATAL, ERROR, or LIGHTERROR reports, the printToString method converts all
// reports into text and in the specified language

 System.err.println(reporter.printToString("ces"));
} else {
 // No errors were found in the reporter.

// For the listing, the registered report model SYS069, which contains "No errors found" is used.
 report.putReport(Report.text(SYS069));
 System.out.println(reporter.printToString("ces"));
}

The output of the report reporter, for example:

E XDEF525: Attribute "xxx" not allowed; line=1; column=10; xpath=/Vehicles/Vehicle[1]

13.4.2 Generate an exception listing error

However, if no reporter is reported (i.e., is null), an exception is generated containing the relevant reports after
the xparse or xcreate method ends:

// Validate XML document according to the X-definition
XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef");
XDDocument xdoc = xpool.createXDDocument("garage");
try {
 xdoc.xparse("/path/to/garage.xml", null);
} catch(Exception es) {
 System.err.println(ex);
}

...

It will be printed:

org.xdef.sys.SRuntimeException: E XDEF525: attribute "xxx" not allowed; line=1; column=10;
xpath=/Vehicles/Vehicle[1]

A similar result can be achieved by calling the checkAndThrowErrorWarnings() method on a reporter that
converts all reports into SRuntimeException:

// Create ArrayReporter
ArrayReporter reporter = new ArrayReporter();

// Validate XML document according to the X-definition
XDPool xpool = XDFactory.compileXD(null, "/path/to/garage.xdef");
XDDocument xdoc = xpool.createXDDocument("garage");
xdoc.xparse("/path/to/garage.xml", reporter);
...
// it the reporter contains errors the exception with a meesage about errors will be thrown.
reporter.checkAndThrowErrorWarnings();

Example of the message of the thrown exception:

org.xdef.sys.SRuntimeException: E SYS012: Errors detected:
E XDEF525: attribute "xxx" not allowed; line=1; column=10; xpath=/Vehicles/Vehicle[1]

13.5 Errors when compiling X-definition

An error may be generated when you translate the X-definition from the source code.

Let's have an X-definition that contains errors in X-script:

 145 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "ocur 0..*"
 type = "enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "string(7); onTrue *"
 purchase = "date(); onFalse myPrint()"
 manufacturer = "string()"
 model = "string" />
 </Vehicles>
</xd:def>

There are the following errors in the X-definition:

 On the line 7 “ocur” (should be “occurs”

 On the line 9 “onTrue *” is not correct written action (should be a statement)

 On the line 10 the method “myPrint” is not declared

Suppose the specified X-definition is in the /path/to/garageErr.xdef file. The message of the exception
SRuntimeException thrown by the method compileXD will be:

org.xdef.sys.SRuntimeException: E SYS012: Errors detected:
E XDEF425: Script error; line=7; column=30; source="/path/to/garageErr.xdef "
E XDEF426: Action statement expected; line=9; column=26; source="/path/to/garageErr.xdef "
E XDEF443: Unknown method: 'myPrint()'; line=10; column=54; source="/path/to/garageErr.xdef"

146 / 207

14 Appendix A – complete example

 4 Description of structure of XML document by X-definition

 5.5 Container

 8 Construction Mode of X-definition

 9 Using of X-definitions in Java code

 10 Structuring of X-definitions

 13 Processing and reporting errors

Appendix A summarizes in a simple example all the basic options that X-definitions offer for processing XML
files, both in validation mode and in construction mode.

The sample below handles a fictitious and very simplified traffic accident record that is first validated (both the
accuracy of the XML document structure and the accuracy of the document data types, including validation of
the values against the existing vehicle registration value database). The validation process calculates statistics
using user methods directly in X-definition as well as using external methods. The results of computation are
gradually inserted into a Context data object object. It is then used after the processing of the relevant element
from the input file to construct part of the output XML document with a summary of accidents.

The first is the Java class, including its external methods for use in X-Definitions, which will prepare the
required environment (load and set the necessary objects) and start validation of the simpleAccident.xml
file:

src/accident/SimpleAccident.java

package accident;

import org.xdef.XDDocument;
import org.xdef.XDFactory;
import org.xdef.XDPool;
import org.xdef.XDXmlOutStream;
import org.xdef.proc.XXNode;
import org.xdef.sys.ArrayReporter;
import org.xdef.xml.KXmlUtils;
import java.net.URL;
import java.net.URLClassLoader;
import java.util.Random;
import org.w3c.dom.Document;
import org.w3c.dom.Element;

 147 / 207

/**
 * Simple example of using X-definition for validating and processing input data and generating new data.
 *
 * @author Jaroslav Srp
 */
public class SimpleAccident {

 /* Run SimpleAccident project
 * @param inData path to the input XML file.
 * @param cars path to the file with data about vehicles.
 * @param outData path to the output XML file
 * @param errData path of the generated error XML file.
 * @throws Exception if an errors occurs.
 */
 public static void process(String inData,
 String cars,
 String outData,
 String errData) throws Exception {
 // get URL location of the X-definition
 URL url = URLClassLoader.getSystemResource("accident/simpleAccident.xdef");
 // compile X-definition
 XDPool xpool = XDFactory.compileXD(null, url);
 // create XDDocument
 XDDocument xdoc = xpool.createXDDocument("simple");
 // Read and validate the input document with data about vehicles
 Element el = KXmlUtils.parseXml(cars).getDocumentElement();
 // Set the parsed data tu the field “cars” in the X-definition
 xdoc.setVariable("cars", el);
 // Set the "out" X-definition variable as a stream to the outData file, where
 // will be written the generated output with statistics
 xdoc.setVariable("out", XDFactory.createXDXmlOutStream(outData, null, true));
 // an instance of this class that contains the external method "error" for writing errors
 // into the output XML errData file
 SimpleAccident writer = new SimpleAccident(errData);
 xdoc.setUserObject(writer);
 // Create the reporter
 ArrayReporter reporter = new ArrayReporter();
 // Validace the inData file
 xdoc.xparse(inData, reporter);
 // Check validation errors
 if (reporter.errorWarnings()) {
 // Display error reported by X-definition validation
 System.err.println(reporter);
 } else {
 // No reported by X-definition validation
 System.out.println("No input data format errors detected");
 }
 // Check if errors were detected by the process
 int errs = xdoc.getVariable("errs").intValue();
 if (errs != 0) {
 System.err.println("Errors detected in the input data.");
 }
 // Close the stream with errors
 writer.closeAll();
 }

 //
 // Methods called from the X-definition and the variables
 //

 // File name of the file with errors
 private final String _errorFile;

 // writer
 private XDXmlOutStream _errorWriter;

 // XML document with errors
 private Document _errorDoc;

148 / 207

 /**
 * A constructor for creating an user object that is passed to the X-definition for use in an external
 * method "error".
 * @param errorFile the path to an XML file to which errors will be written.
 */
 public SimpleAccident(String errorFile) {
 _errorFile = errorFile;
 _errorWriter = null;
 }

 /**
 * The constructor to create a new object in this class. It has only an auxiliary purpose.
 */
 public SimpleAccident() {
 _errorFile = null;
 }

 // total number of injured persons
 private static int sumInjured = 0;

 // total number of killed persons
 private static int sumKilled = 0;

 // total loss
 private static int total = 0;

 /**
 * An external method that adds the number of injured and killed from the currently processed element to
 * total totals.
 * @param xnode currently processed element.
 */
 public static void infoPeople(XXNode xnode) {
 String s = xnode.getXXElement().getAttribute("injury");
 sumInjured += Integer.valueOf(s);
 s = xnode.getXXElement().getAttribute("death");
 sumKilled += Integer.valueOf(s);
 }

 /**
 * External method that returns a string value that contains total statistics.
 * @return string with total statistics..
 */
 public static String statistics() {
 return String.valueOf("Total injured: " +sumInjured + " and killed: " + sumKilled
 + ". Total loss: " + total + " thousand.");
 }

 /**
 * External method that generates a random ID to record the resulting statistics.
 * @return ID.
 */
 public static String generateIdStats() {
 Random rn = new Random();
 int id = rn.nextInt(999);
 return String.valueOf(id);
 }

 /**
 * External method that adds to the total damage caused by the accident being handled.
 * @param xnode the currently processed element in which this method was invoked.
 * @param loss the loss of the accident.
 */
 public static void loss(XXNode xnode, long loss) {
 total += loss;
 }

 149 / 207

 /**
 * External method that writes an error into an XML file.
 * @param xnode the currently processed element in which this method was invoked.
 * @param code error code.
 */
 public static void myError(XXNode xnode, long code) {
 // Get user object from the X-definition
 SimpleAccident x = (SimpleAccident) xnode.getUserObject();
 // create an XML writer for errors
 if (x._errorWriter == null) {
 try {
 // writer has not yet been created, so open a stream to write errors to an XML file
 x._errorWriter = XDFactory.createXDXmlOutStream(x._errorFile, "windows-1250", true);
 } catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());
 }
 // a document with a root element Errors is created
 x._errorDoc = KXmlUtils.newDocument(null, "Errors", null);
 // write XML header and a root element
 x._errorWriter.writeElementStart(x._errorDoc.getDocumentElement());
 }
 // auxiliary element for writing an error
 Element el = x._errorDoc.createElement("Error");
 el.setAttribute("ErrorCode", String.valueOf(code));
 // find the parent element Accident in which the id attribute is available
 while (xnode != null && !"Accident".equals(xnode.getElement().getNodeName())) {
 xnode = xnode.getParent();
 }
 el.setAttribute("id", xnode.getElement().getAttribute("id"));
 el.setAttribute("XPos", String.valueOf(xnode.getXPos()));
 x._errorWriter.writeNode(el);
 }

 /**
 * Close the output stream for writing errors.
 * (This method is not called from the X definition.)
 */
 public void closeAll() {
 if (this._errorWriter != null) {
 this._errorWriter.writeElementEnd(); // end the root element
 this._errorWriter.closeStream(); // close writing errors
 }
 }

///
// Run this example twith given data from resources.
///
 public static void main(String[] args) throws Exception {
 SimpleAccident.process("resources/input/data.xml",
 "resources/input/cars.xml",
 "resources/output/result.xml",
 "resources/output/errors.xml");
 }

}

X-definition, which ensures validation of input and the constructed output. The root element is the element
Accidents:

resources/accident/simpleAccident.xdef

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.0"
 xd:name="simple"
 xd:root="Accidents">

 /* Root element. */
 <Accidents xd:script="finally close()">

 /* The element Accident contains the date and ID of the accident. */
 <Accident xd:script="occurs 1..*; onStartElement saveAccident(); finally calculate();"
 date="date(); onFalse myError(10)"
 id="uniID.ID(); onFalse myError(11)">

 /* The element Persons contains the number of injured and killed persons in an accident. It may
 also contain an ill attribute that is not currently being used. */

150 / 207

 <Persons xd:script="finally injuryDeath(); onStartElement infoPeople();"
 injury="int(0,1000); onFalse myError(12)"
 death="int(0,1000); onFalse myError(13)" >
 optional string();
 </Persons>

 /* Element Vehicles element contains information about vehicles that were involved in a traffic
 accident. */
 <Vehicles xd:script="occurs 1..*">

 /* Use the xd:attr attribute to allow the occurrence of another arbitrarily named attribute
 with value string(0.64) in the Vehicle element.
 The element Vehicle also contains the vehicle's VRN and loss on the vehicle. */
 <Vehicle xd:script="occurs 1..*; finally computeLoss();"
 vrn="vrn(); onFalse myError(501)"
 loss="int(0,100000); onFalse myError(502)"
 xd:attr="? string(0,64)" />
 </Vehicles>
 </Accident>
 </Accidents>

 /********** Output elements. **********/

 /* Element Calculation contains attributes with accident date, accident ID, cumulative number of injured
 and killed and the total damage. */
 <Calculation xd:script="create calc; finally outln('****** Accident ' + @id + ' *******');"
 date="date()"
 id="uniID.IDREF()"
 injury_death="int(0,2000)"
 loss="int(0,1000000)">

 /* Element Vehicles contains a summary information of vehicles that have been involved in an accident.
 The attributes include the number of cars from the accident and the ID of the calculation, which
 must match the ID from the Calculation element. */
 <Vehicles xd:script="create vehicles; finally loss(totalLoss)"
 number="int(0,500);"
 id="uniID.IDREF()">

 optional string; options setTextUpperCase;

 /* Element Vehicle contains information on the purchase price of the car, the damage caused,
 the registration number, the year of manufacture and, optionally, the warn attribute. This
 element is created in the design mode from the Container crashedVehicles. */
 <Vehicle xd:script="occurs 0..*; create crashedVehicles"
 price="int()"
 loss="int()"
 vrn=" string(7)"
 model="optional string()"
 year="optional int(1900,2100)"
 warn="optional string()">
 </Vehicle>
 </Vehicles>

 /* Element Now contains an information of the date and time of the assembly of the element and the
 timeout (the actual date shifted by one year in advance). The actual date and time is saved
 to the variable n of the element Now. */
 <Now xd:script="var Datetime x = now(); /*x is the current time when this element was processed*/ "
 createtime="optional dateTime(); create x.toString('yyyy-MM-dd\'T\'HH:mm:ss'); /*datetime form*/ "
 timeout="optional date(); create create x.addYear(1).toString('yyyy-MM-dd'); /*year in advance*/ "/>

 </Calculation>

 /* The Element Stats contains basic information about statistics such as the 'statistics' name that is set
 to the fixed (static) value in the resulting XML document using the fixed option. It also contains
 generated IDs and a text node with a description. */
 <Stats name="fixed 'statistics'"
 id="int(0,999); create generateIdStats();">
 string(); create statistics();
 </Stats>

 151 / 207

 /* Declaration of variables and methods. */
 <xd:declaration>
 /* Declaration of external methods. */
 external method {
 void accident.SimpleAccident.infoPeople(XXNode);
 String accident.SimpleAccident.statistics();
 String accident.SimpleAccident.generateIdStats();
 void accident.SimpleAccident.loss(XXNode, long);
 void accident.SimpleAccident.myError(XXNode, long);
 }

 /* The identifier must be unique and it must be a three-digit number */
 uniqueSet uniID num(3);

 /* ********* Variables used in methods. ********* */

 /* XML document with vehicle database. The value is set by the Java program. */
 external Element cars;
 /* The number of actual errors and the number of errors in validating the previous element. */
 int errs = 0, errsPrev = 0;
 /* Output XML stream with errors. */
 XmlOutStream errStream;
 /* Number of statistics generated. */
 int cnt = 0;
 /* Output stream with generated statistics. */
 external XmlOutStream out;
 /* Container with a vehicle. */
 Container vehicle;
 /* Container used for calculation of statistics. */
 Container calc;
 /* Total loss, the total purchase price of the vehicles and the total number of vehicles. */
 int totalLoss = 0;
 int totalSum = 0;
 int cntVehicles = 0;
 /* Container for vehicles. */
 Container vehicles;
 /* Container for crashed vehicles. */
 Container crashedVehicles;

 /* The method closes both streams - both XML and bugs, with generated statistics. */
 void close() {
 if(errs != 0) {
 /* write the end tag of the element to the errStream */
 errStream.writeElementEnd();
 /* close the stream */
 errStream.close();
 }

 if(cnt > 0) {
 out.writeText("Compouted staristics");
 /* Create the "Stats" element, which will be created in construction mode with the
 method xcreate */
 out.writeElement(xcreate("Stats"));
 out.writeElementEnd();
 out.close();
 }
 }

 /* Check the type of vehicle registration mark. */
 boolean vrn() {
 String vrn = getText();
 vehicle = xpath('Vehicle[@vrn="' + vrn + '"]', cars);
 if(vehicle.getLength() == 0) {
 errs++;
 return error("VRN '" + vrn + "' is not in the database.");
 }
 return true;
 }

152 / 207

 /* The method inserts to the first element of the Container calc an attribute about the
 cummulative number of injured and killed persons. */
 void injuryDeath() {
 /* The toString method converts the value of the attribute in the argument into a string data
 type.*/
 int z = parseInt(toString(@injury));
 int u = parseInt(toString(@death));
 calc.getElement(0).setAttr("injury_death", toString(z + u));
 }

 /* Save details of the accident and clear Containers.*/
 void saveAccident() {
 /* initialize the Container "calc"; after initialisation it will contain a single element
 that will be the currently processed element. */
 calc = [getElement()];
 /* initialization of the "crashedVehicles" Container; after initialization it will be empty */
 crashedVehicles = new Container();
 }

 /* This method inserts to the first element of the Container cars teh attributes with the
 registration number of the crashed car, its year of production and the total damage. It also writes
 a warning to the output XML file if the damage to the vehicle exceeds its acquisition value. */
 void computeLoss() {
 int aLoss = parseInt(toString(@loss));
 totalLoss += aLoss;
 cntVehicles++;
 int aCena = parseInt(vehicle.getElement(0).getAttr("price"));
 totalSum += aCena;
 /* Search in the database Vehicle (external variable cars) a vehicle with the same VRN. */
 String vrn = vehicle.getElement(0).getAttr("vrn");
 Element typ = xpath('Vehicle[@vrn="' + vrn + '"]/Type', cars).getElement(0);
 /* From the "vehicle" container, the first element (ie the element with the index 0) is taken and
 the necessary attributes are gradually added to it. */
 vehicle.getElement(0).setAttr("model", typ.getAttr("model"));
 vehicle.getElement(0).setAttr("year", typ.getAttr("year"));
 vehicle.getElement(0).setAttr("loss", toString(@loss));
 /* note: you can write the relation ">" also as GT */
 if(aLoss > aCena) {
 vehicle.getElement(0).setAttr("warn", "Loss on the vehicle is higher the the price!");
 }
 crashedVehicles.addItem(vehicle.getElement(0));
 }

