pr—
={ ESper
(S|

Reference Documentation

Version: 2.0.0

provided by

(") EsperTech
et

Table of Contents

(1=, =0 2SR iX
1. TeChNOIOQY OVEN VIBWeeieiiis s s asn s anasasnsnnnsssnsnsnsnnnnnnnnnsnnnnns 1
1.1. Introduction to CEP and event Stream analYSiSccccvvviiieieeeeiiciiiieee e e e e 1

1.2. CEP and relational datalasescoooeooiiioiiiiiiiie e 1

1.3. The ESper enginefor CEPovviiiiie et r e e e e e e 1

1.4. Required 3rd Party LiDIarieSccueiiiiiiiieiii et 2

2. EVENt REDIESENTALIONS ..veveiiie ittt e e e e e e e e e e s e et e e e e e e e e s s s sabtareeeeeeeseasnrbraeeeeeas 3
2.1. Event Underlying JAVa ODJECLSccuueiiiiiiiiiee ittt 3

2.2. EVENE PrOperties ..o 3

2.3. DYyNamiC EVENt PrOPEIMIEScceivieiiiii ettt e e e e e e e s s st ae e e e e e e e e annneees 4

2.4. Plain-Old Java ODJECE EVENLScccoiiiiieiiiiiiie ettt e e 5
2.4.1. Java Object EVENt ProPETiESuvviieiie ettt e e et e e 5

2.5, JAVAULIL.IMEAD EVENLS ...ttt 7
2.5.1. Map-Within-Map Nested EVeNnts ..., 8

2.6. 0rg.W3c.domM.NOAE XML EVENLScuueiiiiiiiiiiee ettt 9

3. ProcesSiNg MOUELttt e ettt e e e e e e et e e e e e e e e e e e e e e e e e e aannnnees 11
T80 I 11 oo (1 1 o T PSP OUPRRTPTPRRN 11

I L4 R (= PP 11

3.3, INSert @anNd REMOVE SITEAIMccoiiiiiieiiiiiie e eiieie ettt e e et e e st e e e s sae e e e e snaeeeesanreeeeeans 12

34, FIlters anNd WREIE-CIAUSEScceeeiiiiiiieeie et s et e e e e e e s e e e e e e e e s ennaraaeeeaens 13

3.5, TIMEWINUOWS ..ttt e e e e e s e ettt e e e e e e e e s s aatbte e e e e eaeeesaannneneeeeaens 15
351 TIMEWINUOW ...t e e e e s e e e e e e e e s enntsrnaeeaaas 15

10 [g T= = - (o o RS 16

3.6. BACN WINUOWS ...ttt sttt e e e e e s e e e s nnbneeeean 17

3.7. AQQregation aNd GIOUPIMIQureeeiiutrreeeaireeeesatieeeeaaseeeesasseeeessbeseeeaasnreeesanneeeesannreeeeans 18
3.7.1. Insert and REMOVE SITEEIMuviieiiiiiieeiiiiieeesiiiee e s st e e st e e s st e e e s annbee e e s nnrneeeeans 18

3.7.2. Output for Aggregation and Group-BYcoociiiiiiiiiiiiiiiee e 18

3.7.2.1. Un-aggregated and Un-groupedcoovvviiiiiiiiieeiiieicceecceeeeeeeeeeeeeeee e 19

3.7.2.2. Fully Aggregated and Un-groupedccoocveeeeiiiieieeniiieee s 19

3.7.2.3. Aggregated and Un-Groupedc.ooeeiiiiiiiiiiee et e e ieeee e e 19

3.7.2.4. Fully Aggregated and GroUPEDccceeeiiiiiiiieiiee ettt e e e e 19

3.7.2.5. Aggregated and GrOUPETccouiurieeiiiirieeaaiiee et e e 20

3.8. EventBean QUENY RESUILSccoiiiiiiiiiieee et e e e et e e e e s e st reeeeeeas 20

4. EPL REFEIENCE: ClIAUSESeeiiiieeiiiiiiiiiiiiie ettt e e e et e sttt e e e e e e s sttt e e e e e e s s s snsstaaeeeeeeeesannnsnees 22
g T I 1 o [o 1 o o 22

N IS o | - G 22
4.2.1. SPeCifying TIME PEIOUScuviieiiiiiiieiiie et 23

4.2.2. USING COMMEENLSouiiiiiiiiieeei i ittt e e e e e e s ettt e e e e e e e s s sat b e e e e e e e s s saaasnbareeeeaeessansnneees 23

4.3. Choosing Event Properties And Events: the Select Clausecovveveiiiiiiiiiieiiiee e, 24
4.3.1. Choosing all event properties: SEIECt* ... 24

4.3.2. Choosing SPECITiC eVENE PrOPEITIESeieiiiiiieeeiiiiee e 25

G TR I o] (=S] 1 25

4.3.4. Renaming eVeNnt PrOPEITIEScccuuvieiiieeeeeiiiiiete et e e e e s s st e e e e e e e s s st e e e e e e e s s annenees 25

4.3.5. Choosing event properties and eventSin @jOINccvveeriireeeeiiireees e enneeeens 25

4.3.6. Choosing event properties and events from apatternccccceeeeeeeeiciiiieeeee e e e, 26

4.3.7. Selecting insert and remoVe SLrEAM EVENTSocuvrieeiiiieiee et e e 26

4.4. Specifying Event Streams: the From ClalSeeevviieiiiiiiieeeec e 27
4.4.1. Filter-based EVENE SEFEAMSoceeiiiiiiiee ettt e e e e e e e s sinrrre e e e e e e s e ennnnnees 28