 /* The method calculates the ratio of total damage to the total purchase price of crashed vehicles
 and rounds the result to 2 decimal places. */
 String damageRatio() {
 float ratio = ((float)totalLoss / (float)totalSum)*100;
 return toString(ratio, "##0.00' %'");
 }

 153 / 207

 /* The method writes the calculated statistics into the output file. */
 void calculate() {
 if(errs != errsPrev) {
 errsPrev = errs;
 } else {
 calc.getElement(0).setAttr("loss", toString(totalLoss));
 /* creates an empty Temp element */
 Element e = new Element("Temp");
 /* add the appropriate attributes to the element */
 e.setAttr("number", toString(cntVehicles));
 e.addText("Total loss on vehicles is " + totalLoss + " thousands, "
 + "which is " + damageRatio() + " and crashed "
 + cntVehicles + " vehicle" + (cntVehicles != 1 ? "s" : ""));
 e.setAttr("id", calc.getElement(0).getAttr("id"));
 /* New Container "Vehicles" with element "e". */
 vehicles = [e];
 if(cnt++ == 0) {
 /* Set output indentation. */
 out.setIndenting(true);
 /* Write header ot the root element. */
 out.writeElementStart(getRootElement());
 }
 /* For the currently processed element (can be obtained by the getElement method,
 the Calculation element is created in construction mode. */
 out.writeElement(xcreate('Calculation', getElement()));
 }

 /* Crear counters. */
 cntVehicles = 0;
 totalLoss = 0;
 totalSum = 0;
 }
 </xd:declaration>

</xd:def>

Example of vehicle database:

resources/input/cars.xml

<Cars>
 <Vehicle price="600" vrn="1A01122">
 <Type model="Audi" doors="4" year="2011" />
 </Vehicle>

 <Vehicle price="70" vrn="4B35500">
 <Type model="Opel" doors="3" year="2003" />
 </Vehicle>

 <Vehicle price="240" vrn="4C35500">
 <Type model="Škoda" doors="5" year="2009" />
 </Vehicle>

 <Vehicle price="30" vrn="4E35500">
 <Type model="Mazda" doors="3" year="1994" />
 </Vehicle>

 <Vehicle price="170" vrn="4M35500">
 <Type model="VW" doors="4" year="2006" />
 </Vehicle>

 <Vehicle price="470" vrn="4T35500">
 <Type model="Mercedes Benz" doors="2" year="2007" />
 </Vehicle>
</Cars>

154 / 207

Input XML document:

resourtces/input/data.xml

<?xml version="1.0" encoding="UTF-8"?>
<Accidents>
 <Accident date="2012-04-01" id="001">
 <Persons injury="-2" death="1" />
 <Vehicles>
 <Vehicle vrn="1A01122" loss="160" />
 <Vehicle vrn="4B35500" loss="50" vin="000491024560" />
 </Vehicles>
 </Accident>

 <Accident date="2012-04-17" id="002">
 <Persons injury="2" death="0" />
 <Vehicles>
 <Vehicle vrn="4B35500" loss="15" />
 </Vehicles>
 </Accident>

 <Accident date="2012-05-11" id="003">
 <Persons injury="14" death="3" />
 <Vehicles>
 <Vehicle vrn="4B35500" loss="150" />
 <Vehicle vrn="4C35500" loss="14" />
 <Vehicle vrn="4E35500" loss="360" />
 <Vehicle vrn="4M35500" loss="240" />
 <Vehicle vrn="4T35500" loss="190" />
 </Vehicles>
 </Accident>
</Accidents>

Generated XML document with statistics according to the above X-definition and XML input files:

 155 / 207

resources/output/resault.xml

<?xml version="1.0" encoding="UTF-8"?>
<Accidents>
 <Calculation date"2012-04-01"
 id="001"
 injury_death="-1"
 loss="210">
 <Vehicles id="001"
 number="2">
 TOTAL LOSS ON VEHICLES IS 210 THOUSANDS, WHICH IS 31.34 % AND CRASHED 2 VEHICLES
 <Vehicle loss="160"
 model="Audi"
 price="600"
 vrn="1A01122"
 year="2011"/>
 <Vehicle loss="50"
 model="Opel"
 price="70"
 vrn="4B35500"
 year="2003"/>
 </Vehicles>
 <Now createtime="2018-10-12T13:33:32"
 timeout="2019-10-12"/>
 </Calculation>
 <Calculation date="2012-04-17"
 id="002"
 injury_death="2"
 loss="15">
 <Vehicles loss="15"
 number="1">
 TOTAL LOSS ON VEHICLES IS 15 THOUSANDS, WHICH IS 21.43 % AND CRASHED 1 VEHICLE
 <Vehicle loss="15"
 model="Opel"
 price="70"
 vrn="4B35500"
 year="2003"/>
 </Vehicles>
 <Now createtime="2018-10-12T13:33:32"
 timeout="2019-10-12"/>
 </Calculation>
 <Calculation date="11.5.2012"
 id="003"
 injury_death="17"
 loss="954">
 <Vehicles id="003"
 number="5">
 TOTAL LOSS ON VEHICLES IS 954 THOUSANDS, WHICH IS 97.35 % AND CRASHED 5 VEHICLES
 <Vehicle loss="150"
 model="Opel"
 price="70"
 vrn="4B35500"
 warn="Loss on the vehicle is higher the the price!"
 year="2003"/>
 <Vehicle loss="14"
 vrn="4C35500"
 model="Škoda"
 year="2009"
 price="240"/>
 <Vehicle loss="360"
 model="Mazda"
 price="30"
 vrn="4E35500"
 warn="Loss on the vehicle is higher the the price!"
 year="1994" />
 <Vehicle loss="240"
 model="VW"
 price="170"
 vrn"4M35500"
 warn="Loss on the vehicle is higher the the price!"
 year="2006"/>
 <Vehicle loss="190"
 model="Mercedes Benz"
 price="470"
 vrn="4T35500"
 year="2007"/>
 </Vehicles>
 <Now createtime="2018-10-12T13:33:32"

156 / 207

 timeout="2019-10-12"/>
 </Calculation>
 Computed staristics
 <Stats id="760"
 name="statistics">
 Total injured: 14 and killed: 4. Total loss: 1179 thousand.
 </Stats>
</Accidents>

The enerated XML document with recgnized errors (these are only errors that were detected by the
appropriate X-Script actions and processed by the error method). Each error record contains the error code
(according to the error method parameter) and the accident ID, the line and the error detection XML position
in the XML entry:

resources/output/errors.xml

<?xml version="1.0" encoding="UTF-8"?>
<Errors>
 <Error ErrorCode="10" XPos="/Accidents/Accident[1]/@date" id="001" />
 <Error ErrorCode="18" XPos="/Accidents/Accident[1]" id="001"/>
 <Error ErrorCode="10" XPos="/Accidents/Accident[2]/@date" id="002"/>
 <Error ErrorCode="10" XPos="/Accidents/Accident[3]/@date" id="003"/>
</Errors>

The example prints to the output streams System.out (black) and System.err (red):

****** Accident 001 *******
****** Accident 002 *******
****** Accident 003 *******
E XDEF813: Value of 'int' doesn't fit to 'minInclusive'; line=9; column=7;
source="D:\cvs\DEV\java\examples\resources\input\data.xml"; xpath=/Calculation/@injury_death; X-
position=simple#Calculation/@injury_death

 157 / 207

15 Appendix B – frequently asked questions (F.A.Q.)

 4 Description of structure of XML document by X-definition

 8 Construction Mode of X-definition

Appendix B summarizes the most frequently resolved issues and the most frequently asked questions related
to the X-definition technologies

15.1 Data content, types

Is it possible to declare the mandatory empty string?

When enabling zero-length string values, you need to distinguish between the attribute value and the text
node. While with the string(0, N) type method is possible for the attributes, the zero length of the string at
the text nodes has no justification for their zero length.

The following example allows the value of the id attribute to be from 0 to 5 characters long:

...
<Accident xd:script = "occurs 0..*"
 id = "string(0, 5)"
</Accident>
...

If you need to enable the zero string string length of a text node, you must define this node as optional:

<Accident xd:script = "occurs 0..*">
 <vrn>optional string(5)</vrn>
</Accident>

You can not use the string(0, N) method for declaring a text node type.

Is it possible to set the connection to a database Java code and set it to the X-script?

Yes, you can use the org.xdef.XDFactory and set it do the XDDocument object as a external variable (see
chapter 9.6.1).

Why does X-definition report an error when declaring the variable of the type "long" in X-Script?

The data type long is not supported in X-Script. Instead, you can use an int type that has a 64-bit range in X-
Script, and matches the long type in Java, see chapter 16.2.

How to declare an array in X-Script?

You can declare the Container data type, which integrates field implementation with ArrayList and the map
using HashMap, see chapter 5.5.

For example, a field that contains eg numbers 1 and 2 and the character ‘a‘, X-Script can be created using the
constructor as follows:

Container array = [1, 2, 'a'];

Can I convey information about the element and its attributes in the design mode to an external method?

For example, for writing you can pass the information about
element A and the contents of the attribute b to the method "c()"?

Yes, but only through the XXNode object passed to the external method, see chapter 4.8.2.

158 / 207

How vary the cases when using the create command in the validation mode (XDDocument.xparse) in the
construction mode (XDDocument.xcreate)?

There is practically no difference because the resulting generated document will always have the same
content. The main difference, therefore, is whether the generation is run from X-script or from Java program.
For more information, see chapter .

What data will contain the generated (output) element of a given model if the X-definition processing is run
in validation mode, when this model validates some XML input data and also defines the construction of the
new (output) element in the create section?

For example, the model may have the following form:

<Vehicle xd:Script="finally xcreate('Vozidlo'); create true" id="int; create '12'" />

Notwithstanding the fact that some data is validated using the model in question, the output, ie the newly
generated element, contains just the data that is intended to create the X-Script sections. That is, according to
the model, the following element will always be generated:

<Vehicle id="12" />

15.2 Error reporting

Why do not I know the Reporter about the name of the X-definition file or the XML entry where the error
was detected?

If the X-definition XML entry document was used as an InputStream type parameter instead of a file path, such
as a String or an XML document, the system does not have the source file location information. However, it is
possible to add a name to the X-definition translation when using the XDBuilder object.

Why is XDEF227 reported ("Ambiguous repeated declaration of the external method")?

Is the following error reported to you?

org.xdef.sys.SRuntimeException: E SYS012: Errors detected:
E XDEF227: Ambiguous repeated declaration of the external method 'method_name'; line=nnn; column=nnn

The reasons why this error is reported may be several:

1) External methods are declared by at least two external methods of the same name with identical
parameters:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.0" xd:name="..." >
 <xd:declaration>
 external method {
 void example.VozovyPark.myPrint(String);
 void example.SeznamNehod.myPrint(String);
 }
 </xd:declaration>
 ...
</xd:def>

2) A XDPool has been generated containing at least with two X-definitions that declaration of the
external methods with the same name and parameters:

 159 / 207

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.0" xd:name="garage” xd:root="Vehicles” >
 <xd:declaration>
 external method {
 void exampole.VozovyPark.myPrint(String);
 }
 </xd:declaration>
 ...
</xd:def>

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.0" xd:name="garage1" >
 <xd:declaration>
 external method {
 void exampole.SeznamNehod.myPrint(String);
 }
 </xd:declaration>
 ...
</xd:def>

...
XDPool pool = XDFactory.compileXD(null, new String[] {"VozovyPark.xdef", "SeznamNehod.xdef"});
...

In the case of an XDPool object consisting of multiple X-definitions, the content of all declaration section
X-definitions is combined into one and the result is therefore the situation in (1).

Possible corrections of the cases described:

1) Alias - The original names of external methods can be overlayed using aliases, see chapter 4.8.

2) Renaming methods - you can observe the convention that external methods from a given class will
have a prefix, for example, by the name of that class.

3) Inheritance - if possible, and if the external methods that have the same name have the same
implementation, then it is appropriate to move these methods into a common ancestor. This will allow
the X-definition pool to see only one implementation of the method, and the error will no longer be
reported.

4) Set the “local” scope range in the xd:declaration section:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.0" xd:name="garage1" >
 <xd:declaration scope=”local”>
 external method {
 void exampole.SeznamNehod.myPrint(String);
 }
 </xd:declaration>
 ...
</xd:def>

15.3 How to create an X-definition from given XML data

This chapter is a guide how to design the X-definition describing given XML data:

1) From the described XML document, a structure description is first created, ie it is necessary to
assemble the relevant element models. Data structures that do not exist in a particular instance of
data have to be described. If any value is not relevant for processing (e.g., it is counted in the future),
then its occurrence in X-Script is described by the ignore key. If there may be attributes that are not
known at that time, you can describe this situation as an attribute xd: attr. (See chapters 4 and 16.5.)

2) Describe how to check attribute values and text nodes. If you need to activate some operations
depending on the result of the checks, the onTrue and onFalse actions may be added to the type
validation expression and eventually describe actions for different events..

If a fixed value is required for an attribute or text node, write the fixed keyword X-Script (see
chapter 4.2.1).

160 / 207

3) If the other elements than those that have been described are allowed, add the x-Script element
xd:any or set the option moreElements.

4) Repetitive and similar inner parts of the elements are replaced by the creation of auxiliary element
models and relevant references. Referred element models can also be written in different X-
definitions (see Chapter 10).

5) If the order of elements placed within a parent element does not have to be respected, the
description of these parts can be inserted into the mixed group in the xd:mixed element (see chapter
4.11.2).

6) The selection of one of the multiple variants is written using the selection section bounded by the
xd:choice (see chapter 4.11.3).

Note: Selection sections may be nested into a mixed section.

7) If more XML documents are to be described in one X-definition, you need to use the xd:root
attribute to describe which elements can occur as root elements (see chapter 4.7.2). In the multiple
X-definitions project it is possible to refer to all X-definitions of a given file set.

8) If the application requires it, it is possible to describe global variables and user validation methods and
eventually for frequently used actions (see chapters 4.7.3.3 a 4.10).

9) When processing large files with XML source text, it is possible to tell the X-definition processor that
when the element is processed, it can be "forgotten" to unnecessarily vacate the memory. This fact
will be written as the keyword forget (see chapter 4.6).

 161 / 207

16 Appendix C – supplementary description of X-definitions

 basic knowledge of XML ([1], [2)

 2 X-definition Technology

 4 Description of structure of XML document by X-definition

 8 Construction Mode of X-definition

 9 Using of X-definitions in Java code

This Appendix o adds the functionality and possibilities of the X-definitions described in the preceding chapters
and summarizes the remaining functionality that has not yet been mentioned.

16.1 Utitlites.

X-definition technology offers programming tools available for use with XML data in the library org.xdef.xml
[Doc3]::

 KXmlUtils – collection of static methods for working with XML data (e.g;

o nodeToString - conversion of XML node into a string value, eg.:

 nodeToString(Node node, boolean indent);

if the parameter indent is true then result will be indented.

o writeXML writes a DOM object as a XLM file (see chapter 9). The method writeXML can be
invoked eg as:

 writeXML(String fileName, Node rootElement);

 writeXML(String fileName, Node rootElement, boolean indenting, boolean
comments);

The DOM represented by rootElement is stored in a fileName, including / without comments
(true / false) and indented (ie including XML formatting characters) or indentation (true or
false).

 KDOMUtils – collection of static methods extending the methods from the org.w3c.dom interface;

 KDOMBuilder – constructs and parses XML data;

 KXpathExpr – supports the XPath expressions;

 KXquery – supports the XQuery expressions (only it there is available a libarary supporting XQuery,
e.g. Saxon, Basex etc.);

To work with strings, files, and system resources, a utilities are available in the org.xdef.sys [Doc3]:

 SUtils – includes methods for character encoding of text, support for internationalization, etc;

 StringParser – parser of strings or character streams;

 SPosition – implementation of the source position (used eg. in the reporter);

 ReportReader – reads streams with reports

 ReportWriter – writes reports to a stream

 BNFGrammar – allows work with the text values described by the enhanced BNF grammar.

see chapter2.3.

The X definition technology comes with a wide range of utilities in the package org.xdef.util (see [Doc3])

162 / 207

16.1.1 Launch the validation mode from the command line

Validation mode can be started from the command line of the org.xdef.util.XValidate class. If external
methods are used in X-Script, all classes in which the appropriate methods are defined must be available in the
classpath (see [Doc3]). Command line parameters are in format:

[-h] [-d defList] [-x xDefName] [-l logFile] –i xmlFile

The parameters are:

 -h displays the help message;

 -d defList describes the path to an X-definition file or contains a list of files separated by a
semicolon. You can use the wildcard characters "*" and "?" in the file name entry, which describes the
selection of the entire group of files. This parameter is optional. If not specified, the X-definition
location must be described in the XML document using the xdi:location attribute (see Chapter
4.7.3.9);

 -x xDefName contains the X-definition name to be used for validating input data. Parameter is
optional and is only given if parameter -d is specified;

 -l logFile is the file path that writes error and data processing information. Parameter is optional.
If not defined, the log is written to the standard System.err print stream. If the value of the
parameter is null, then the file is not created and when an error message was reported, the program
terminates with an exception (in this case, warnings and information messages are ignored);

 -i xmlFile specifies the path to the XML document file to be validated.

The following example is illustrated by the following example, including the initial setup of paths to libraries
and classes with external methods that validates the Vehicles.xml file according to the garage X-definition from
the Garage.xdef file:

set CLASSPATH=/path/to/mylib;/path/xdef/lib/xdef.jar
java org.xdef.util.XValidate –d /path/to/Garage.xdef –x garage -i /path/to/Vehicles.xml

16.1.2 Lounch the construction mode from the command line

Also, design mode can be run directly from the command line using the command class
org.xdef.util.XCompose. Command line parameters have the following format (see [Doc3]):

[-h] –d defList [-x xDefName] [-r rootName] [-l logFile] [-e encoding] –i xmlFile –o outFile

The parameters are:

 -h displays the help message;

 -d defList describes the path to an X-definition file or contains a list of files separated by a
semicolon. You can use the wildcard characters "*" and "?" in the file name entry, which describes the
selection of the entire group of files;

 -x xDefName contains the X-definition name to be used for validating input data. Parameter is
optional and is only given if parameter -d is specified;

 -r rootName specifies the name of the root element if it differs from the name of element in the
input data (if specified). Parameter is optional. If not specified, the name taken from the root element
of the input data;

 -l logFile s the file path that writes error and data processing information. Parameter is optional.
If not defined, the log is written to the standard System.err print stream. If the value of the
parameter is null, then the file is not created and when an error message was reported, the program
terminates with an exception (in this case, warnings and information messages are ignored);

 -o outFile the pathname of the file into which the created data will be written, ie the constructed
XML document;

 -e encoding the name of the code table for the output file. Unless stated, the UTF-8 is set;

 163 / 207

 -i xmlFile specifies the path to the XML document file to be validated.

The following example demonstrates how to use the iset of paths to libraries and classes with external
methods to construct the AccidentList.html file to be created according to the X-definition AccidentList
Html.xdef from the file AccidentList.xml [Doc3]:

set CLASSPATH=/path/to/mylib;/path/xdef/lib/xdef.jar
java org.xdef.util.XCompose –o /path/to/AccidentList.html –x accidentList
 –d /path/to/AccidentListHtml.xdef -i /path/to/AccidentList.xml

16.1.3 Checking the accuracy of Xdefinition

Especially when writing large X-definitions, it is advisable to check the accuracy of the X-definition written. For
this purpose, the utility org.xdef.util.CheckXdef can be used. The output from the utility is a list of error
messages or a listing that indicates the locations where errors were detected (if the -v parameter is specified).
The utility output is written to System.out standard print stream. If the external methods are used in the X-
definition, the appropriate classes must be available in the classpath when calling the program.

 [-h] [-v] [-d set of X-definitions] X-definice

The parameters are:

 -h displays the help message;

 -v Optional parameter specifying that a detailed listing of errors is to be made. Otherwise, only the
error list is displayed;

 X-definice is a required parameter and defines an input file (s) with X-definition;

 -d set of X-definitions is an optional parameter and contains a list of files with X-definitions in
a comma separated list. If not defined, a single X-definition is used. The file specification can also
contain wildcard characters "*" and "?", And you can specify a set of X-file or X-definition files.

16.1.4 Create indented form of X-definition

The source form of the X-definition can be automatically reformatted to make the result clearer and more
readable. For this purpose, use the program org.xdef.util.PrettyXdef, which reads the X-definition and
makes the appearance of the element models and their descendants and attributes so that the result is clear
and that the offset of the nested elements is standard:

[-h] [d outDir] [-i n] [-e encoding] [-p prefix] sourceFile

The parameters are:

 -h nepovinný parametr. Pokud je uveden, vypíše se informace o parametrech;

 -d outDir definuje adresář, kam bude uložen přeformátovaný soubor. Není-li parametr uveden,
přepíše se vstupní soubor (pokud program během činnosti předčasně skončí, zůstane původní soubor
zachován pod původním jménem s příponou bak);

 -i n je nepovinný parametr, který nastavuje počet mezer použitých pro odsazení vnitřních elementů,
výchozí hodnota je 3;

 -e encoding nepovinný parametr, který nastavuje znakovou sadu kódování. Hodnota musí být
slučitelná s hodnotou parametru encoding v zájlaví XML dokumentu (tj. např. UTF-8, windows-1250
apod.). Není-li parametr uveden, použije se původní kódování;

 -p prefix nepovinný parametr, pomocí kterého lze předefinovat prefix pro jmenný prostor X-
definic. Není-li tento parametr specifikován, je použit původní jmenný prostor;

 sourceFile určuje vstupní soubor nebo skupinu souborů (opět je možné použít wild card symbol
„*“).

The following example demonstrates how to use it, including initiating paths to libraries and classes with
external methods that reformat the AccidentListHtml.xdef file:

164 / 207

set CLASSPATH=/path/xdef/lib/xdef.jar
java org.xdef.util.PrettyXdef /path/to AccidentListHtml.xdef

16.1.5 Conversion of XML schema to X-definition.

Utility for converting from XML schemas to X-definitions. This is the class org.xdef.util.XsdToXdef.

The parameters are:

 -h displays the help message;

 -in path of input main schema location

 -out output file or directory name

 -s separate every schema to a standalone X-definition file

 -p prefix of X-Definition namespace ("xd" if not specified)

 -l path to the log file

16.1.6 Conversion of X-definition to XML schema.

Utility for converting from X-definitions to XML schema. This is the class org.xdef.util.XdefToXsd.

The parameters are:

 -h displays the help message;

 -i list of input sources with X-definitions

 -o output directory

 -m name of root model (optional)

 -x name of X-definition (optional)

 - sp prefix of XML schema namespace (optional, default is "xs")

 - extension of schema file (optional, default is "xsd")

16.2 Types of values in X-script

In the X-script commands and variables with the values of several types can occur (see chapter 4.7.3). Value
types that can occur in the X-script are as follows.

16.2.1 int (the integer numbers)

Values are in the range:

-9223372036854775808 <= n <= 9223372036854775807

Note that the int type in the X-script corresponds to the long type in Java, C #, C, etc. (it is represented as a
64-bit integer). Therefore, the long type is not implemented in the X-script.

Whole numbers in X-script commands can be written either as a decimal number, or as a hexadecimal number.
Hexadecimal numbers must begin with the characters "0x" or "0x" followed by a sequence of hexadecimal
digits (i.e. the letters 'a' to 'f' or 'A' to 'F' or digits '0' to '9').

Secial predefined constants ($MININT, $MAXINT) are describet in chapter 16.4 Pedefined values (constants).

To make an entry clear to read it is possible to insert between the digits the characters "_" (underscore), which
does not affect the value of a number. For example. 123_456_789 is equivalent to 123456789.

To convert a number to a character string, it is possible to use the method "toString(mask)", where the
argument is the output format mask, which represents a string of characters that contains control characters,
which have the following meaning:

 165 / 207

0 digits, leading zeros are replaced by a space

digits, leading zeros are appended to the output

. causes the output of the decimal point (period)

' prefix and suffix of the string that contains control characters, which are to be interpreted as characters
fill (i.e. the character string is enclosed in single quotation marks).

Other characters make up the padding that is copied to the output string.

Example:

"012" matches the pattern "# #0".

16.2.2 float (the floating-point numbers)

Values are in the range:

-1.7976931348623157E308 <= x <= -4.9E-324

or 0.0 or

from 4.9 E-324 to 1.7976931348623157E308

The specification of numbers with a floating-point number corresponds to commonly used format floating
point numbers including the exponent. The decimal point is always a dot (regardless of local or national
conventions). The exponent can be written as the capital or the small letter "e". To convert a number to a
character string, it is possible to use the method "toString (mask)", where the argument is the string with an
output format mask, i.e. a string with control characters, which have the following meaning:

0 digits, leading zeros are replaced by a space

digits, leading zeros are appended to the output

E separates mantissa and exponent

. causes the output of the decimal point (period)

or the prefix and suffix of the string that contains control characters, but is to be interpreted as
padding (i.e. the generic character string enclosed in single quotation marks or apostrophes)

Other characters make up the padding that is copied to the output string.

Secial predefined constants ($MINFOLAT, $MAXFLOAT, $PI, $E, $POSITIVEINFINITY, $NEGATIVEINFINITY, $NaN)
are describet in chapter 16.4 Pedefined values (constants).

$PI the constant pi, the ratio of the circumference of a circle to its diameter
(3.141592653589793)

$E the constant e, the base of natural logarithms (2.718281828459045)

$MINFLOAT the smallest positive nonzero value (4.9 E-324)

$MINFLOAT the largest possible positive value (1.7976931348623157 E308)

$NEGATIVEINFINITY negative infinity

$POSITIVEINFINITY positive infinity

$NaN value is not a valid number (Not a Number)

Examples:

"012.00" matches the pattern "##0.00".
"654.32" matches the pattern "##0.00".
"012.00" matches the pattern "##0.00".
"4" matches the pattern "# #0".

16.2.3 Decimal (the decimal numbers)

The decimal numbers in the X-script are implemented as java objects system.math.BigDecimal. This
number type is given the characters "0 d" or "d" followed by the registration number or numbers with a

166 / 207

floating point. In writing it is possible to use an underscore, e.g. "0d123__456_890_999_000_333". Values of
the type Decimal are only possible to compare in expressions. Other operations must be carried out using the
appropriate methods.

16.2.4 String (the character strings)

Character strings can contain any characters that are acceptable in XML documents. Strings literals are written
with apostrophes, or quotation marks around them (due to the fact that the values of XML attributes may also
be inside quotation marks or apostrophes, you should use another character inside attribute, that is, if the
attribute value is enclosed in quotation marks, inserting character values between apostrophes, and vice
versa). If a character occurs within the string, which is a string (i.e. apostrophe or quotation marks), enter the
character ' \ before him '. The occurrence of the character '\' is written doubled as '\\'. Using the character '\'
can also describe any Unicode character 16 writing "\uxxxx" where x is a hexadecimal digit. You can also write
some special characters by using the following escape characters:

\n end of line (linefeed, LF, \u000a)

\r return to the beginning of the lines-carriage return (CR, \u000d)

\t horizontal tab (HT, \u0009)

\f form feed (FF, \u000c)

\b backspace (BS, \u0008)

\\ back slash ("\", \u005c)

Warning: If the text of X-script is specified as the attribute value, the XML processor replaces all occurrences of
the new line with a space. Therefore, you must write into the X-script in attributes to character strings new
lines such as "\n". Additionally, you should avoid accidentally calling the macro. The occurrence of the pair of
characters "$ {" anywhere in the X-script is interpreted as the beginning of a macro call, and therefore it should
be inside the character strings in this case write the initial character "$" for this pair of characters by the escape
sequence such as "\u0024".

16.2.5 Datetime (the date and time values)

The value represents a date and time. Contain year, month, and day. It can be written to the constructor as a
string of characters according to ISO8601, or can be converted to the internal shape by using the implemented
method "parseDate": eg. parsedate ('2004-08-10T13:59:05')-see the description of the implemented features.
The recommended format is according to ISO8601, otherwise the function "parseDate" must have given a
string as the second parameter with a mask, specifying the format of the registration. Similarly, you can use the
mask as a parameter for the method "toString", e.g. dat.toString("d. m. yyyy"). The mask is a string of
characters that contains control characters used for the processing of input data or creating a printable string
from the data object (formatting). Other characters in the mask are understood as a character constant
(literal), IE. a copy is required at the input or output will be copied. If the literal contains letters, you must write
it between apostrophes into the mask (if the apostrophe should be part of the literal, then that is doubled). If
there is an escaped character, then when the formatting is completed the number of leading zeros, and when
parsing the processor reads the specified number of digits. For some control characters to the number of times
a different meaning (see control characters ' a ', ' E ', ' G ', 'M ', ' y ', ' Z ', ' z '). In addition, the format may
contain the following sections:

a. Initialization section. The initialization section is enclosed in curly braces "{" and "}".

Describes the country or language-dependent conventions (location) and may set the default values of
a date or time. Description of the default values requires that each value was preceded by an escape
character. In the initialization sections only the following escape characters: d, M, y, H, m, s, S, z, Z are
allowed. The zone name is specified after the character name "z" in parentheses. For example:
"{d1M1y2005H16m0s0z(CET)}" sets the default date and time values to 1-1-2005T16:00:00 CET. In the
parentheses it is possible to write the full name of the place, e.g. "Europe/Prague".

The description of the language-dependent or local conventions is given by the letter "L" followed by a
language ID in parentheses and, if appropriate, a country may also be specified after the comma. After

 167 / 207

the next comma the variant of local conventions may also be specified. L (*) sets the location
according to the running operating system. The language and country identifiers are two-letter and
must conform to the standards ISO639 and ISO3166 (the language in lowercase letters and the
country in uppercase letters). E.g. "L(en)" defines English. The default value is set to L(en,US). E.g. the
"L(es,ES,Traditional_WIN) sets Spanish, Spain, traditional conventions.

b. Variant section. For parsing, it is advantageous to allow more variations of file formats. The different
variants are separated by ‘|’. Each variant has its own initialization part.

Example: Mask d/M/yyyy|yyyy-M-d|{L’en’d MMM yyyy} allows you to read the data in the following
formats: 1/3/1999 or 1999-0-1 or 1 Mar 1999. The variant has significance for parsing. In the process
of output formatting, only the first option is used.

c. Optional section. A description of the optional section is enclosed in square brackets "[" and "]". The
section specified as optional has meaning only when parsing and relevant data of the input data may
be missing. Example: Mask for HH: mm [: ss] corresponds to the 13:31 or 13:31:05 data. Optional
sections can be nested (for example. HH: mm [: ss [from]]). The optional section has meaning when
parsing. When creating the string it is ignored.

d. Variant character. If the character sequence enclosed in apostrophes follows the character "?"in the
mask then the parsing engine accepts a character equal to a character from the enclosed sequence
(e.g. d?/.’m?/.’yyyy allows both forms of a date, either "1/3/1999" or "1.3.19990").

e. Control characters of the mask. Parser and formatter for date values according to a mask interprets
the characters listed in the following table:

Table 1 - Control characters in the date mask

Character Type Description Example:

a (and more) text information about the part of the day (AM, PM; localized) AM

D number day of the year without leading zeros 4

DD (and more) number day of the year with leading zeros 09

d number day of month (starts with 1) 5

dd (and more) number day of month with leading zeros (starts with 1) 05

E, EE, EEE text abbreviated day of the week (localized) Mon

EEEE (and more) text full weekday name (localized) Monday

e number day of the week as a number (1 = Mon, 7 = Sun) without
leading zeros

3

ee (and more) number day of the week as a number (1 = Mon, 7 = Sun) with
leading zero

03

G (and more) text designation of the era (AD, BC; localized) AD

H number hours in the range 0-23 without leading zeros 8

HH (and more) number hours in the range 0-23 with leading zeros 08

h number hours in the range 1-12 without leading zeros 9

hh number hours in the range 1-12 with leading zeros 09

k number hours in the range 0-11 without leading zeros 9

kk (and more) number hours in the range 0-11 with leading zeros 09

K number hours in the range 1-24 without leading zeros 9

KK (and more) number hours in the range 1-24 with leading zeros 09

M number day of the year without leading zeros 6

MM number day of the year with leading zeros 06

MMM text abbreviated month name (localized) Jan

MMMM (and more) text full month name (localized) January

m number number of minutes (without leading zeros) 1

mm (and more) number number of minutes (with leading zeros) 1

168 / 207

16.2.6 boolean (Boolean values)

The Boolean values may be used in the expressions, parameters of methods and the X-script commands in a
similar way as in the Java language. The possible values are "true" and "false." Boolean values may be a result
of the expression, comparing etc. If in an Boolean expression occurs a reference to the attribute of current
element (recorded as "@" followed by a name of the attribute), then it automatically is converted to "true" if
the attribute exists, and "false" if it does not exist. If in the Boolean expression occurs a ParseResult value, then
it is "true" if the value was parsed without errors and "false" if an error was detected.

16.2.7 Locale (information about region)

This type contains information about language, country and geographical, political or cultural region. It may be
used when the printable information is created from data values (number format, currency, date and time
format etc). Value of this type can be created by following constructors:

 new Locale(language) or

 new Locale(language, country) or

 new Locale(language, country, variant)

RR number year of (two digits as e.g. in Oracle database). Century
shall be supplemented by the following rules:

If a RR is in the range 00 - 49, then

a) if the last two digits of year are 00 - 49. then the first
digits will be completed from the current century.

b) if the last two digits of year are 49 - 99. then the
first digits will be completed from the current century
increased by one.