© 2007 EsperTech Inc. - Esper2.0.0

Esper - Event Stream and Complex Event Processing for Java

4.4.1.1. SPECITYING 8N EVENT LYPE ..ooiiiiiee ettt 28

4.4.1.2. Specifying filter Criteriacccovvviiiiie e 28

4.4.1.3. FIITErING RANGESeeiiiiiiiieiiie et 29

4.4.1.4. Filtering SEtS Of VAIUEScocvvviiiiiiiieieeieeeeeee ettt 30

4.4.1.5. Flter LIMIAONSuveiiiieeiiiiiiiiiee e s ettt e e e e s st e e e e e e s s s nnnrnaeneaaeenans 30

4.4.2. Pattern-based EVENt SIrEamMSuviiiiiiieieiiiiiie e 30
4.4.3. SPECITYING VIBWS ...ttt e e e e e e e e e s et e e e e e e e e e e nnneees 31
4.4.4.USING the SIream NAITIEccoiiiiiieiiiiiei ettt e e errn e 31

4.5. Specifying Search Conditions: the Where Clalusecoooviiiiieeieie e 32
4.6. Aggregates and grouping: the Group-by Clause and the Having Clauseccccccoeecvvvveeennn. 32
4.6.1. Using aggregate FUNCLIONScoviiiiiiiiiiieieceee e eeeeee e e e e e e ee e e e e e ee e e e e e e eeeeeeeeeeeeeees 32
4.6.2. Organizing statement results into groups: the Group-by clausecccccoeeiiinene 33
4.6.3. Selecting groups of events: the Having Clauseoooociiiiiiiiee e 34
4.6.4. How the stream filter, Where, Group By and Having clausesinteract 35
4.6.5. Comparing the Group By clause and the std:groupby VIewcccccvvieveeeeriiicnnee. 35

4.7. Stabilizing and Limiting Output: the Output ClaUSEccccviieeeeee e 36
4.7.1. OULPUL ClaUSE OPLIONSeeeiiiiiiiieeiitiie ettt e e e e e e s anb e e e s nnrneeeean 36
4.7.2. Aggregation, Group By, Having and Output clause interactioncccccceevevevveeeenen. 37
4.7.3. RUNLIME CONSIAEIALIONSeeiiiiiiiie ittt e sttt ettt e s e e e snbaeeeeans 38

4.8. Sorting Output: the Order BY ClaUSEocveiiiiiiiiiee it 38
4.9. Merging Streams and Continuous Insertion: the Insert Into Clausecccccveeeeeiiicciiieennnen. 39
4.10. JOINING EVENE SITEAMISeiiiiiiiiii ettt e e e e e e e e an 41
Ot @ 1 = N o 1SR SUPSR TR 41
4.12. Unidirectional Joins and OULEN JOINScciiiieiiiiiirieeeeisciiiiiereeee e e s sssinaneereea e e s s snnnrnneeeaens 42
G TS B oo 1 = 1= 43
4.13.1. The'&XIStS KEYWOITeveiiieeiiiiiiiee e e e e s e e e e e e e e e nnnees 44
4.13.2. TRE'IN" KEYWOITeeiiiiiiiie ettt s e e e e e e 44
4.14. Joining Relational DataViaSQLceeiiieiiiiiiiiiiiiiee e 45
4.14.1. Joining SQL QUENY RESUITScceiiiuiiiieiiiiiie ittt 45
4.14.2. SQL Query and the EPL Where ClalSeeeeeiieeiiiiiiiiieieee et 46
4.14.3. Outer Joins With SQL QUENTESuveiiiiiee ittt e e e e e e e 47
4.14.4. Using Patterns to Request (Poll) Dataccovvvvviiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 47
4.14.5. IDBC Implementation OVEINVIEWccooiiiiiiiieiee et e e s siirre e e e e e 48
4.14.6. Oracle Drivers and No-Metadata Workaroundcccevveeeeeeeeeiiiciiiieeeeee e 48

4.15. Joining Non-Relational DataviaMethod INVOCaLIionccveeeveeeiiiiiiiiiieccce e, 48
4.15.1. Joining Method INVOCELION RESUILSuvviiiiiiiiiieeiieee e 49
4.15.2. Providing the Methodoovviiiiiiiiiiiiieee ettt 49
4.15.3. USINg aMaP REIUM TYPE ittt eeean 50
4.16. Creating and Using Named WINAOWSoooiieiiiiiiiiiee e 51
4.16.1. Creating Named Windows: the Create Window clauseccccccoevcviiieeiee i, 52
4.16.2. Deleting From Named Windows: the On Delete clausecccoccvveeiiiiiicciiiineenne 53
4.16.2.1. Using Patternsinthe On DElete ClauSecovveeeiiiiiiiieieiiee e 54

4.16.3. Inserting INto Named WINCOWScooiiiiiiiiiiiiie e 54
4.16.4. Selecting From Named WINQOWSoovvvvviiiiiiiieeiceeeeeeeceeeeevee e ee e ee e e e 55
4.16.5. Triggered Select on Named Windows: the On Select clauseccccoevcvvveeiiiineenne 56
4.16.6. Triggered Playback from Named Windows:. the On Insert clauseccccceeeveeneeenee. 58
ALT. VATADIES ...t ee e 58
4.17.1. Creating Variables: the Create Variable clauseccccooiieiiiiiiiciiiicc e 58
4.17.2. Setting Variable Values: the On Set ClaUSEvvevvveeiiiiiiiieeeee e 59
4.17.3.USING VATADIES ...ttt 60

I Y I s 1 = ol el = = o 1P 62
5.1, EVENt PalterN OVEIVIEWoccoiiiiiiiiieiie ettt e ettt e e e e e e s s st e e e e e e e s annssbnneeaaaeeeans 62

© 2007 EsperTech Inc. - Esper2.0.0

Esper - Event Stream and Complex Event Processing for Java

5.2. HOW tO USE PALLEINS ... 62
N I = = IS 1= PSP 62
5.2.2. SUDLSCIibing tO Pattern EVENTSeviiiiiiiieeiiiieee e 63
5.2.3. Pulling Datafrom Palternscccco e 63

5.3, OPErator PrECEOBNCEueiieiiitii ettt e e st e e e s e e e e snbaeeeeans 64

5.4. Filter EXPressionS IN PaterNSeiiiiiaeiiiiiiiiee et ee e e e e e st e e e e e e e asneeeaeeeeaaeeean 64

5.5, PaterN OPEraLOrSccoeeiie e 66
O D L VY 66

5.5.1.1. Every Operator EXamMPIEcvvviiiiiiiiiiiiieee e 67
5.5.1.2. SeNSOr EXAMPIE ..o 68
CS TS 302 S oo PR SPRR 69
SIS TC T O SRR SPPRR 69
CS T30 S Lo PRSP 69
5.5.5. FOHOWEH-DY ... e e e e e e e e st eraeas 70

5.6. Patern GUEITScceiiieiiieie ettt ettt e e e e e ettt e e e e e e e e s s st aeeeeaeeeesansranneeaaaeeaans 70
5.6. 1. tIMENWITNIN L.ooiiiiiii et e et e s e e e e e e e e nees 71

5.7, Patern ODSEIVEISeiiieiiiiie ettt e e e e e e e e e e e e s s st e e e aaeeeeanntraaeeraaaeeaaans 72
oI 0t I 1 0T T 1= Y PSSP 72
O 1111< oF- ST S PP PP T PPPPR 72

6. EPL REFEr €NCE OPEIALONS ..ooiiiiieieeiiieie e ettt e ettt e e et e e et et e e e e e e e e e s ann e e e e s anr e e e e aanrrneeeans 74

N 1110140 1= Tl @0 1= - (0] £ PP PRSP 74

6.2. Logical ANd Comparsion OPEFAIONSceeiuureeeiiireieeeeiieee e st e e e ssbe e e e s s e e e s anne e e e e aneeeeean 74

6.3. CONCALENALTION OPEIAIOLSceiiiiiiiieiee e e e e e ee e e e e e e e e e ee bbb e e e e e e e s s s saatraeeeeaeeessanntbbneeeeaaeaaans 74

6.4, BINAIY OPEIBIONSveeieiiiiiie e ettt e e ettt e sttt e e e ettt e e sttt e e s st e e e e e esbe e e e e anbb e e e e e anbneeeeennbneeeeans 75

6.5. Array Definition OPEratorccooeeiee i, 75

B.6. The TN KEYWOITviiiieiiee et e e e e e s e et e e e e e e e e sa et b eaaeeaaaeeaans 76

6.7. The 'DEtWEEN' KEYWOIToeiiiiiiie ittt e s e e nnnre e e 76

6.8. The TTKE KEYWOIToveiiiiieeiiiicie et ce e e e e e s s et e e e e e e e e e entbbaeeeeaaeeean 77

6.9. The TegeXp' KEYWOIToooiiiiiii ittt e e e e e e e an 77

7. EPL REfEreNCE FUNCLIONS ...oiiiiiiiie ettt ettt e et e e et e e e st e e e e anneeeeeeansneeeeans 78

7.1. SINgle-TOW FUNCLION REFEIENCEcoiiiiiii et 78
7.1.1. The Case Control FIow FUNCLIONooiiiiiiiiiieei e 79
7.1.2. The CaSt FUNCLIONooiiiiieiiiiiie ettt ettt e s a e e 79
7.1.3. The CoalesCe FUNCLIONcoiiiiiiiiieee ettt e e e e e e reeeeeeas 80
7.1.4. The Current_Timestamp FUNCLIONcccviiiiiii e 80
7.1.5. The EXISIS FUNCLION ..eiiiiieeiiiiiiiiee ettt e e e e st e e e e e e e e nnenraeeeeeas 81
7.1.6. The INStance-Of FUNCHIONuuiiiiiieeei e 81
7.1.7. The Min and MaX FUNCLIONSciiiiiiiiiiiiiiiie et e e e e e e e e s ninaaeeeaeas 82
7.1.8. The PreviouS FUNCHIONooiieieiieeee et e e e e e e 82