If a RR in the range 50 - 99, then

c) if the last two digits of year are 00 - 99. then the first
digits will be completed from the current century
increased by one.

d) are the last two digits of the year 49 - 99, then the
first digit will be completed from the current century.

1945, 2011

S number number of milliseconds 123

s number number of seconds (without leading zeros) 5

ss (and more) number number of seconds (with leading zeros) 05

YY number (deprecated) two digits, century part from the current
date (can be used only in formatting mode)

20

y number year from a date 1848

yy number year in two digits form, which is interpreted so that the
values of the "01" to "99" are assigned the values and
value of 1901 to 1999 and the value "00" is assigned the
value 2000

yyyy (and more) number year in four-digit (or more digits) form 1989

z text abbreviated name of the zone CEST

zz (and more) text full name of the zone Central European Sumer
Time

Z zone zone in the form of ”+” or ”-” followed by HH: mm +01:00

ZZ zone zone in the shape of ”+” or ”-” followed by H: m +1:0

ZZZZZ zone zone in the form of ”+” or “-” followed by a HHmm + 0100

ZZZZZZ (and more) zone zone in the form of ”+” or ”-” followed by HH: mm +01:00

 169 / 207

where language is lowercase two-letter ISO-639 code, country is uppercase two-letter ISO-3166 code and
variant is vendor and browser specific code.

16.2.8 Regex (Regular expressions)

Objects of this type can be created with constructor "new Regex(s)", where s is the string to the source of the
shape of a regular expression. The regular expression matches the specification based on XML schema.

16.2.9 RegexResult (results of regular expressions)

Objects of this type are created as a result of the method "r.getMatcher(s)" where s is a string to be processed
with the regular expression r.

16.2.10 Input/Output (streams)

The objects of this type are used to working with files and streams. Two variables with the Output value are
automatically created: the "$stdOut" (writes to the java.lang.System.out) and "$stdErr" (writes to the
java.lang.System.err) and one variable "$stdIn" of the type "InputStream" (reads from java.lang.System.in). The
value of the variable "$stdOut" is automatically set to the methods of "out" and "outln" as the default
parameter. "Similarly, the "$stdErr" value is used as default output of the method "putReport"

16.2.11 Element (XML elements)

The objects of this type are the X-script instances of “org.w3c.dom.Element”. They may be, for example,
produced as the result of the method “getElement”.

16.2.12 Bytes (array of bytes)

This object can be the result of “parseBase64” or "parseHex" methods. The constructor for the empty array of
bytes is:

Bytes bb = new Bytes (10); /* Array of 10 bytes Assigned. */

Methods to work with arrays of bytes read see chapter 16.7.5.

16.2.13 NamedValue (named values)

The named value object is a pair consisting of the name and the assigned X-script value (any type of X-script).
The name must match the XML name. You can create a named value by writing the beginning character "%"
followed by the name, followed by an equal sign ("=") and then the specification of a value. For example:

 NamedValue nv = %x:y, named-value = "ABC";

Note "x:y" is here the name of the named value "nv" and "ABC" is its value.

16.2.14 Container (sequence and/or map of values)

The objects of this type can be the result of certain methods (xPath, XQuery, etc.). The object Container
contains two parts:

1. the part with named values (the mapped part, the entry is accessible by a name)

2. the part with a list of values (the sequential part, the entry is accessible by an index)

The empty Container we can create a constructor Container c = new Container();

The value of type Container can also be specified in square brackets "[" and "]", where the list of values is
written. The items are separated by a comma. The named values are stored into the mapped part and the not-
named values are stored to the sequential part of the created container. For example:

170 / 207

Container c = [%a=1, %b=x, p, [y,z], "abc"];

The mapped part contains the named values "a" and "b". The sequential part is the list of value of p, the next
object is the Container and the string "abc".

To work with the object "Container" you can use a variety of methods listed below, see chapter 16.7.6).

The container can occur in Boolean expressions (i.e., it may be in the "match" section or in the "if" command,
etc.). The value of a Container object is converted to the Boolean value according to the following rules:

1. When an object contains exactly one sequence item of type Boolean, then the result is the same as
the value for this item.

2. If it contains exactly one sequence item of the type "int", "float" or "BigDecimal", then the result is
true if the value of this entry is different from zero.

3. In all other cases, it is true, if the object is part of the nonempty sequence, otherwise the result is
false.

Note: The type of Container is also the result of expressions XPath or XQuery. If the XML node on which the
expression is null, the return should be an empty Container.

16.2.15 Exception (program exceptions)

This object is passed when you capture an exception of the executed program (error) in the construction of
"the try {...} catch (Exception exc) {...} ". The exception can be caused in the X-script with the "throw"
command. An object of type “exception” is possible to create in the X-script with the constructor "new
Exception(error message)".

16.2.16 Parser (tool used to parse string values)

The objects of this type are generated by the X-definition compiler. The parser is an object, on which it is
possible to invoke a validation method. The result of this method is an ParseResult object. The parser object is
constructed when a validation method is specified in the X-script.

16.2.17 ParseResult (results of parsing/validation)

The objects of this type are the results of a parser. If a ParseResult instance occurs in a boolean expression, it is
converted to a boolean value and it is true if errors in the object, otherwise the value is false (i.e. an automatic
call of the method "matches ()").

16.2.18 Report (messages)

This object represents a parameterized type and language-customizable message. We can create the message:

Report r = new Report ("MYREP001", "this is an error");

Alternatively, we can get it for example using the "getLastError".

16.2.19 BNFGrammar (BNF grammars)

This object type is defined by a special declaration. BNF grammar is written in a special declaration in the
element "xd:BNFGrammar" (model) or it is possible to create it with the constructor. See 16.9.1.

16.2.20 BNFRule (BNF grammar rules)

The reference to a rule of a BNF grammar. You can use the grammar rule for example. to validate the text
values of attributes or text nodes. The rule from the BNF grammar can be obtained by using the methods of the
method “rule(ruleName)”.

 171 / 207

16.2.21 uniqueSet (sets of unique items – table of rows)

This type is used to ensure the uniqueness of the set of values (i.e. it is a table with row items). It is used in the
conjunction with a validation of text values of the attributes or text nodes. The rows of the table contains the
key part, which is unique within the table. Except of the key a row may contain values which may be set by the
X-script. The key may be a composed from more parts which together represents the key. The key of last row
inserted to table is possible to store to the uniqueSetKey object by the method getActualKey().

16.2.22 UniqueSetKey (the key of a row from the uniqueSet table)

This type contains a key part a valid row from uniqueSet table. It may be obtained after a row was inserted (or
found) in the uniqueSet table. It is possible to set value of the actual key of uniqueSet table by the method
resetKey().

16.2.23 Service (database service; access to a database)

This object allows you to access the services of different databases. Mostly it is passed to the X-definition from an external
program. However, you can also create the Service object in the X-script:

Service connection = new Service (s1, s2, s3, s4);

The s1 parameter is the type of database (e.g. "jdbc"), s2 is the database URLs, s3 is user name and finally the password is
s4.

16.2.24 Statement (database commands)

The Statement object contains a prepared database command. It is possible to create it from the Service e.g. by
the "prepareStatement(s)" method, where "s" is a string with the database command:

Statement stmt = connection.prepareStatement(s);

16.2.25 ResultSet (results of the database commands)

This object contains a result of the database command. In the case of the relational database it is a table whose
rows have the named columns. It is possible gradually access lines with the "next()" method. In the case of an
XML database the result depends on the command, e.g. it can be an object Container.

16.2.26 XmlOutStream (data channels used for continuous writing of XML objects to
a stream)

This object type allows you to write large XML data, whose range could exceed the size of the computer's
memory. This way of writing is ofen used in conjunction with the command "forget". The object can be created
by the constructor "new XmlOutputStream(p1, p2, p3)". The parameter p1 is mandatory and it must match the
path and the name of the file to which the writing is made. The p2 parameter is the name of the character
encoding table and the parameter p3 indicates whether to create the header of the XML document. Example of
a typical use in the X-script of X-definitions:

 XmlOutStream xstream = new XmlOutStream ("c:/data/file.xml", "UTF-8", true);

...
 XStream. writeElementStart();
 XStream.writeElement (); // write the whole child
...
 xstream.writeElement();
 xstream.writeElementEnd(); // write end of started element
...
XStream.close();

172 / 207

16.3 Type validation methods

16.3.1 Validation methods of XML schema types

The datatypes implemented in X-definition correspond to the types of the XML schema. In Table 4a is a list of
implemented methods. These methods may include named parameters, where the name corresponds to a
facet of the respective type of XML schema.

Allowed named parameters are listed in the following table, and the corresponding letter sequences are
described in the last column.

Named parameters corresponding to facets in XML schema:

The named parameter corresponding
to the facet in XML schema

The value Letter

%base string with the name of a base type b

%enumeration list of allowed values of a type "[" ... "]" e

%fractionDigits number of digits in the fractional part of a number f

%item reference to validation method i

%length length of a string, array, etc. l

%maxExclusive parsed value of the datatype must be less than the
parameter.

m

%maxInclusive parsed value of the datatype must be less than or equal to
the parameter.

m

%maxLength length of a string, array, etc. l

%minExclusive parsed value of the datatype must be greater than the
parameter.

m

%minInclusive parsed value of the datatype must be greater than or
equal to the parameter.

m

%minLength minimal length of a string, array, etc. l

%pattern list (Container) of strings with regular expressions, which
must be met when processing the data

p

%totalDigits number of digits of the whole part of the validated
number

t

%whiteSpace specification of how to process white spaces in the
validated data. Possible values are: "collapse", "replace" or
"preserve"

w

For example:

string(5, 10) corresponds to the string(% minLength=5, %maxLength=10)

or

decimal(3, 5) corresponds to the decimal(%totalDigits=5, %fractionDigits=3)

After the sequence parameters the named parameters can be listed:

string(5, 10, %whitespace="preserve", %pattern=["a*", "*.b"])

or

decimal(3, 5, %minExclusive=-10, %maxExclusive=10)

Note: the methods that handle the date checks if the year value from a given date is in the interval <actual year-
200, actual year+200>. This check can be disabled using the property "xdef_checkdate" to "false" (the default
value is "true"). Therefore, the date of 1620-08-11 is evaluated as an error if you do not set
properties.setProperty(“xdef_checkdate", “false").

A list of the implemented validation methods compatible with XML schema is described in the following table.

 173 / 207

A detailed description of the data types of XML schema can be found at http://www.w3.org/TR/xmlschema11-
2#datatype.

The penultimate column of the following table describes the result type of the validated string. The last column
describes the named parameter and sequence parameters. The capital letter M describes possibility of
specification sequential parameters representing minInclusive and maxInclusive. The capital letter L describes
possibility of specification sequential parameters representing minLength and maxLength.

Validation methods of XML schema datatypes:

Method name Description Result Parameters

anyURI URI String L belp

base64Binary array of bytes in base64-encoded format Bytes L belp

Boolean Boolean value ("true", "false") boolean - p

Byte 8 bit integer int M bempt

Date date Datetime M bempt

dateTime date and time Datetime M bempt

decimal decimal number Decimal T befmpt

double floating point numbers double M befmpt

duration XML duration. Duration M bempt

ENTITY name of the XML entity String L epl

ENTITIES list of the XML entity names separated by a space Container L epl

Float floating point numbers float M bempt

gDate date Datetime M bempt

gDay day of the date Datetime M bempt

gMonth month of the date Datetime M bempt

gMonthDay month and day of the date Datetime M bempt

gYear day of the date Datetime M bempt

gYearMonth year and month of the date Datetime M bempt

hexBinary array of bytes, in hexadecimal format Bytes L belp

ID unique value of NCName in the XML document String L belp

IDREF reference to the unique value in the XML document String L belp

IDREFS list of the references to the unique values in the XML document Container L belp

Int 32 bit integer int M bempt

integer integer number decimal M bempt

language XML schema language specification String L belp

List array of values. Container L beilp

Long integer number int M bempt

Name name (according to the XML name). String L

NCName XML NCName value String L

negativeInteger negative integer number decimal M bempt

NMTOKEN XML NMTOKEN (i.e. letters, digits, "_", "-", ".", ":") String L

NMTOKENS list of NMTOKEN, separated by a space Container L

nonNegativeInteger The positive integer number and zero Decimal M bempt

nonPositiveInteger negative integer number and zero Decimal M belpw

normalizedString character string String L bempt

positiveInteger positive integer number Decimal M bempt

QName XML QName String L belp

short 16 bit integer int M bempt

http://www.w3.org/TR/xmlschema11-2#datatype
http://www.w3.org/TR/xmlschema11-2#datatype

174 / 207

string Character string. The named parameter %whiteSpace can only
have here a value of "replace" or "collapse" or "preserve". The
default is "preserve".

String L belp

Time time Datetime M bempt

token XML token (i.e. must not include spaces inside). String L

union union of more types Any -, eip

unsignedByte unsigned 8 bit integer int M bempt

unsignedLong unsigned 64 bit integer Decimal M bempt

unsignedInt unsigned 32 bit integer int M bempt

unsignedShort unsigned 16 bit integer int M bempt

Example of type validation mehods in a X-Script:

string(%enumeration=['Hello', 'world'])
string(%pattern=['[A-Z][a-z]{3}'])
string(%whiteSpace='collapse', %length='5')
string(%minLength='3', %maxLength='30')
decimal(%totalDigits='8', %fractionDigits='2')
dateTime(%minInclusive='2000-01-01T00:00:00-01:00')
gMonth(%enumeration=['--01Z','--12'])
list(%item= short)
union(%item=[boolean, short], enumeration=['true','1'])

16.3.2 Other validation methods in X-definition (and not in XML schema)

Method name Description The result Parameters

An alphanumeric string (only letters or numbers) String L

BNF(g, s) value must match the rule from the BNF Grammar g String -

contains(s) any string that contains s String -

Any string that
contains s
(captualisation is
ignored)

string that contains s regardless of upper/lower case String -

CHKID reference to a unique value – similar to IDREF in Table 4a, but the
occurrence of the referred value must already exist at this time

String -

CHKIDS list of values according to CHKID separated by white spaces. String -

dateYMDhms date and time corresponding to the mask "yyyyMMddHHmmss". Datetime M

Dec decimal number corresponding to XML schema “decimal"
datatype. However, the decimal point can also be recorded as the
comma)

Decimal T efmpt

email email address String L

emailDate date in the format in email (see RFC822). Datetime M

emailList list of email addresses separated by commas or semicolons Container L

ends(s) value must end with the string value in the parameter s. String -

endsi(s) value must end with the string value s regardless of the
upper/lower case.

String -

enum(s, s1, ...) value must match with one parameter from the list. Parameters s,
s1, ... must be strings.

String -

enumi(s, s1, ...) value must match with one parameter from the list regardless of
the upper/lower case. Parameters s, s1, ... must be strings.

String -

eq(s) value must equal the value of the string s. String -

eqi(s) value must equal the value with the string regardless of
upper/lower case.

String -

File value must be formally correct file path String L

 175 / 207

ISOdate date according to ISO 8601 (also parses the variants, which do not
support date in XML schema).

Datetime M

ISOdateTime date and time according to ISO 8601 Datetime M

ISOyear year according to ISO 8601 (also parses the variants, which do
not support gYear datatype in XML schema).

Datetime M

ISOyearMonth year and month according to ISO 8601 (also parses the variants
which do not support gMonthYear datatype in XML schema).

Datetime M

languages list of values separated by a space which are equal to an item
from the list of language codes according to ISO 639 or ISO 639-2

Container -elp

list(s1, s2, ...) value must be equal to a parameter from the parameter list. String -

listi(s1, s2, ...) value must be equal to a parameter from the parameters list,
regardless of the upper/lower case.

String -

ListOf(t) value is list of values according to the type of the method
parameter (which is a validation method - Parser). Values are
separated by white spaces.

DEPRECATED, replace the registration list(%item = t)

String -

MD5 MD5 checksum (32 hexadecimal digits) Bytes - e

NCNameList list of NCName values according to the specification of the XML
schema NCName. A separator is a white space.

String - elp

NCNameList(s) list of NCName values according to the specification of the XML
schema NCName. A list of characters that is used as a separator is
in the parameter s.

String - elp

Num value is a sequence of digits. String L

QNameList value must be a list of QName values according to the XML
specification. A separator is a white space.

Container - elp

QNameList(s) value must be a list of QName values according to the XML
specification. A list of characters that is used as a separator is in
the parameter s.

Container - elp

QNameList(s) value is the list of qualified names according to the XML
specification, and for each name the namespace in the context of
the current element must be defined.

Container - elp

QNameURI value must be a Qname according to the XML specification, and
the namespace must be defined in the context of the current
element

String - elp

QNameURI(s) checks whether if in the context of current element there exists
the namespace URI corresponding to the value in the argument s.

String - elp

pic(s) value must match the structure of the string s, where '9' means
any digit, 'a' means any alphabetic ASCII character, 'X' any
alphanumeric (ASCII) character and other characters must match.