7.1.8.1. Previous EVENt PEr GIOUDvvvvieiieeeiiiiiiiieiee e e e e e seeiiieee e e e e e e e s sentnaanenaae e e e 83

7.1.8.2. RESIICHIONS ...ceiiiiiiieeee ettt e e e e e e et r e e e e e e s s nnnaaeeeeaeeeeans 83

7.1.8.3. Comparison to the prior FUNCLIONcccviiiieiie e 83

7.1.9. The Prior FUNCLIONueiiiiie ettt e e e e e st e e e e e s s e nnnraeeeeeas 83

7.2. AQOregate FUNCLIONSccooe e, 84

7.3. USer-DEfiNed FUNCLIONSccoiiiiiiieiiee ettt e e e e s et e e e e e e e s snntrrneeeaaaeeeans 84

8. EPL REFEI@NCE: VIBIWS ...eeiiiiei ittt e e ettt e e e e e e e ettt e e e e e e e e nnteaeeeeeaeeeaansnneeeeeeas 86

8.1 WINUOW VIBWS ...t ettt ettt ettt ettt e ettt e e et e e e et e e e e e sttt e e e e nnbbe e e e e nnbneeeeans 88
8.1.1. Length window (Win:length)c.oooiiiiiiioiiie e 88
8.1.2. Length batch window (win:length batch)ccooiiiiii e, 88
8.1.3. TiMe WINAOW (WINITIME)oiuiiiieiiiiie ettt e e 88
8.1.4. Externally-timed window (win:ext_timed)cccc 89
8.1.5. Time batch window (Win:time_DatCh)coociieiiiiiiii e 89

© 2007 EsperTech Inc. - Esper2.0.0

Esper - Event Stream and Complex Event Processing for Java

8.1.6. Time-Length combination batch window (win:time_length_batch)ccccoce.e. 89
8.1.7. Time-Accumulating window (Win:time_acCum)ccccceveeeeiiiiiiiiiiieee e 90
8.1.8. Keep-All window (WIin:Keepall)coooiiiiiiiiiiie e 91

8.2. SHANUAIT VIBW SEE ...ttt e e e e et e e e e e e et eeeaaeeaan 91
8.2.1. UNIQUE (SIA:UNIGUE) ...ttt e e e e 91
8.2.2. Group-By (StA:GroUPDY) ..o eas 92
ARG TS Y 0 W= =) PRSP 93
8.2.4. Last Event (StA:StEVENT)vveeiiiiiieeeiteee et 93

8.3, SHALISHICS VIBIWS ..ieieiee i it e ettt ettt e e ettt e ettt e e e s enb e e e et e e e e e snbae e e e e anbbeeeeanntneeeeans 93
8.3.1. Univariate StatiStiCS (SEALIUNI) ...eeeiuvreieeiiiiiee ettt e s 93
8.3.2. Regression (Stat:linest)cooeeeeeieei e 94
8.3.3. COrrelation (SLA:COMEN)eiiiiieie ettt e e %!
8.3.4. Weighted average (stat:weighted _aVvg)ccc.veeieieeeiiiiieiee e 95
8.3.5. Multi-dimensional statiSticS (Stat:CUDE)vvveveveeeeiiiiiiieee e 95

8.4, EXIENSION VIBW SELeieiiiiiee ittt ettt e e e e e e s s st e e e e e e e e e ssntraneeeeaaeeeans 96
8.4.1. Sorted Window View (EXE:SOM)eiiieceiiiiiiieiee ettt e e e e aevree e e 96
8.4.2. Time-Order View (EXETIME _OFUEN) ...oiiiiiiiieiiieiee e 96

S o B L = = Lo PP 98
0.1, AP OVEIVIBIW .ottt e ettt e e e sttt e e e ab bt e e et et e e e anbe e e e e e s nbbe e e e e nnbneeeeans 98
0.2. ENQINE INSLANCESeeiiiiiiieie ettt ettt e e et e e e et e e e s s e e e e e s e e e e e anneeeeeans 98
9.3. The AdMINIStrative INTEITACEcoiiiiiiie e ee e 98
0.3.1. Creating SEBLEMENTSeeieiiiieie ettt e et e e s ann e e e e s e e e e nees 98
9.3.2. Recaiving StatemMent RESUILSeiiieiiiiiiiiiiee et 99
9.3.3. Setting a SUDLSCIDEr ODJECEcoooiiiiiice e 100
9.3.3.1. ROW-BY-ROW DEIVENY ..o 100

0.3.3.2. MUItI-ROW DEIIVEIY ...ooeeeeiiieeee ettt a e 102

0.3.4. AAUING LISLENENScooiiiiiiieiiiiee ettt e e e e e s e e e e 103
0.3.5. USING [TEIAIOS ... eviiiiiiiee e ettt e s e e e e e e e et e e e e e e e e e e atb e e e e e e e e e e s eaneeees 104
9.3.6. ManNaging SAEMENLEScceiiurieeeeiiieie e et e e st e st e et e e s r e e s anr e e e s snreeeeean 105
9.3.7. Runtime Enging ConfigUIationccooiiiiiiiiieieee et e et e e e e e e eanenes 105

9.4. The RUNLIME INEITACEvviie it e e e e e et e e e e e e e e 105
9.4.1. ReceivingUnmatched EVENtS ..., 106
9.4.2. Emit Facility for Publish-SUbscribe ..., 106

9.5. Events Received from the ENGINEoooiiiiiiiiiic e 107
9.6. Engine Threading and CONCUITENCYccoiiiiuiiieiiee e e e e e eciiteee e e e e e s eerre e e e e e e e e s snnrareeaaaeeaans 108
0.7. TIME-KEEPING EVENES ...t 109
9.8. TIME RESOIULION ...ttt e e e e e ettt e e e e e e e e e nnbbeeeeaaaeeaan 109
9.9. Statement ODJECE MOOE]coiiiiiie e 109
9.9.1. Building an Object MOElooiiiiiieiiie e e 110
9.9.2. BUIlAING EXPrESSIONS ...ceeiiieiiieiiiiiii e e e e s e ettt e e e e e e s e st e e e e e e e e s s et aa e e e e e e e e s s ennnnees 111
9.9.3. Building a Pattern SLaeMENtoeiiiiiiiieeiiieee e 112
9.9.4. Building a SeleCt StAEMENLoviiiiieeeii e e e 112
9.9.5. Building a Create-Variable and On-Set Statementc.cceevvveeeiiiiiciiiieniee e, 113
9.9.6. Building Create-Window, On-Delete and On-Select Statements 113
9.10. Prepared Statement and Substitution Parametersc.c.vvvevveeeeiiiiciiiiiceee e 114
O @] 0T U1 =11 o] o RS 115
10.1. ProgrammatiC ConfigUIationcocciuviieiiieee i it e e e e e e e e e e e s e e e e e e s e nannnes 115
10.2. Configuration VIa XML Fl@cooiiiiiiiiiiiec e 115
10.3. XML Configuration FilEuueeiiiiiii e e 116
10.4. CONFIQUIAION TTEMS ...ttt e et e s e e e ae e e e 116
10.4.1. Eventsrepresented by Java ClaSSesccccieii e 116
10.4.1.1. Package of JAVa EVeNt ClaSSEScuueieiiiiriieiiiiiie e 116

© 2007 EsperTech Inc. - Esper2.0.0

Esper - Event Stream and Complex Event Processing for Java

10.4.1.2. Event type aliasto Java class mappingcceervuveeeeiniiireeniiiieee e 116

10.4.1.3. Non-JavaBean and Legacy Java Event Classesccceeevviicvivieeeeeeeececnenne, 117

10.4.1.4. Specifying Event Propertiesfor Java Classescoovceeeeiiiiieieiiiieeeenne 118

10.4.1.5. Turning oOff Code GENErationcccccceeeiiiiiiiiiiee e eaeanaennes 118

10.4.1.6. Case Sensitivity and Property NamesSc..eveviiiiieiiiiieee e 119

10.4.2. Events represented by javautil.Mapoooiiiiiiiiiee e 119
10.4.3. Events represented by org.w3C.doOm.NOAEcccvvviviiiiie e 120
10.4.3.1. SCNEMA RESOUICE ... ee e e ettt e e e et e e e e e e e e e e e e e e e e e e enneeees 121

10.4.3.2. XPath PrOPEITY .oouveeeeiiiiiie ettt e e 122

10.4.3.3. Absolute or Deep Property RESOIULIONceveiiiiiieeiiiiie e 122

10.4.4. Class and package iMPOISccccceiiiieiiiiinnnnnnnnnanannnnnnsnsnnannsnnnnnnnnnnnnnnnnnnns 122
10.4.5. Cache Settings for Method INVOCALIONSceeeiiiiiiieiiiiiiee e 123
L0.4.6. VaTBDIES ..ottt e et e e et e e e e e e e nees 123
10.4.7. Relational Database ACCESSc.uveiieiiiiiieeiiiiiee e ettt et e et e e st e e s snae e e eees 124
10.4.7.1. Connections obtained Via DataSOUrCeoocuvvveierieeeeiecieieeeee e e e 124

10.4.7.2. Connections obtained via DriverManagercccveeeeeeeeeiiiciiiieeeee e, 124

10.4.7.3. CONNECtioNS-1eVEl SEtINGSc.vvvieeiiiiee e 125

10.4.7.4. Connections lifecycle SEttiNgSccocciiiiiiiiiiii e 125

10.4.7.5. CaChE SEINGS ..vvvviieee e i e e e r e e e e e s e enenees 125

10.4.7.6. Column ChangE CaSEcoeiiuriieeiiiiee et 126

10.4.7.7. SQL TYPESMAPPINGuuvviiiiiieeeeiiiiitiiee e e e e e e cecrer e e e e e e s s sinarr e e e e e e e s e ennneeees 127

10.4.7.8. Metadata Originoeeeeiiireeeieiiie et e e e 127

10.4.8. Engine Settings related to Concurrency and Threadingccccceeeeeeeiiicciiveeeeeen. 127
10.4.8.1. Preserving the order of events delivered to listenerscccccvevvveeeviinnee, 127

10.4.8.2. Preserving the order of eventsfor insert-into streams...........cccccceenvnnnnnnnns 128

10.4.8.3. Internal Timer SELNGSvvvveiieeeeiiiiiiier e e e e 129

10.4.9. Engine Settings related to Event Metadatac.vvveeiiiieeiiniieee e 129
10.4.9.1. Java Class Property Names and Case SenSitiVitycccccoevcvvvieeeeeeee i, 129

10.4.10. Engine Settings related t0 VIiew RESOUICESc.evveiiiirieeiiiieee e 129
10.4.10.1. Sharing View Resources between Statementsoooeevvvviiiieeeee e e, 129