String - elp

printableDate date in the usual “printable” format

(e.g.: "Mon May 11 23:39:07 CEST 2020")

Datetime M

regex (s) value must match the regular expression s. The s must be a regular
expression according to XML schema.

RegexResult -

sequence allows you to describe a sequence of different values. Parameter
%item = [type1, type2, ...], describes the sequence of validation
methods.

Container L ielmp

SET stores the value of a table of unique values similar to ID schema
type. However, it does not report an error if the value already
exists.

String -

SHA1 hexadecimal representation of the SHA1 checksum (40 hexadec
digits)

Bytes - e

starts(s) value must begin with the value of the string s. String -

startsi(s) value must begin with the value of the string s regardless of String -

176 / 207

upper/lower case.

tokens(s) value must be equal to any part of the mask s. The individual parts
of the mask are separated by the character "|".

String -

Uri value must be a formally correct URI, as implemented in Java. String -

uriList formally correct list of URIS, as implemented in Java. The delimiter
is a comma or white space.

String -

url value must be a formally correct URI, as implemented in Java. String -

urlList value must be formally correct URL list as it is implemented in
Java, the delimiter is a comma or whitespace

String -

xdatetime date and/or time of the corresponding ISO 8601 format (parses
also the variants, which does not support date in XML schema).

Datetime -

xdatetime(s) date and/or time corresponding to the mask s (see 16.2.5

Datetime (the date and time values)).
Datetime -

xdatetime (s, t) date and/or time corresponding to the mask s (see 16.2.5

Datetime (the date and time values)). The resulting value will
be reformatted according to the mask t.

Datetime -

xdtype Checks if value is valid declaration of the implemented type
validation method (i.e. from the table in chapter 16.3.1

Validation methods of XML schema types or from this table)

Parser -

16.3.3 Data types used in Java external methods

 4.8 External (Java) Methods

The implementing and using external methods, ie methods defined in the Java-classes (not in X-Script), is
discussed in Chapter 4.8. Data types of parameters and return values (if they are not void) must match one of
the types that are X-definitions or the values returned by a method. For the clarity, the following table lists
both the list of types supported by X-Script and its equivalent in Java:

X-Scriptu data type Java data type Explanation

int long Integer value.

Float double Real number value.

Boolean boolean Logical hvalue.

Element org.w3c.dom.Element XML Element

String java.lang.String Characted string

Datetime java.util.Calendar Date and time.

Duration org.xdef.sys.SDuration Time iinterval (see ISO 8061).

Container org.xdef.XDContainer
org.xdef.XDValue[]

The type implenets ArrayList and
Map.

The array of XDValue is the
Contaimer converted to array.

Regex java.util.regex.Pattern2 Compiled regular expression.

RegexResult java.util.regex.Matcher3 Result of regular expression.

Input org.xdef.XDInput Output stream.

Output org.xdef.XDOutput Výstupní datový proud.

Bytes byte[] Byte array

Report org.xdef.sys.Report Reporter (see chapter 13.2)

XpathExpr org.xdef.xml.KXpathExpr XPath expression.

2 Pro verzi JDK 1.3 je použita knihovna Apache a pak je objekt typu org.apache.oro.text.regex.Pattern.

3 Pro verzi JDK 1.3 je použita knihovna Apache a objekt je typu org.apache.oro.text.regex.MatchResult.

 177 / 207

Parser org.xdef.XDParser Type of validation method.

ParseResult org.xdef.XDParseResult Result of Parser.

Service org.xdef.XDService

Exteral service (databases)
(java.util.sql.Connection,
XQuery connection, XML database
connection etc.)..

Statement org.xdef.XDStatement Statement of database.
(java.util.sql.Statement, …).

ResultSet org.xdef.XDResultSet Iterator or a map of values (eg.
java.util.sql.ResultSet).

XmlOutStream org.xdef.XDXmlOutStream Writer of XML data to a stream.

Exception org.xdef.XDException Rozhraní pro výjimky v X-definicích.

BNFGrammar org.xdef.XDBNFGrammar Compiled BNF grammar

BNFRule org.xdef.XDBNFRule BNF rule

16.4 Pedefined values (constants)

X-definition has a set of predefined global variables and constants - their name always starts with the "$"
character. In X-Script, you can use the following set of predefined variables and constants:

Jméno Typ Význam

$stdIn Input Standard input stream (System.in)

$stdErr Output Standard output stream for error messages (System.err)

$stdOut Output Standard output stream (System.out)

$PI float he constant π, the ratio of the circumference of a circle to its
diameter (3.141592653589793)

$E float the constant e, the base of natural logarithms
(2.718281828459045)

$MAXINT int constant with the highest whole number
(9223372036854775807, ie. 263-1)

$MININT int constant with the smalest whole number

(-9223372036854775808, ie. -263)

$MAXFLOAT float the largest possible positive value (1.7976931348623157 E308)

$MINFLOAT float the smallest positive nonzero value (4.9 E-324)

$NEGATIVEINFINITY float negative infinity

$POSITIVEINFINITY float positive infinity

$NaN float value is not a valid number (Not a Number)

16.5 Ignored and illegal nodes

X-definition can also handle special cases of a node occurrence. Either the occurrence of described node can be
set as illegal, or the occurrence of a node can be ignored and separated from the validation process and from
the result object.

The following example lists the case where any text value of the Vehicle element located in front of the
Vehicle element will be ignored (omittied) (ie, there may be a text but it is ignored. In addition, in the
element Vehicle any possible occurrence of the attribute type will be ignored and any following element will
be also ignored:

178 / 207

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 ignore /* the text here is ignored. */
 <Vehicle xd:script = "occurs 0..*"
 type = "ignore; enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vtn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />

 <!— any element here will be ifgnored -->
 <xd:any xd:script="ignore" />
 </Vehicles>
</xd:def>

In the following example are declared the illegal nodes from the example above as illegal. The behavior is
similar as if those nodes were not described:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 illegal /* the text here is illegal. */
 <Vehicle xd:script = "occurs 0..*"
 type = "ignore; enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vtn = "string(7)"
 purchase = "date()"
 manufacturer = "string()"
 model = "string" />

 <!— any element here will be illegal -->
 <xd:any xd:script="illegal" />
 </Vehicles>
</xd:def>

16.5.1 Speficifation of namespace for X-definition

 4.7 Sample of Complete X-definition

X-definitions can also be used to describe the X-definition itself. To enable such writing, you must specify the
metaNamespace attribute from the X-definition namespace to specify the namespace URI, which will continue
to be interpreted as the namespace for X-definition objects. In addition, it is possible to refer to these objects:

<meta:def xmlns:meta = "http://www.syntea.cz/project/xdef"
 xmlns:xd = "http://www.syntea.cz/xdef"
 name = "dummy"
 xd:metaNamespace = "http://www.syntea.cz/project/xdef">

 <xd:def xd:name = "string()">
 <meta:any meta:script="occurs 1..*; options moreAttributes, moreElements, moreText"/>
 </xd:def>
</meta:def>

In the example described above, a document with a root element def and an attribute that contains any sub-
elements, attributes, and a text node has been simplified. I.e. a part of the X-definitions has been defined.

16.6 Options

 4.7.1 X-script of X-definition

X-Script makes it possible to customize the defaults of the X-definition processor using both the validation
mode and the construction mode. This behavior can be edited using the X-Script, for example, how to process
blank values, work with capital or small characters, the processing of white spaces characters, etc.. This which
may be different for the different parts of X-definitions. The options section for X-Script is introduced with the
options keyword followed by a comma-separated list.

The names of the options are in the following table:

 179 / 207

Option name Description

acceptEmptyAttributes the empty attributes are copied from the input (regardless of their declared type).

preserveAttrWhiteSpaces superfluous spaces in attributes are left. The default value is

preserveComments comments are copied into the resulting document (in the validation mode). This
option is only allowed in the header X-definition.

preserveEmptyAttributes the empty attributes are left (only if the attribute is not declared as optional).

preserveTextWhiteSpaces superfluous spaces in text nodes are left.

ignoreAttrWhiteSpaces not significant extra spaces in attributes are removed before further processing.

ignoreComments the comments are ignored. This option is only allowed in the header of X-definition.
This is the default value.

ignoreEmptyAttributes the empty attributes (where the length of the value is zero) are ignored (before the
operations are made to remove the white spaces). This is the default value.

ignoreEntities the unresolved external entities in DOCTYPE in parsed XML data are ignored. This
option is possible to declare only in the x-script of X-definition header.

ignoreTextWhiteSpaces superfluous spaces in text nodes are removed before further processing.

preserveAttrCase the low/capital letters in the attribute remain unchanged. This is the default value.

preserveTextCase the low/capital letters in the text node value remains unchanged. This is the default
value.

preserveAttrCase letters in attribute are set before further processing to lower case.

setAttrUpperCase letters in attributes are set to uppercase before further processing.

setTextLowerCase letters of value of a text node before further processing are set to lowercase.

setTextUpperCase letters of value of a text node before further processing are set to uppercase.

trimAttr whitespaces at the beginning and end of the attribute value are removed before
further processing. This is the default value.

noTrimAttr whitespaces at the beginning and end of the attribute value are left.

trimText whitespaces at the beginning and end of the text node values are removed before
further processing. This is the default value.

noTrimText whitespaces at the beginning and end of the text node value are left.

moreAttributes in the element are allowed even undeclared attributes. These attributes are copied
without change to the current element.

moreElements even undeclared elements are allowed in the element. These elements are copied
without change to the current element.

moreText even undeclared text nodes are allowed in the element. These nodes are copied
without change to the current element.

clearAdoptedForgets if this option is specified in the X-script of an element, all actions "forget" are
ignored for all nested elements and their descendants.

ignoreEntities the option can be declared only in the X-script of X-definition header and it causes
that the files with external entities (in the DTD specification) to be ignored. This
option is taken from the X-definition which was used for processing the root
element.

resolveEntities the option can be declared only in the X-script of X-definition header and it causes
the files with external entities (in the DTD specification) to be processed. This option
is taken from the X-definition which was used for processing the root element. This
is the default value.

resolveIncludes the option can be declared only in the X-script of X-definition header and it causes
the links to external data with the elements (http://www.w3.org/2001/XInclude) to
be processed. This is the default value.

ignoreIncludes the option can be declared only in the X-script of X-definition header and it causes
the links to external fdata with the elements (http://www.w3.org/2001/XInclude) to
be ignored.

acceptQualifiedAttr the attributes which are declared without the namespace URI are also accepted
with the namespace (and with the prefix) of the parent element. This is the default
value.

180 / 207

notAcceptQualifiedAttr the qualified attribute is not allowed

Nillable the element can be empty if it has a qualified attribute "nill " specified with the
value "true". The namespace of the attribute must be:

 "http://www.w3.org/2001/XMLSchema-instance". This option allows compatibility
with the "nillable" property in the XML schema.

noNillable element is not "nillable". This is the default value.

acceptOther when validating XML instances of the undeclared objects in the model of element
are inserted into the result. By default this option is not set.

ignoreOther when validating the XML instances of the undeclared objects in the model of
element are ignored. By default this option is not set.

Cdata this option causes a text node to be generated as CDATA section. This option is only
permitted in the X-script of the text nodes. By default this option is not set.

Example:

xd:script = "options ignoreAttrWhiteSpaces, ignoreTextWhiteSpaces, preserveEmptyAttributes"

Note: Option "noTrimText" should be used carefully. For example. for the following X-definition:

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.0" xd:name="a" xd:root="E">

 <E xd:script="options noTrimText">

 <O xd:script="*" />

 optional string();

 </E>

</xd:def>

the following input data will be validated incorrectly:

<E>

 <O>

</E>

The reason for this is the fact that after the initial element <E> is an empty line (before the process of validation
the empty lines are not removed due to the option "noTrimText"). The empty line, therefore, is seen as a value
of a text node and the engine of X-definition expects the model of a text node which does not exist and
therefore reports an error.

Device X-definitions, therefore, understands the above input data if you select the "noTrimText" option as
follows:

<E>

 optional text

 <O>

 optional text

</E>

16.7 Methods implemented in X-Script

In the X-script a variety of implemented methods can be called. Some of them can only be used in some parts
of the X-script. The following tables list methods and result types. The parameter types are described in the
following way:

AnyValue v, v1, v2, …

Datetime d

Element e, e1, e2, …

Container c, c1, c2, …

int: m, n, n1, n2, …

float f, f1, f2, …

 181 / 207

Object o

String s, s1, s2, …

16.7.1 Implemented general methods

All methods implemented in X-definition are listed in the following table:

addComment(s) adds a XML comment with a value of s ad the end of child
list of the current element.

 element

addComment(n, s) adds a XML comment node with a value of s after node n. anywhere

addPI(s1, s2) adds processing instruction at the end of child list of the
current element. Target name is s1, data is s2

 element

addPI(n, s1, s2) adds processing instruction after node n. Target name is
s1, data is s2

 anywhere

Method name Description The result Where use

addComment(s) adds a XML comment node with a value of s to the current

element.

 attribute, text

node, element

182 / 207

addText(s) adds a text node with a value of s to the current element. attribute, text

node, element

addText(e, s) adds a text node with value of s to the child nodes of

element e.

 anywhere

bindSet(u[,u1…]) This method can be specified only in the “init” section of the

X-script of model of Element. At the end of processing of the

element where it was invoked it sets to all specified

uniqueSets the value of the actual key which was at init time

(after “finally” section).

 element

clearReports() clears all current (temporal) error reports generated by the

preceding validation method (used e.g. in onFalse action).

 anywhere

cancel() forced end of the processing of X-definition anywhere

cancel(s) forced end of the processing of X-definitions and sets the

error message with text s.

 anywhere

compilePattern(s) compiles the regular expression s. Deprecated, replaced by

the new Regex(s).

Regex anywhere

defaultError() writes a default error message into the temporary report log

and returns the boolean value false. The error is XDEF515

Value differs from expected.

boolean attribute, text

node

easterMonday(n) returns the date with the Easter Monday for year n Datetime anywhere

error(r) writes an error message with report r into the temporary

report log. The result is Boolean value false.

boolean

always false

anywhere

error(s) writes an error message with text s into the temporary

report log. The result of the function is the Boolean value

false.

boolean

always false

anywhere

error(s1, s2) writes an error message report created from s1 and s2 into

the temporary report log. The result is Boolean value false.

The s1 parameter is the identifier of the error, the s2 is the

error text.

boolean

always false

anywhere

error(s1, s2, s3) writes an error message report created from s1 and s2 into

the temporary report log. The result of the function is the

Boolean value false. The s1 parameter is the identifier of the

error, the error text is s2 and s3 is a modifier with

parameters of text.

boolean

always false

anywhere

errors() returns the current number of errors reported during

processing.

int attribute, text

node

errorWarnings() returns the current number of errors reported during

processing.

int attribute, text

node

format(s, v1, ...) returns string created from values of parameters v1, ...

according to the mask s (see method format in

java.lang.String).

String anywhere

format(l, s, v1, ...) returns string created from values of parameters v1, ...

according to the region specified by Locale in parameter l

and mask s (see method format in java.lang.String).

String anywhere

from() returns the Container corresponding to the current context.

The method can only be used in the "create" action in the

X-script element, the text value or attribute. If the result is

null, returns an empty Container.

Container create element

from(s) returns the Container created after the execution of the

xpath expression s in the current context. The method can

only be used in the "create" action in the X-script element,

the text value or attribute. If the result is null, returns an

empty Container.

Container create attribute

create element

create text node

from(e, s) returns the Container after the execution of the xpath

expression s in the element e. The method can only be used

in the "create" action in the X-script of an element, the text

value or attribute. If e is null, the result is an empty

Container create attribute

create element

create text node

 183 / 207

Container

getAttr(s) returns the value of the attribute with the name s (from the

current element). If this attribute does not exist, returns an

empty string.

string element

getAttr(s1, s2) returns the value of an attribute with the local name s and

namespace s2 (from the current element). If this attribute

does not exist, returns an empty string.

string element

getAttrName() returns a string with the name of current attribute. String all the action in

the X-script

attributes

getElement() the result is the current element. Element

element, text

node

attribute

getElementName() name of the current element. String anywhere

getElementLocalName() name of the current element. String attribute, text

node

getElementText() returns a string with the concatenated text content of nodes

that are direct descendants of the current element.

String attribute, text

node

getImplProperty(s) returns the value of the property from the current

X-definition that is named s. If the item does not exist,

return an empty string.

String attribute, text

node

getImplProperty(s1, s2) returns the value of the property s1 of X-definition, whose

name is s2. If the appropriate X-definition or item does not

exist will return an empty string.

String attribute, text

node

getIem(s) returns the value of the items from the current context. String element, text

node

attribute

getLastError() returns the last reported error report. Message element, text

node

attribute

getMaxYear() returns maximum allowed value of year when parsing the

date.

int anywhere

getMinYear() returns minimum allowed value of year when parsing the

date.

int anywhere

getNamespaceURI() returns a string whose value is the namespace URI of the

current element. If the namespace URI does not exist,

returns an empty string.

String attribute, text

node

getNamespaceURI(n) returns a string whose value is the namespace URI of the

node n (it can be either an element or attribute). If the

namespace URI does not exist, returns an empty string.