10.4.11. Engine SettingS related t0 LOGGINGceeurrrreeeiiirieeeiiieeeessiieeessiinee e sineee e 130
10.4.11.1. Execution Path Debug LOGOINGuuuurmmummmiiiiiieiniiininenennnnnnnnnnnnnnnnnnnnnne. 130

10.4.12. Engine Settings related to Variablesooeeeiiieiiiiiiiiiie e 130
10.4.12.1. Variable Version Release INtervalcooovoiciiiiiiiieeiiiieeeee e 130

10.4.13. Engine Settings related to Stream SElectionccveeevveeeiiiiciiiieeecee e, 130
10.4.13.1. Default Statement Stream SEleCLiONccevvvecviiiiieiie e 130

11, EXtENSION @Nd PlUG-IN .o s nnnnsnsnnnnnnnnnnnnnnnnnnn 132
T T = V= SRR 132
11.2. Custom View Implementationcccueeeiiieoiiiiiieiee e e e e e 132
11.2.2. Implementing aViIiew FaCtOryooocciiiiiiiee e 132
11.2.2. IMPIEMENEING BVIBW oottt 133
11.2.3. Configuring View Namespace and Nameccccvvvieiiieeiiiiiiiiieeee e 135

11.3. Custom Aggregation FUNCLIONScoiiuriieiiiiiiee et e e 135
11.3.1. Implementing an Aggregation FUNCLIONccccccoiiiiiuininnniineennennennnnnnnnees 135
11.3.2. Configuring Aggregation FUNCEION NaMEccooiuiiiiiiiiiiee e 137
11.4. CUSLOM PatterN GUAITeeeiieiiiee ettt e e e e e et e e e e e e e e e st ee e e e e e e e aannenees 137
11.4.1. Implementing @ GUard FACLOrYcccvvieiieeeei e e e e ee s 137
11.4.2. Implementing 8 GUAId ClaSSccouiriiieiiiiiieeiiiee et 138
11.4.3. Configuring Guard Namespace and Nameccccvveieeiiei i 139
11.5. CUSLOM PatterN ODSEIVELviiiiiiieeei ittt ee e e s s sttt e er e e e e s s s sanraeereaeeesssasstanneeeaeessannnsnees 139
11.5.1. Implementing an ODSEIVEr FACtONYcccccieiiiiiiiini e nnnnnnnnnnnnnnnes 139
11.5.2. Implementing an OBSEIVEr ClaSSc.ueiieiiiiiiieiiiie e 140

© 2007 EsperTech Inc. - Esper2.0.0

Esper - Event Stream and Complex Event Processing for Java

11.5.3. Configuring Observer Namespace and Nameocooiirieiiiiiiee e 141

12. Examples, Tutorials, Case SLUAIESccuvveiiiiie et e e e e as 142
12.1. EXBMPIES OVEIVIEIW ...ttt ettt e e et e e e st e e s annb e e e e anbneeeeans 142
12.2. Market Data Feed IMONITONcoiiiiiiiiiiiiei et e e e e e e e e e e e s eneees 142
12. 2.0 INPUE BEVENES ...t e s e e e e st ea e s 142
12.2.2. Computing RateS Per FEEUooooiiiiiiiieie et 142
12.2.3. Detecting aFall-Off ... 143
12.2.4. EVENE QENEIBION ...eeeiiiiiiiiiiteiee e e e e e e sttt e e e e st e e e e e s s e e e e e e e s s s rneeeeeas 143
12.3. IMS Server Shell and CHENtccuueiiiiiiiie e nbaee e 143
2 T I © = V= RSP 143
12.3.2. IMSMESSAQES @S EVENES ... 144
12.3.3. IMX for Remote Dynamic Statement Managementcoovveeeeriireeenniieeeennne 144

12.4. Transaction 3-Event Challengeoooeeiiiiiiie e 144
12 4.1 TREEVENLS ...ttt e e s et e s b e e e e 144
12.4.2. COMDINEA BVENLoiiieiiii e e e e e e e e e e e e e s e e raeeeeeas 145
12.4.3. Real time SUMMary datalccveviieiiiiiiiiee e 145
12.4.4. FINA PrODIEIMS ..oiiiiiiiiee et 145
T YL g R0 1< 1 = (] 145
12.5. J2EE Self-Service Terminal Managementccccuvieiireeeeiiiiiiiiier e s e e e e 146
T I 0| SRR 146
12.5.2. Detecting Customer Check-iN ISSUEScoiieeiiiiiiiiiiiieiee e 146
12.5.3. Absence of STAUS EVENESvoiiiiii i 147
12.5.4. Activity SUMMEANY Dala.......cuveviiiieiiiiiiiiiee ettt e e 147
12.5.5. Sample Application for J2EE AppliCation SEIVErcccveeiiiiieeiiiiieee e 147
12.5.5.1. RUNNING the EXaMPIEuuu e 147

12.5.5.2. BUilding the EXampPIeeeviieiiiiiiieiee e 148

12.5.5.3. Running the Event Simulator and RECEIVEYccovviiiiiiiiiieieeeee 148

12.6. Assets Moving Across Zones - An RFID EXampleoovoviiiiiiiiiieeiec e 148
12.7. AutolD RFID Reader generating XML dOCUMENLSccoiiurrieiiiiiieeiiiiieeeesiieeeessineee e 149
12,8, SEOCKTICKES .oiieieeeiee ettt ettt et e e et e e e sttt e e e e enae e e e e nte e e e e aneeeeeaansneeeeeansneeeeans 149
e Y= o 011 P> 2= SRR 150
12.10. QUAITEYOFSEIVICE ..eeiiieeiee et e ettt ettt e st e e e e e e e e st e e e e anseeeeeannneeeeeansaeeeeans 150
12,10, LiNEAIROAAiveieeiiiiiie ettt ettt et e e e et e e s abb e e e e b e e e e e nnba e e e 151
12.12. SEOCKTICK RS ...eeieeeiiiiiee ettt e e e et e e e e anae e e e e nnsneaeeennnaneeeans 151
13, POITOMMANCE ..ottt et e e e et e e e s bt e e e e sbe e e e e s sae e e e s annbeeeeennrneeeeans 152
13.1. PerformanCe RESUILSccuiiiiiiiiie ettt e e e e e e e e e e e e e e e s st aneeeeeeesennnneees 152
13.2. PEXfOrMANCE TIPS .uuuuuuuuu s a s asannsnsnnnsnsnnnsnsnsnsnnnsnnnnnnnnnnns 152
13.2.1. Understand how to tune your Javavirtual machineccoocoveeiiiieeeniiieee e, 152
13.2.2. Compare Esper to other SOIULIONSueiiiiiieeiiiiieiie e 152
13.2.3. Select the underlying event rather than individual fields ..., 153
13.2.4. Prefer stream-level filtering over post-data-window filteringccccevviveveennee. 153
13.2.5. Reduce the use of arithmetic in eXPreSSioNScccvvvveeeeieee i 154
13.2.6. Consider using EventPropertyGetter for fast accessto event properties 154
13.2.7. Consider casting the underlying eVENtcccccocciiiiiiiiiiiii s 155
13.2.8. TUMN OFf 1OGOING .ottt 155
13.2.9. Disable VIEW SNaING ... e 155
13.2.10. Disable delivery order QUaranteeSuuevveeeeiiiciiiieiieeee e e s e ctrree e e e e s esrrraaee s 155
13.2.11. Performance, VM, OS and NaraWareoevieveiiiiiiiie e 156

13.3. USiNg the performanCe Ktciieiiiiiiiiiiei e e e et e e e e e e annnees 156
13.3.1. How to use the performanCe Kitc.coooiiiiiiiiiiiieee e 156
13.3.2. How we use the performanCe Kitcccccciiiiiieiiiii e 159

I = g o o= RSP 160

© 2007 EsperTech Inc. - Esper2.0.0 Vii

Esper - Event Stream and Complex Event Processing for Java

I T = = = o I SRR 160
A. Output Reference and SAMPIESooi it a e e e 161
A.L Introduction and SAMPIE DEIAceeeiiiiiiiiiiiiie e 161
A.2. Output for Un-aggregated and Un-grouped QUENESeurururrimrmimnmininininininnnnnnnrnnnnnn. 162
A.2.1. NO OUtput RAE LIMITING ...eeeiiiiiiiiiiiiiiie et 162
A.2.2. Output Rate Limiting - Default ... 163
A.2.3. Output Rate Limiting - LaStcccoiciiiiiiiie ettt e e e e 164
A.2.4, Output Rate Limiting - FIrStoeeiiiiiiiie e 165
A.2.5. Output Rate Limiting - SNaPSNOLueviiiiiiiiiiiiiiee et 166

A.3. Output for Fully-aggregated and Un-grouped QUENESccooiuriieiiiirieeniiiiee e 167
A.3.1. NO Output Rat€ LiMltINGuuuuureruuurnrniunnininnnrnnnenrnrnrnrnrnrnrnrnnnnnn.————————. 167
A.3.2. Output Rate Limiting - DEfAUIToeiiiiiiiiieieee e 168
A.3.3. Output Rate Limiting - LaSEceoiiiiiiiiiieie e a e 169
A.3.4. Output Rate Limiting - Firstcooiiiiiiiiieeee et 170
A.3.5. Output Rate Limiting - SNBPSNOLeveieiiiiiiee e 171

A.4. Output for Aggregated and Un-grouped QUETTEScceeeeiiiiiiiiiiiieee e et e 172
A.4.1. NO OUtPULt RAEE LIMITING ...eviiiiiiiiieiiiiii e 172
A.4.2. Output Rate Limiting - Defalltccccciiiiiiiiiiiiiiiiee. 173
A.4.3. Output Rate Limiting - LaStccoiiciiiiiiiiee e e e e e 174
A.4.4, Output Rate Limiting - FIrStoveiiiiiiiie et 175
A.4.5. Output Rate Limiting - SNaPSNOLueiiiiieiiiiiiiiiee e 176

A.5. Output for Fully-aggregated and Grouped QUENIEScuureeeiiiiiieeiiieiee st 177
A.5.1. NO OUtpUt RAE LIMITING ..vvveiieeeiiiiiiiiiiiee ettt e e e e e b rre e e e e e e e n 177
A.5.2. Output Rate Limiting - DEFAUITeeeviiiiiiiie e 178
A.5.3. Output Rate Limiting = Alluuiiiiiiiiiiiiiiiiir e ——————————— 179
A.5.4. Output Rate Limiting - LaStccoiiiiiiiiiiie ettt e e 180
A.5.5. Output Rate Limiting - FIrStooeeiiiiiiie e 181
A.5.6. Output Rate Limiting - SNaPSNOLueviiiiiiiiiiiiiiee e 182