String attribute, text

node

getNamespaceURI(s) returns a string whose value is a namespace URI matching

prefix s the in the context of the current element. If the

namespace URI does not exist, returns an empty string.

String attribute, text

node

getNamespaceURI(s, e) returns a string whose value is a namespace URI matching

prefix s the in the context of the element e. If the

namespace URI does not exist, returns an empty string.

String attribute, text

node

getNSUri(s, e) Returns name space URI of given prefix s from the context of

element e
String Anywhere

getOccurrence() returns the current number of instances of the object. int element

getParentContextEle returns the element of the context of the parent of Element element

184 / 207

ment() current element

getParentContextEle

ment(n)

returns the element of the context of n - parent of

current element

Element element

getParsedBoolean() returns the Boolean value of the ParseResult (if the previous

X-script was read by a validation method).

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

boolean only after the

method type

checking

getParsedBytes() returns the value of byte array of ParseResult (if the

previous X-script was a validation method).

Warning: this method must becalled immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

Bytes only after the

method type

checking

getParsedDatetime() returns the value of Datetime from ParseResult (if the

previous X-script was a validation method).

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

Datetime only after the

method type

checking

getParsedDecimal() returns the value of decimal number of ParseResult (if the

previous X-script was a validation method).

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

Decimal only after the

method type

checking

getParsedDuration() returns the value of Duration of ParseResult (if the previous

X-script was a validation method).

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

Duration only after the

method type

checking

getParsedFloat() returns the float value of ParseResult (if the previous X-script

was read by a validation method).

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

float only after the

method type

checking

getParsedInt() returns the int value of ParseResult (if the previous X-script

was read by a validation method).

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

int only after the

method type

checking

getParsedValue() returns an object with the parsed value of ParseResult (if the

previous X-script was read by a validation method).

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue.

If this condition is not met, then the result of the method is

not defined.

AnyValue only after the

method type

checking

getQnameLocalpart(s) returns a string with a local name of the argument that is a

qname.

String attribute, text

node

 185 / 207

getQnamePrefix(s) returns a string with the prefix from s that is a qname.

Returns an empty string, if the argument is a qname or does

not have a prefix.

String attribute, text

node

getQnameURI(s) returns a string whose value is a namespace URI matching

qname s the in the context of the current element. If the

namespace URI does not exist, returns an empty string.

String attribute, text

node

getQnameURI(s, e) returns a string whose value is a namespace URI matching

qname s the in the context of the element e. If the

namespace URI does not exist, returns an empty string.

String attribute, text

node

getRootElement() returns the root element of the current element. Element attribute, text

node, element

getSourceColumn() returns column of source position of processed node (if it is

not available returns 0)

int attribute, text

node, element

getSourceLine() returns line of source position of processed node (if it is not

available returns 0)

int attribute, text

node, element

getSourcePosition() returns printeable form of source position of processed

node (if it is not available returns empty string)

String attribute, text

node, element

getSpecialDates() returns the Container with the date values that are

permitted even if the year date is not in the allowed range.

Container attribute, text

node

getSysId returns system ID of source position of processed node (if it

is not available returns empty string)

String attribute, text

node, element

getText() returns a string with the value of a current attribute or a text

node.

String attribute text

text of element

getTextContent() returns a string with the text content of the current element

and its descendants. Returns an empty string if no text is

available.

String text of element

and descendants

getTextContent(e) returns a string with the text content of the element e and

its descendants. Returns an empty string if no text is

available.

String Anywhere

getText() returns a string with the value of a current attribute or a text

node.

String attribute text

text of element

getXDPosition() returns a string with the current XDPosition of the

X-definition.

String attribute, text

node, element

getXpos() returns the current position of the processed XML document

in XPath format.

String attribute, text

node, element

getUserObject() returns an external user object. Object attribute, text

node

getVersionInfo() returns information about the version of the current

X-definition.

String attribute, text

node

hasAttr(s) returns true if the current element has an attribute with

name s.

boolean element

hasAttr(s1, s2) returns true if the current element has the attribute with

local name s1 and the namespace s2.

boolean element

IsCreateMode() returns true, if the current processing mode is the

construction mode.

boolean attribute, text

node

isDatetime(s) result is true when the date from the string s matches the

format according to ISO 8601 (i.e., the mask of "y-M-d [TH:

m: s[.S] [Z]] ").

boolean attribute, text

node

isDatetime(s1, s2) result is true when the date in the string s1 matches the

mask s2.

boolean attribute, text

node

IsLeapYear(n) returns true if the year n is leap year. boolean anywhere

186 / 207

insertComment(s) Insert comment s before the actualk element. element

insertComment(n, s) Insert comment s before node n. anywhere

insertPI(s1, s2) Insert processing instruction before the actualk element.

Target name is s1, data is s2

 element

insertPIn, s1, s2) Insert processing instruction before node n. Target name is

s1, data is s2

 anywhere

insertText(s) insert text node s before actual node. Note the parent of the

actual node must be an element!

 element

insertText(n, s) insert text node s before node n. Note the parent of the

node n must be an element!

 anywhere

IsNumeric(s) returns true when the string s contains only digits. boolean anywhere

newElement() creates a new element (the name is derived according to the

location, where the method was specified).

Element create

newElement(s) creates a new element named according to argument s. Element attribute, text

node

newElement(s1,s2) creates a new element named according to argument s1 and

the namespace s2.

Element attribute, text

node

newElements(n) creates a Container with n new elements (the name is

derived according to the location, where the method was

specified).

Container create

newElements(n, s) creates a Container with the n new elements named by the

argument s.

Container attribute, text

node

newElements(n,s1,s2) creates a Container with the n new elements named by the

argument s1

and the namespace s2.

Container attribute, text

node

now() returns current date and time Datetime anywhere

occurrence() returns a number corresponding to the current number of

the occurrence of the element.

int element, text

node

out(v) value v is converted to a string, and is written on the

standard output

 anywhere

outln () output of the new line to the standard output anywhere

parseBase64 (s) converts a string to array of bytes If the string is not Base64,

then the method returns null.

Bytes anywhere

parseDate(s) converts a string with a date in the ISO 8601 format to

Datetime value (i.e. according to the mask "yyyy-M-dTH: m[:

s][.S] [Z]"). If the string s does not date according to ISO,

then the method returns null.

Datetime attribute, text

node

parseDate (s1, s2) converts the string s1 to Datetime according to the mask in

the s2 parameter. If the string is not a datetime according to

ISO the method returns null.

Datetime attribute, text

node

parseEmailDate(s) converts a string s with a date in the format of RFC822 to the

Datetime value. If the date is not in the specified format

then the method returns null.

Datetime attribute, text

node

parseFloat (s) converts a string to a float value If the string s is not a float

number, then the method returns null.

float attribute, text

node

parseInt(s) converts a string to an integer value If the string s is not an

integer number, then the method returns null.

int attribute, text

node

parseDuration(s) Converts a string with a time interval in the format ISO 8601

to the Duration value. If the string s is not duration

according to ISO, then the method returns a value null.

Duration attribute, text

node

 187 / 207

parseHex(s) converts a string to an array of bytes If the string is not

Base64, then the method returns null.

Bytes anywhere

pause() in the debug mode it writes the information about actual

processing to the standard output. The program stops and

waits for a response in the standard input. If the answer is

"go", the program continues. Instead of "go", you can

specify the other commands. The list of possible commands

will be printed by typing "?". If the debug mode is not set

this method is ignored.

 attribute, text

node

pause(s) in the debug mode it prints the information line and the text

s to the standard output. The program waits for a response

on the standard input. If the answer is "go", the program

continues. Instead of "go", you can specify the other

commands. The list of possible commands will be printed by

typing "?".

 attribute, text

node

printf(s, v1, ...) prints to the standard output stream a string created from

values of parameters v1, ... according to the mask s (see

method printf in java.io.PrintStream).

 anywhere

printf(l, s, v1, ...) prints to the standard output stream a string created from

values of parameters v1, ... according to the region specified

by Locale in parameter l and the mask s (see method printf

in java.io.PrintStream).

 anywhere

removeAttr(s) removes an attribute with the name s from the current

element.

 element,

attribute, text

node

removeAttr(s1, s2) removes an attribute with the local name s1 and the

namespace s2 from the current element.

 element,

attribute, text

node

removeText() deletes the current (being processed) node with a text value

(i.e. a text or attribute node)

 attribute, text

node

removeWhiteSpaces(s) all occurrences of the white spaces in the string are replaced

by a single space.

String anywhere

Replace(s1, s2, s3) all occurrences of the string s2 in the string s1 are replaced

with the string s3.

String anywhere

replaceFirst(s1, s2, s3) first occurrence of the string s2 in the string s1 are replaced

with the string s3.

String anywhere

returnElement(o) The result created from the argument o is an Element and it

is set as the result of the X-definition process. The process of

X-definition will be finished and returns as a result a created

value.

setAttr(s1, s2) sets the value of the attribute named s1 in the current

element to s2.

 element,

attribute, text

node

setAttr(s1, s2, s3) sets the value of an attribute with the local name s1 and

namespace s2 in the current element to s3.

 element,

attribute, text

node

setElement(e) insert the element e at the current location of the processed

XML element (e.g. you may use it to add an element in the

action onAbsence).

 attribute, text

node, element

setMaxYear(n) sets the maximum allowed value of year of the validated

date.

 anywhere

setMinYear(n) sets the minimum allowed value of year of the validated anywhere

188 / 207

date.

setParsedValue(in) stores the value v in the current parsed result.

Warning: this method must be called immediately after a call

to the validation method, for example, in the section onTrue

or onTrue. If this condition is not met, then the result of the

method is not defined.

ParsedValue only after the

method type

checking

setSpecialDates(c) sets the Container with the date values in the list of

permitted dates (even if the year date is not in the allowed

range).

 attribute, text

node

setText(v) the string to which is converted the argument v replaces the

value of the current attribute, or a text node.

 the text attribute

setUserObject(o) sets the external user object (Java object). attribute, text

node

tail(s, n) returns the last n characters in the string String anywhere

toString(v) converts the value v in the standard manner to a character

string. The value v can be of type String, Integer, Float, Date,

Element and List

String anywhere

toString(v, s) converts the value v according to mask s to a character

string. The value v can be of type int, float, or Datetime. The

value of s is a format mask. The mask see 16.2.5.

 anywhere

trace() in the debug mode it writes the information about actual

processing to the standard output. If the debug mode is not

set this method is ignored.

 attribute, text

node

trace(s) in the debug mode it writes the information line and text s

to the standard output. If the debug mode is not set this

method is ignored.

 attribute, text

node

translate(s1, s2, s3) replaces all occurrences of characters in the string s1 which

match one character from s2 with the character at the

corresponding position in the string s3. For example:

translate("bcr","abc","ABa") returns "Bar".

 If, in the appropriate position in the string s2, there is not a

character then this character is skipped:

translate("-abc-", "ab", "BA")

 Returns the "BAc"

String anywhere

xcreate(c) result is an object constructed in accordance with the model

of the element c (used in the construction mode).

Element attribute, text

node

xparse(s) parses an XML document from a string with the current X-

definition and returns the parsed value of the root element.

If the s is a string, describing an URL or a path to a file, the

parser uses a stream created from s. However, if the string s

begins with the character "<", then the parser uses the value

of s converted to UTF-8 byte stream.

Element attribute, text

node

xparse(s1, s2) parses an XML document from a string s1 with the X-

definition named s2 and returns the parsed value of the root

element. If the s1 is a string, describing an URL or a path to a

file, the parser uses a stream created from s1. However, if

the string s1 begins with the character "<", then the parser

uses the value of s converted to UTF-8 byte stream.

Element attribute, text

node

xparse(s, null) parses an XML document from a string s without an

X-definition. Returns the root element. If the s is a string,

describing an URL or a path to a file, the parser uses a

stream created from s. However, if the string s begins with

the character "<", then the parser uses the value of s

Element attribute, text

node

 189 / 207

16.7.2 Methods of objects of all types

Method name Description The result

x.toString() returns a string in the "viewable" shape of the value x. String

typeName(v) returns the name of the type of v. String

valueType(v) returns Type-ID of v. int

16.7.3 Methods of objects of the type BNFGrammar

Method name Description The result

BNFGrammar x construction of BNF grammar object x is recorded in the element

<xd:BNFGrammar name="x">

Text of BNF grammar specification see 16.9.

BNFGrammar

BNFGrammar x construction of BNF grammar object x, which is an extension of the

grammar g, is recorded in the element

<xd:BNFGrammar name="x" extends="g">

see 16.9.

BNFGrammar

x.parse(s) returns a parsed value of the attribute of the text node in accordance

with rule with the grammar of x

ParseResult

x.parse(s1, s2) returns a value of the parsed string s2 according to the rule s1 from

the grammar x.

ParseResult

x.rule(s) returns the rule from the grammar x. BNFRule

16.7.4 Methods of objects of the type BNFRule

Method name Description The result

x.parse () returns a parsed value of the current attribute of the text node in

accordance with grammar rule x

ParseResult

16.7.5 Methods of objects of the type Bytes

Method name Description The result

converted to UTF-8 byte stream.

XPath(s) returns a Container created after the execution of the xpath

expression s on the current element. If the actual element is

null, it returns an empty Container.

Container element,

attribute, text

node

xpath(s) returns a Container created after the execution of the xpath

expression s on the element created from the Container c. If

the result is null, it returns an empty Container.

Container attribute, text

node

xquery(s) returns the Container created after the execution of the

xquery expression s on the current context. The method can

only be used in the "create" action in the X-script of an

element, the text node or attribute. If the actual element is

null it returns an empty Container.

This method is implemented only if the Saxon library is

available.

Container element,

attribute, text

node

xquery(s, e) returns the Container created after the execution of the

xquery expression s on the element e. If the actual element

is null, it returns an empty Container.

This method is implemented only if the Saxon library is

available.

Container attribute, text

node

190 / 207

x = new Bytes (n) returns an array of bytes of x of size n. All bytes are set to 0. Bytes

x.add(n) adds the value n after the last item in the array of bytes x.

x.clear() clears the array of bytes x.

x.getAt(n) Rturns n-th item of the array x (the index of the first item is 0). int

x.insert(n1, n2) inserts a byte n2 before the n1-th item of x (the index of the first item

is 0).

x.remove(n) removes n-th item from the array of bytes x and returns the original

value (the index of the first element is 0).

int

x.setAt (n1, n2) sets the value of the n2 to the n1-th item of the byte array x (the index

of the first item is 0).

x.toBase64() returns a string with the value of the byte arrays in Base64-encoded

format.

String

x.toHex() returns a string with the value of the array of bytes in the hexadecimal

format.

String

16.7.6 Methods of objects of the type Container

Method name Description The result

x = new Container() creates an empty Container x. Container

x.addItem(o) adds the object o to the end of the sequence part of the Container x.

x.getElement() returns the first XML element found in the sequence part of the

Container x (or returns null if does not element exist).

Element

x.getElement(n) returns the n-th XML element found in the Container x (or returns null if

such element not exists).

Element

x.getElements () returns the new Container with the XML elements found in the

Container x.

Container

x.getElements (s) returns the new Container with the XML elements with the name s

found in the Container x.

Container

x.getItemType(n) returns the type-ID of the n-th item in the Container x. int

x.getLength() returns the number of the items in the sequential part of the Container

x.

int

x.getNamedItem(s) returns the value of a named item in the mapped part of the Container

x.

AnyValue

x.getNamedString(s) returns the value of a named item in the mapped part of the Container x

as a string.

String

x.getText() returns a string concatenated from the string items in the sequential

part of the Container x.

String

x.getText(n) returns a string with the nth item of type string in the sequential part of

the Container x.

String

x.hasNamedItem(s) returns true if the Container x has a named item with the name s. boolean

x.isEmpty() returns true if the Container x has no items. boolean

x.item(n) returns the n-th item in the Container x. AnyValue

x.removeItem(n) deletes the n-th element of the Container x.

x.removeNamedItem(s) deletes a named item with the name s in the Container x.

x.setNamedItem(v) stores named item in the Container x.

x.setNamedItem(s, v) creates a named item with the name s and the value v in the Container

x.

x.sort() returns the ascending sorted the sequential part of the Container x

(according to the compareTo method on the items).

Container

 191 / 207

x.sort(s) returns the ascending sorted sequential part of the Container x. The

result of the XPath expression s is applied as a key for the XML elements.

Container

x.sort(s, b) returns the sorted sequential part of the Container x. the direction of

sort is according to the Boolean argument b (true for ascending and false

for the descending sort). The result of the XPath expression s is applied

as a key for the XML elements.

Container

x.toElement() creates an element from the Container x. Element

x.toElement(s) creates an element with the name s from the Container x. Element

x.toElement(s1, s2) creates an element with the name s2 and namespace s1 from the

Container x.

Element

16.7.7 Methods of objects of the type Datetime

Method name Description The result

x = new Datetime (s) creates an object x from the string s, which must be in the form of ISO8601. Datetime

x.addDay(i) adds to the date x the number of days i (i can even be negative, then the

days will subtract from x) and returns a new value

Datetime

x.addHour(i) adds to the date x the number of hours i (i can even be negative, then the

hours will subtract from x) and returns a new value

Datetime

x.addMillisecond(i) adds to the date x the number of milliseconds i (i can even be negative, then

the milliseconds will subtract from x) and returns a new value

Datetime

x.addMinute(i) adds to the date x the number of minutes i (i can even be negative, then the

minutes will subtract from x) and returns a new value

Datetime

x.addMonth(i) adds to the date x the number of months i (i can even be negative, then the

months will subtract from x) and returns a new value

Datetime

x.addNanosecond(n) adds to the date x the number of nanoseconds i (i can even be negative,

then the nanoseconds will subtract from x) and returns the new value

Datetime

x.addSecond(i) adds to the date x the number of seconds i (i can even be negative, then the

seconds will subtract from x) and returns a new value

Datetime

x.addYear(i) adds to the date x the number of years i (i can even be negative, then the

years will subtract from x) and returns a new value

Datetime

x.easterMonday(i) returns the date with the Easter Monday of the year i from a date x. Datetime

x.getDay() returns the day of the date int

x.getFractionalSecond() returns the value of seconds of date x including the fractional part of

seconds

float

x.getHour() returns the hour of a date x int

x.getMillisecond() returns the number of milliseconds of the date x since the beginning of the

day

int

x.getMinute() returns the minutes from the date x since the beginning of the day int

x.getMonth() returns the month from a date x (January is 1) int

x.getNanosecond() returns the number of nanoseconds of the date x since the beginning of the

day

int

x.getSecond() returns the seconds of the date x since the beginning of the day int

x.getWeekDay() returns the day of the week from date x (1 is Sunday, 7 is Saturday) int

x.getYear() returns the year from a date x int

x.getZoneName() returns the name of the time zone of the date x. String

x.getZoneOffset() returns the offset of the time zone of the date x to the Prime Meridian, in

milliseconds

int

x.isLeapYear() returns true if the year x is a leap year. boolean

x.lastDayOfMonth() returns the last day of the month of a date x. int

192 / 207

x.setDay(i) sets the day i to the date x and return a new value Datetime

x.setDaytimeMillis(i) sets the time to the date x according to the number of milliseconds i in the

argument i and returns a new value

Datetime

x.setHour(i) sets the hour i to the date x and returns a new value Datetime

x.setMillisecond(i) sets the millisecond i to the date x and returns a new value Datetime

x.setMinute(i) sets the minute i to the date x and returns a new value Datetime

x.setMonth(i) sets the month i to the date x and returns a new value (January is 1) Datetime

x.setSecond(i) sets the second i to the date x and returns a new value Datetime

x.setYear(i) sets the year i to the date x and return a new value Datetime

x.setZoneName(s) sets the name of the time zone in the date x on s and returns a new value Datetime

x.setZoneOffset(i) sets the offset for the time zone in the date (i are milliseconds) and returns

a new value

Datetime

x.toMillis() returns an integer value that corresponds to the number of milliseconds

since January 1. January 1970

int

x.toString(s) returns a character string with a date according to the mask s String

16.7.8 Methods of objects of type Duration (time interval)

Method name Description The result

x = new Duration(s) constructor of the Duration object. Creates an object based on the

string, which must be in ISO8601 format

Duration

x.getDays() returns the number of days in the interval from x. int

x.getEnd() returns the date of the end of the interval from x. Datetime

x.getFractionalSecond() returns the number of seconds including the fractional part of the

interval of x.

float

x.getHours() returns the number of hours from the interval of x int

x.getMinutes() returns the number of minutes from the interval of x int

x getMonths() returns the number of months from the interval of x int

x.getNextDate() returns the next date and time from the interval of x Datetime

x.getRecurrence() returns the number of times of the interval from x int

x.getSeconds() returns the number of seconds from the interval of x int

x.getStart() returns the starting date and time from the interval of x Datetime

x.getYears() returns the number of years of the interval of x. float

16.7.9 Methods of objects of the type Element

Method name Description The result

x = new Element (s) constructor of Element. Creates new Element with the name s. Element

x = new Element(s1, s2) constructor of Element. Creates new element with the namespace s1

and the name s2.

Element

x.addElement(e) adds the element e at the end of the list of child nodes of the element x.

If x is the root of the XML tree it will produce an exception

x.addText(s) adds a text node with the value s at the end of the list of child nodes of

the element x. If x is the root of the XML tree it will produce an

exception

x.getAttribute(s) returns the value of the attribute s in the element x. If the attribute

does not exist, it returns an empty string.

String

x.getAttribute(s1, s2) returns a value of the attribute with the local name s2 and the

namespace s2 from the element x. If the attribute does not exist, it

String

 193 / 207

returns an empty string.

x.getChildNodes() returns the Container with a list of the child nodes of the element x. Container

x.getNamespaceURI() returns a string with the namespace URI of the element x. String

x.getTagName() returns the qualified name of the element x. String

x.getText() returns the string with the concatenated text of the element x. String

x.hasAttribute(s) returns true if the element x has an attribute with the name s boolean

x.hasAttributeNS(s1, s2) returns true if the element x has an attribute with the name s2 and the

namespace s1.

boolean

x.isEmpty() returns true if the element x has no child nodes and attributes. boolean

x.setAttribute(s1, s2) sets the attribute with the name of s1 and s2 value in the element x

x.setAttribute(s1, s2, s3) sets the attribute with the namespace of s1 and the name s2 and the

value s3 in the element x

x.toContainer() returns the Container that was created from the element x. Container

x.toString(b) returns the string that was created from the element x. If b is true, then

the string is an indented form of the element x.

String

16.7.10 Methods of objects of the type Exception

Method name Description The result

x = new Exception (s) creates an Exception with the message s Exception

x=new Exception(s1,s2) creates an Exception with the report ID s1 and message text s2. Exception

x=new Exception(s1,s2, s3) creates an Exception with the report ID s1 and message text s2 and

modification parameters in the string s3.

Exception

x.getReport() returns a report message from the Exception x Report

x.getMessage() returns a message string from the Exception x String

16.7.11 Methods of objects of the type Input

Method name Description The result

x = new Input (s) creates an input stream according to the argument s. Input

x = new Input(s, b) creates an input stream according to the argument s. If b is true, it will

be read in XML format.

Input

x = new Input(s1, s2) creates an input stream by the argument s1. The argument s2 specifies

the name of encoding.

Input

x=new Input(s1, s2, b) creates an input stream by the argument s1. The argument s2 specifies

the name of encoding. If b is true, it will be read in XML format

Input

x.eof() returns true if the Input x is at the end boolean

x.readln() reads a line of Input. String

16.7.12 Methods of NamedValue objects

Method name Description The result

x = new NamedValue (s, v) creates a named value x with the name s and the value v. NamedValue

x.getName() returns the name of a named value x. String

x.getValue() returns the value of a named value x. AnyValue

x.setName(s) sets the name s to a named value x.

16.7.13 Methods of objects of the type Output

Method name Description The result

194 / 207

x = new Output (s) creates an output stream according to the argument s. Output

x = new Output(s, b) creates an output stream according to the argument s. If b is true, it will

be written in XML format.

Output

x = new Output(s1, s2) creates an output stream by the name of s1 and s2 code page. Output

x = new Output(s1, s2, b) creates an output stream by the name of s1 and s2 code page. If b is

true, it will be written in XML format

Output

x.error(s) writes an error record with message s.

x.error(s1, s2) writes an error record with message ID s1 and the message string s2.

x.error(s1, s2, s3) writes an error record with message ID s1, the message string s2 and

modification s3.

x.getLastError() returns the last written error record. Report

x.out(s) writes the text s to the x.

x.outln() writes a new line to the x.

x.outln(s) writes a new line with the text s to x.

x.printf(s, v1, ...) prints to the x a string created from values of parameters v1, ...

according to the mask s (see method printf in java.io.PrintStream).

x.printf(l, s, v1, ...) prints to the xa string created from values of parameters v1, ... according

to the region specified by Locale in parameter l and the mask s (see

method printf in java.io.PrintStream).

x.putReport(r) writes the Report r to x.

16.7.14 Methods of objects of the type ParseResult

Method name Description The result

x = new ParseResult(s) creates a ParseResult value x from the string. ParseResult

x.booleanValue() returns the boolean value from x. boolean

x.bytesValue() returns a array from x. Bytes

x.matches() returns true if the x does not contain errors. Otherwise, it returns false boolean

x.datetimeValue() returns a Datetime value from x. Datetime

x.durationValue() returns a Duration value from x. Duration

x.decimalValue() returns Decimal value from x. Decimal

x.error(s) sets the error message s to x.

x.error(s1, s2) sets the error Id s1 in the message s2 to x,

x.error(s1, s2, s3) sets the error Id s1 and the message s2 modified by s3 to x.

x.floatValue() returns a float value from x. float

x.getError() returns an error message from x. Report

x.getParsedString() returns the parsed string from x. String

x.getValue() returns the parsed value from x. AnyValue

x.setParsedString(s) sets s as the parsed value to x.

x.setValue (v) sets the parsed value v in x.

16.7.15 Methods of objects of the type Regex

Method name Description The result

x = new Regex(s) creates a regular expression x from s. Regex

x.getMatcher(s) returns the RegexResult created by regular expression x from the string

s.

RegexResult

x.matches(s) returns true if the regular expression x has met the string s. boolean

 195 / 207

16.7.16 Methods of objects of the type RegexResult

Method name Description The result

x.end(n) returns the end index of the group n from x. int

x.group(n) returns a string from the group n from x. String

x.groupCount() returns the number of groups in x. int

x.matches() returns true if the result of regular expression x has been met. boolean

x.start(n) returns the initial index of the group n in x. int

16.7.17 Methods of objects of the type Report

Method name Description The result

x = new Report (s) creates a report with the message s. Report

x = new Report(s1, s2) creates a report with the ID s1 and the message s2. Report

x = new Report(s1, s2, s3) creates a report x with the ID s1, message s2 modified with s3. Report

x.getParameter(s) returns a string with the value of modification parameter s from the

report x.

String

x.setParameter(s1, s2) returns the new Report created from x where the modification

parameter s1 is set to s2.

Report

x.setType(s) returns a new Report where the type of report is set to the value s. The

value of s must be one of:

"E" … error

"W" … warning

"F" … fatal error

"I" … information

"M"... message

"T" … text

Report

16.7.18 Methods of objects of the type ResultSet

Method name Description The result

x.close() closes the ResultSet x.

x.closeStatement() closes the statement associated with the ResultSet x.

x.getCount() returns the number of entries in the actual position of x. int

x.getItem() returns the current entry in the ResultSet x as a string. String

x.getItem(s) returns the entry named s from the current position of x. String

x.hasItem(s) returns true if the named entry s exists in the current position of x. boolean

x.hasNext() returns true if there is another row in the ResultSet x. boolean

x.isClosed() returns true if the ResultSet x is closed. boolean

x.next () sets the next row in the ResultSet x and returns true, if there is one. boolean

16.7.19 Methods of objects of the type Service

Method name Description The result

x=new Service(s1,s2,s3,s4) creates the object x providing access to a database. The s1 parameter is

the string defining the type of database interface (e.g. "jdbc"), s2 is the

database URL, s3 is user name and s4 is the password.

Service

x.close() close the database x.

x.commit() performs commit operation on the database x

196 / 207

x.execute (s1, ...) performs the command s1 with parameters s2, s3, ... Returns true if the

command was performed.

boolean

x.hasItem(s1, ...) returns true when the item defined by parameters exists. boolean

x.isClosed() returns true if the database x is closed. boolean

x.prepareStatement() prepares and returns a statement on database x. Statement

x.query(s1, s2) executes the query in a database x and returns the ResultSet object. ResultSet

x.queryItem(s1, s2, s3) executes the query in a database x and returns a string with the item s3. String

x.rollback() executes a rollback in the database x.

x.setPropertys1, s2) sets the property s1 to the value of s2 in a database x. Returns true, if

the setting has taken place.

boolean

16.7.20 Methods of objects of the type Statement

Method name Description The result

x.close() closes the statement x.

x.execute (s1, ...) executes the statement s1, ... and returns true if it has been executed. boolean

x.hasItem(s1, ...) returns true if there exists an item according to parameters s1, ... boolean

x.isClosed() returns true when the statement x has been closed. boolean

x.query(s1, ...) executes a query with parameters s1, ..., and returns a ResultSet with

the result.

ResultSet

x.queryItem (s1, s2, ...) executes a query on the item s1, with parameters s2, and returns a

ResultSet with the result.

ResultSet

16.7.21 Methods of the type String

Method name Description The result

x.contains(s) returns true if the string x contains a string s. boolean

x.containsi(s) returns true if the string x contains a string regardless of upper/lower

case.

boolean

x.cut(n) truncates the string x to the maximum length n. String

x.endsWith(s) returns true if the string x ends with a string s. boolean

x.endsWithi(s) returns true if the string x ends with a string s regardless of upper/lower

case.

boolean

x.equals(s) returns true if the string x has the same value as s. boolean

x.equalsIgnoreCase(s) returns true if the string x has the same value as s ignoring case. boolean

x.getBytes() Returns the array of bytes that is created from the string x (uses the

current system encoding)

Bytes

x.getBytes(s) returns the array of bytes that is created from the string s (according to

the code page that is named s)

Bytes

x.indexOf() returns the position of the occurrence of the string s in the string x. The

position starts from 0, and if the s string does not exist in the string x, it

returns-1.

int

x.indexOf(s, n) returns the position of the occurrence of the character string s in the

string x starting with position n. The position starts from 0, and if the

string s does not exist in the string x after position n, it will return-1

int

x.isEmpty() returns true if string s is empty. boolean

x.lastIndexOf(s) returns the position of the last occurrence of the string s in the string x.

If the string is not found, it returns-1.

int

x.lastIndexOf(s, n) returns the position of the last occurrence of a string s in the string x

starting from the position n. If the string is not found, it returns-1.

int

 197 / 207

x.length() returns the number of characters in the string x. int

x.startsWith(s) returns true if the string x starts with the string s. boolean

x.startsWithi(s) returns true if the string x starts with the string s without respect to

upper/lower case.

boolean

x.substring(n) returns part of the string x beginning from the position n to the end. String

x.substring(n1, n2) returns part of the string x starting from the position n1 to the position

n2.

String

x.toLower() returns the string created from x where are all uppercase letters in string

x are replaced with lowercase letters.

String

x.toUpper() returns the string created from x where are all lowercase letters in string

x are replaced with uppercase letters.

String

x.trim() returns a string in which are removed all white spaces at the beginning

and end of the string x are removed.

String

16.7.22 Methods of objects of the type uniqueSet

Method name Description The result

 the instance of uniqueSet object is created by the declaration

statement. See 4.10.1.

uniqueSet

x.CHKID() checks if the parsed value already exists as an entry in the table x. If

not, an error is reported.

ParseResult

x.CHKIDS() checks if for all parsed values from the list (separator is whitespace)

already exist an entry in the table x. If not, an error is reported.

ParseResult

x.ID() sets the parsed value to table x. If the value already exists an error is

reported

ParseResult

x.IDREF() checks if the parsed value exists a value an entry in the table x. If

not, an error is reported either when the scope of x ends or when

the method x.CLEAR() has been invoked (so the occurrence of parsed

value may be set after this method was invoked).

ParseResult

x.IDREFS() checks if for all parsed values from the list (separator is whitespace)

already exist an entry in the table x. I. If not, an error is reported

either when the scope of x ends or when the method x.CLEAR() has

been invoked (so the occurrence of parsed value may be set after

this method was invoked).

ParseResult

x.SET() sets the parsed value to table x. If the value already exists in the

table an error is NOT reported! (i.e. the value may be set more

times)

ParseResult

x.CLEAR() reports error messages if in the table x are unresolved references (by

methods IDREF and IDREFS). After all errors are reported all entries

of the table x are cleared.

x.checkUnref) reports error message if in the table x are items which are not

referred in the scope where the method is invoked.

x.getActualKey() returns value of the key of last saved item. iniqueSetKey

x size() Returns number of items in the x. int

x.toComtainer() Returns Container created from items in x. Container

16.7.23 Methods of objects of the type uniqueSetKey

Method name Description Result

resetKey() Sets value of the actual key of uniqueSet table to the value from this

object.

198 / 207

16.7.24 Methods of objects of the type XmlOutStream

Method name Description The result

new XmlOutStream(s) creates theinstance of XmlOutStream object according to

argument s. The s may describe a file.

XmlOutStream

x.setIndenting(b) if b is true, the writing is done with indentation.

x.writeElementStart(e) writes the start of an element e (name, attributes).

x.writeElementEnd() writes the end of the actual element.

x.writeElement(e) writes the element e.

x.writeText(s) writes the text s.

x.close() Closes the writer.

16.8 Mathematical methods in X-script

In the X-script it is possible to use the mathematical methods of the library's "java.lang.Math". These methods
are implemented both for the X-script type "float" and "int", which, if necessary, converts it to "float". The
result is either a "float" or "int" depending on the type of method. Note that the type "int" in the X-script is
always implemented as the Java "long" and "float" type is always implemented as the Java "double".

16.8.1 Methods of mathematical functions (taken from the class java.lang.Math)

Method name Description The result

abs(x) see method java.lang.Math.abs int or float

acos(x) see method java.lang.Math.acos float

asin(x) see method java.lang.Math.asin float

atan(x) see method java.lang.Math.atan float

atan2(x, y) see method java.lang.Math.atan2 float

cbrt(x) see method java.lang.Math.cbrt float

ceil(x) see method java.lang.Math.ceil float

cos(x) see method java.lang.Math.cos float

cosh(x) see method java.lang.Math.cosh float

exp(x) see method java.lang.Math.exp float

expm1(x) see method java. lang.Math.expm1 float

floor(x) see method java. lang.Math.floor float

hypot(x, y) see` method java. lang.Math.hypot float

IEEERemainder(x, y) see method java.lang.Math.IEEERemainder float

log(x) see method java.lang.Math.log float

log10 (x) see method java.lang.Math.log10 float

log1p(x) see method java.lang.Math.log1p float

max(x, y) see method java.lang.Math.max float or int

min(x, y) see method java.lang.Math.min float or int

pow(x, y) see method java.lang.Math.pow float

rint(x) see method java.lang.Math.rint float

round(x) see method java.lang.Math.round int

signum(x) see method java.lang.Math.signum float

sin(x) see method java.lang.Math.sin float

sinh(x) see method java.lang.Math.sinh float

 199 / 207

sqrt(x) see the method java.lang.Math.sqrt float

tan(x) see method java.lang.Math.tan float

tanh(x) see method java.lang.Math.tanh float

toDegrees(x) see method java.lang.Math.toDegrees float

toRadians(x) see method java.lang.Math.toRadians float

ulp(x) see method java.lang.Math.ulp float

16.8.2 Methods of mathematical functions (taken from java.math.BigDecimal)

For working with the type Decimal (the value is internally implemented as java.math.BigDecimal) the available
methods in the X-script are:

Method name Description The result

x = decimalValue(v) constructor; v can be int, double, String, or Decimal. Decimal

abs(x) see java.math.BigDecimal.abs Decimal

 add(x, y) see java math.BigDecimal.add Decimal

 compare(x, y) see java.math.BigDecimal.compare int

divide(x, y) see java.math.BigDecimal.divide Decimal

 equals(x, y) see java.math.BigDecimal.equals boolean

intValue(x) see java.math.BigDecimal.intValue int

floatValue(x) see java.math.BigDecimal.floatValue float

max(x, y) see java.math.BigDecimal.max Decimal

min(x, y) see java.math.BigDecimal.min Decimal

movePointLeft(x, n) see java.math.BigDecimal.movePointLeft Decimal

movePointRight(x, n) see java.math.BigDecimal.movePointRight Decimal

multiply(x, y) see java.math.BigDecimal.multiply Decimal

negate(x) see java.math.BigDecimal.negate Decimal

plus(xy) see java.math.BigDecimal.plus Decimal

pow(x, n) see java.math.BigDecimal.pow Decimal

remainder(x) see java.math.BigDecimal.remainder Decimal

round(s) see java.math.BigDecimal.round Decimal

scaleByPowerOfTen(x, n) see java.math.BigDecimal.scaleByPowerOfTen Decimal

setScale(x, n) see java.math.BigDecimal.setScale Decimal

stripTrailingZeros(x) see java.math.BigDecimal.stripTrailingZeros Decimal

subtract(x, y) see java.math.BigDecimal subtract Decimal

ulp(x) see java.math.BigDecimal.ulp Decimal

16.9 BNF grammar

 basic knowledge of BNF grammar

The BNF grammar is described with extended Backus-Naur form (EBNF). The EBNF describes the formal syntax
of a string by the set of production rules.

In the following text, instead of the EBNF, only the basic abbreviation BNF is used.

16.9.1 BNF production rule

Each production rule (hereafter "rule") has a name. The name of rule must start with a letter or the character
'_' (underscore character). After the first character may follow a sequence of letters, underscores and decimal

200 / 207

digits. The name of rule is on the left side of "::=". On the right side of "::=" follows a formula describing the
rule. Each rule describes one symbol of the grammar in the form:

ruleName ::= BNF expresion

where on the left side of the operator ":: =" is the name of the rule, and on the right side a rule is described
using the BNF expression.

Production rules are written into a special element for BNF grammars xd:BNFGrammar, which must be given
as a direct descendant of element xd:def. The grammar element has a mandatory attribute name, which
contains the name of the BNF grammar object, ie. it matches the BNFGrammar variable name, which has global
X-script visibility.

A specific BNF grammar rule can be called from X-script by specifying the name of the BNF grammar as an
object, and by calling the rule(String s), where the s parameter contains the name of the symbol to which
it is referenced.

The following example demonstrates how BNF grammar can be used, for example, to validate the vehice
registration number format, eg. for "1A23456":

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <xd:BNFGrammar name="vrnType">
 Cz ::= [0-9] [A-Z] [0-9]{4}
 </xd:BNFGrammar>

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*"
 type = " enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "vrnType.rule('Cz')"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />
 </Vehicles>
</xd:def>

16.9.2 BNF terminal symbol

Terminal symbols (character sequences) are described by following formulas:

#xN The character with numeric UTF-16 (the code) N. The N is expressed as a
hexadecimal number. Leading zeroes are ignored

"string" or 'string' sequence of characters in quotation marks or apostrophes

16.9.3 Set of characters

[a-zA-Z] or [#xN-#xN] the record a-b represents the set of characters from the closed interval <a,b>

[abc] or [#xN#xN#xN] list of characters

[^a-z] or [^#xN-#xN] all characters out of the specified interval

[^abc] or [^#xN#xN#xN] all out of the list

16.9.4 BNF quantifier (repetition of a rule)

The quantifiers allow you to describe the allowed number of consecutive string occurrences corresponding to
the rule to which the quantifier relates:

A? rule A is optional

A+ rule A may occur once or more times

A* rule A may not occur or may occur more times

A{n} rule A must occur n times

A{m, n} rule A may occur minimum m-times and maximum n-times

 201 / 207

A{m,} rule A may occur minimum m-times or more times

16.9.5 BNF expression

The above constructs can be presented in compound rules describing non-terminal symbols. Expressions on the
right side may contain the elements or links to another rule using the rule name and can be composed of the
following components. Any part of the entry may be in brackets:

A - B restriction. a character string that meets rule A, but also doesn't meet rule B.
The restriction operation has a higher priority than the concatenation operation
or selection operation. So:

 A - B C - D is equivalent to (A - B) (C – D)

 or

 A - B | C - D is equivalent to (A - B) | (C - D)

A B concatenation. The character sequence meeting the rule A followed by
characters which meet rule B. The sequence has a higher priority than the
selection. So:

 A B | C D is equivalent to (A B) | (C D)

A | B Selection. The sequence of characters meets rule A or rule B.

Example:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*"
 type = " enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "vrnBNF.rule('Cz')"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />
 </Vehicles>

 <xd:BNFGrammar name="vrnBNF">
 Digit ::= [0-9]
 Letter ::= [A-Z]
 Cz_new ::= Digit Letter Digit{5}
 Cz_old ::= Letter{2,3} Digit{4}
 Cz ::= Cz_new | Cz_old
 </xd:BNFGrammar>
</xd:def>

16.9.6 Comments and whitespaces

Anywhere between terminal symbols and rule names may be any sequence of spaces, new rows and tabs and
comments.

The comment is a text between "/*" and "*/". Nesting of comments is not allowed.

16.9.7 Implemented predefined rules

Following implemented methods provides parsing of the actual source

$anyChar parse any character (returns true if a character exists and false if parser reached the
end of the parsed string).

$base64 parse base64 format. Parsed text is put to the internal stack as an array of bytes.

$boolean parse "true" or "false". Parsed text is put to the internal stack as a Boolean value.

$date parse date according to ISO specification. Parsed text is put to the internal stack as a
org.xdef.sys.SDatetime value.

202 / 207

$datetime parse date and time according to ISO specification (argument may be a mask) . Parsed
text is put to the internal stack as a org.xdef.sys.SDatetime value.

$datetime(mask) parse date and time according to mask in the argument . Parsed text is put to the
internal stack as a org.xdef.sys.SDatetime value.

$day parse day according to ISO specification. Parsed text is put to the internal stack as a
org.xdef.sys.SDatetime value.

$digit parse decimal digit.

$duration parse duration according to ISO specification. Parsed text is put to the internal stack as
a org.xdef.sys.SDuration value.

$error(s) writes the error message with the parameter to the reporter and returns that the rule
fails.

$eos checks if the end of source was reached.

$find(s) skips characters from actual source position until it reaches a string from argument
(the fails if the string from argument was not found)

$findOneOfChars(s) skips the position from the actual position to a character from the string from the
argument (returns true if the character was found and false if not)

$float parse floating point number without sign (with decimal point and/or exponent). Parsed
text is put to the internal stack as a java.lang.Double value.

$hexData parse hexadecimal format. Parsed text is put to the internal stack as an array of bytes.

$integer parse integer number without sign (sequence of digits). Parsed text is put to the
internal stack as a java.lang.Long value.

$JavaName parse Java name. Parsed text is put to the internal stack as a java.lang.String value.

$JavaQName parse Java qualified name (may contain dots). Parsed text is put to the internal stack as
a java.lang.String value.

$letter parse letter

$letterOrDigit parse letter or digit

$lowercaseLetter parse lowercase letter

$month parse month according to ISO specification. Parsed text is put to the internal stack as a
org.xdef.sys.SDatetime value.

$monthDay parse month and day according to ISO specification. Parsed text is put to the internal
stack as a org.xdef.sys.SDatetime value.

$ncnNme parse NCNAME according to W3C specification. Parsed text is put to the internal stack
as a java.lang.String value.

$nmToken parse NMTOKEN according to W3C specification. Parsed text is put to the internal
stack as a java.lang.String value.

$time parse time according to ISO specification. Parsed text is put to the internal stack as a
org.xdef.sys.SDatetime value.

$stop parsing is stopped at the position of the rule.

$stop(s) parsing is stopped at the position of the rule and the argument is stored to the internal
stack.

$whitespace parse whitespace according to W3C specification

$year parse year according to ISO specification. Parsed text is put to the internal stack as a
org.xdef.sys.SDatetime value.

$yearMonth parse year and month according to ISO specification. Parsed text is put to the internal
stack as a org.xdef.sys.SDatetime value.

$xmlChar parse XML character according to W3C specification

$xmlName parse XML name according to W3C specification. Parsed text is put to the internal
stack as a java.lang.String value.

$xmlNameExtchar parse following characters of XML name according to W3C specification

 203 / 207

$xmlNamestartchar parse first character of XML name according to W3C specification

$uppercaseLetter parse capital letter.

Note the "rule" $error don’t parse any actual text. However, it forces the parsing process fails at the actual
position.

16.9.8 Implemented methods for handling the internal stack

Following methods (nothing is parsed) are implemented to handle the internal stack:

$clear clears the internal stack

$info pushes to the internal stack the information containing name of the
actual rule and source position (line, column etc.)

$info(params) pushes to the internal stack the information containing name of the
actual rule and parameter list in parenthesis and source position
(line, column etc.)

$pop removes the item from the top of the internal stack

$push pushes to the internal stack the text parsed by the actual rule.

$push(arg) puts a value from the argument to the top of the internal stack (the parameter can be
specified in the declaration section). If no argument is specified it is pushed to the
internal stack the parsed text.

$rule pushes to the internal stack the name of the actual rule. After the rule name are
positions where parsing of the rule started parsing and where parsing endned
(separated by the space).

16.9.9 Externally implemented rules

In BNF grammar, it is possible to refer to the external rules that can be implemented in external Java programs
as methods. An external rule can be defined using the %define command. Behind it is the symbol $ and a
short alias name followed by a colon followed by the name of the external method (in a fully qualified form). If
the external method has parameters, its values (not types!) can be described in brackets. Parameters are
separated by a comma. Values can be int, float, string, datetime, duration. The %define commands must be
given before the next grammar description.

In the java program, an external method is defined as a static and must retunr a boolean value that indicates to
the BNF grammar engine whether the validated (parsed) string is true or does not match the condition. The
method must also have a BNFExtMethod type parameter through which the getParsedString() the
method can obtain a string that is validated (parsed).

The following example shows the possibility to verify the format of the vehicle registration mark using an
external rule, ie using an external method:

<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.0"
 xd:name = "garage"
 xd:root = "Vehicles">

 <Vehicles>
 <Vehicle xd:script = "occurs 0..*"
 type = " enum('SUV', 'MPV', 'personal', 'truck', 'sport', 'other')"
 vrn = "vrnBNF.rule('anyVrn')"
 purchase = "date()"
 manufacturer = "string()"
 model = "string()" />
 </Vehicles>

204 / 207

 <xd:BNFGrammar name="vrnBNF">
 %define $Us: $example.MyRules.checkUs("Washington")
 %define $Ru: $example.MyRules.checkRu()

 Digit ::= [0-9]
 Letter ::= [A-Z]
 Cz_new ::= Digit Letter Digit{5}
 Cz_old ::= Letter{2,3} Digit{4}
 Cz ::= Cz_new | Cz_old
 anyVrn ::= Cz | $Us | $Ru
 </xd:BNFGrammar>
</xd:def>

Example of Java code with user BNF methods:

package example

import org.xdef.sys.BNFExtMethod;

public class MyRules {

 public static boolean checkUs(BNFExtMethod p, String s) {
 StringParser p = p.getParser();
 switch(s) {
 case "Washington":
 ...
 retun true;
 ...
 retun false;
 ...
 default: throw new RuntimeException("Incorrect parameter");
 }
 return false;
 }

 public static boolean checkRu(BNFExtMethod p) {
 ...
 }
}

 205 / 207

17 Index

A

Akce ... 13

Atributy .. 10

implementační .. 21

konstrukce .. 71, 95

B

BNF ... 214

BNF gramatika ... 214

C

Class loader ... 116

collection ... 131

D

Datové typy ... 184

Context .. 61, 72, 123

uniqueSet .. 52

XDValue ... 42, 61

Debugger ... 141, 221

E

Elementy .. 12

konstrukce .. 69, 76

variantní deklarace ... 53

variantní konstrukce ... 99

Externí metody .. 34

bez parametru .. 36

externí proměnné ... 117

instanční .. 119

s globálními parametry... 40

s parametrem ... 36

s parametrem XXNode ... 38

s polem hodnot ... 42

Externí proměnné ... 117

F

F.A.Q. ... 175

G

Globální parametry externích metod..............................40

Ch

choice ...55

I

implements ..137

J

JDBC v X-definicích .. 81, 97

K

Kompozice ..65

create sekce ...109

spuštění kompozice ...114

transformace dokumentů ...108

M

macro ..134

Makra ...134

s parametry ..135

Metody

error .. 50, 159

externí ... viz Externí metody

from... 89, 111

getElement...64

getText .. 48, 50, 64

ID 51

IDREF ..51

outln ...16

returnElement ...107

xcreate ...107

xparse ...106

xpath ... 78, 123

mixed ..54

Model elementu

reference na jiný model ..128

template...98

206 / 207

N

F.A.Q .. 175

P

parse .. 52

R

ref ... 128

reporty ... 148

systémový manažer .. 154

tabulky reportů ... 153

S

sequence ... 54

SynDef ... 2, 3

T

Template .. 98

Textové uzly

konstrukce .. 71, 95

Transformace dokumentů .. 109

U

uses .. 137

Uživatelské metody ... 34, 44

bez parametru .. 45

pro typovou kontrolu ... 49

s globálními proměnnými ... 47

s parametrem ..46

V

Validace .. 8

oproti databázi hodnot ...121

spuštění validace ...113

Výstupní proudy

setStreamWriter ..124

XDXmlOutStream ..126

XmlOutStream ...125

X

xd

collection ...131

choice .. 55, 102

macro ...134

mixed .. 54, 101

sequence ... 54, 100

X-definice.. 3

jako XML dokument ..19

kolekce X-definic..130

reference na jinou X-definici128

v Java kódu...113

X-Script ...3, 8, 66

create sekce .. 67, 109

options ...200

sekce pro akce ...13

validační sekce ... 8

 207 / 207

Related documents

[1] XML 1.0, W3C Recommendation, 26.11.2008.

http://www.w3c.org/TR/REC-xml

[2] W3C XML Schema

 http://www.w3c.org/TR/xmlschema-1

http://www.w3c.org/TR/xmlschema-2

[3] X-definition 4.0. The language description

 http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0.pdf

[4] X-definition 4.0. Introduction to the construction mode
http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0_construction_mode.pdf

[5] X-definition 4.0. Java programming guide

http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0_Programming.pdf

 [6] X-lexicon 4.0 Brief introduction

http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0_Lexicon.pdf

[7] Introducing JSON

https://www.json.org/json-en.html



http://www.w3c.org/TR/REC-xml
http://www.w3c.org/TR/xmlschema-1
http://www.w3c.org/TR/xmlschema-2
http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0.pdf
http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0_construction_mode.pdf
http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0_Programming.pdf
http://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.0_Lexicon.pdf
https://www.json.org/json-en.html