A.6. Output for Aggregated and Grouped QUENTESccuueiieiiiirie et 183
A.6.1. NO OUtpUt RAE LIMITING ..vvveiieeeiiiiiiiiieee ettt e e e e e e e e e e e e 183
A.6.2. Output Rate Limiting - DEFAUIToeiiiiiiiiie e 184
A.6.3. Output Rate Limiting = Alluuiiiiiiiiiiiiiiiii—————————— 185
A.6.4. Output Rate Limiting - LaStccooicuiiiiiiie et et e e 186
A.6.5. Output Rate Limiting - FirStoeeiiiiiiie e 187
A.6.6. Output Rate Limiting - SNaPSNOLueiiiiieiiiiiiiiie e 188
T = RS PURSRRR 190

© 2007 EsperTech Inc. - Esper2.0.0 viii

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of custom applications.
Typicaly these applications must obtain the data to analyze, filter data, derive information and then indicate
this information through some form of presentation or communication. Data may arrive with high frequency re-
quiring high throughput processing. And applications may need to be flexible and react to changes in require-
ments while the data is processed. Esper is an event stream processor that aims to enable a short development
cycle from inception to production for these types of applications.

This document is aresource for software developers who develop event driven applications. It also contains in-
formation that is useful for business analysts and system architects who are evaluating Esper.

It is assumed that the reader is familiar with the Java programming language.

This document is relevant in al phases of your software development project: from design to deployment and
support.

If you are new to Esper, please follow these steps:

1. Read the tutorias, case studies and solution patterns available on the Esper public web site at ht -
tp:// esper. codehaus. org

2. Read Section 1.1, “Introduction to CEP and event stream anaysis’ if you are new to CEP and ESP
(complex event processing, event stream processing)

3. Read Chapter 2, Event Representations that explains the different ways of representing events to Esper
4. Read Chapter 3, Processing Model to gain insight into EPL continuous query results

5. Read Section 4.1, “EPL Introduction” for an introduction to event stream processing via EPL

6. Read Section 5.1, “Event Pattern Overview” for an overview over event patterns

7. Then glance over the examples Section 12.1, “ Examples Overview”

8. Finadly to test drive Esper performance, read Chapter 13, Performance

© 2007 EsperTech Inc. - Esper2.0.0 iX

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze and react to
events. Some typical examples of applications are:

» Business process management and automation (process monitoring, BAM, reporting exceptions)

» Finance (algorithmic trading, fraud detection, risk management)

¢ Network and application monitoring (intrusion detection, SLA monitoring)

» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air traffic)

What these applications have in common is the requirement to process events (or messages) in real-time or near
real-time. This is sometimes referred to as complex event processing (CEP) and event stream analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the logic required.

e High throughput - applications that process large volumes of messages (between 1,000 to 100k messages
per second)

* Low latency - applications that react in real-time to conditions that occur (from a few milliseconds to a few
seconds)

« Complex computations - applications that detect patterns among events (event correlation), filter events, ag-
gregate time or length windows of events, join event streams, trigger based on absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in which most datais
fairly static and complex queries are less frequent. Also, most databases store al data on disks (except for in-
memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the data 10 times per
second it must fire the query 10 times per second. This does not scale well to hundreds or thousands of queries
per second.

Database triggers can be used to fire in response to database update events. However database triggers tend to
be slow and often cannot easily perform complex condition checking and implement logic to react.

In-memory databases may be better suited to CEP applications then traditional relational database as they gen-
eraly have good query performance. Y et they are not optimized to provide immediate, real-time query results
required for CEP and event stream analysis.

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and running quer-
ies against stored data, the Esper engine allows applications to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur that match queries. The execution model is thus con-
tinuous rather then only when a query is submitted.

© 2007 EsperTech Inc. - Esper2.0.0 1

Technology Overview

Esper provides two principal methods or mechanisms to process events. event patterns and event stream quer-
ies.

Esper offers an event pattern language to specify expression-based event pattern matching. Underlying the pat-
tern matching engine is a state machine implementation. This method of event processing matches expected se-
quences of presence or absence of events or combinations of events. It includes time-based correlation of
events.

Esper aso offers event stream queries that address the event stream analysis requirements of CEP applications.
Event stream queries provide the windows, aggregation, joining and analysis functions for use with streams of
events. These queries are following the EPL syntax. EPL has been designed for similarity with the SQL query
language but differs from SQL in its use of views rather then tables. Views represent the different operations
needed to structure datain an event stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

1.4. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

« ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EPL syntax.
Credit goes to Terence Parr at http://www.antlr.org. The ANTLR licenseis in the lib directory. The library
isrequired for compile-time only.

e CGLIB isthe code generation library for fast method calls. This open source software is under the Apache
license. The Apache 2.0 licenseisin thelib directory.

¢ LOG4J and Apache commons logging are logging components. This open source software is under the
Apache license. The Apache 2.0 licenseisin thelib directory.

Esper requires the following 3rd-party libraries at compile-time and for running the test site:

e JUnitisagreat unit testing framework. Its license has also been placed in the lib directory. Thelibrary isre-
quired for build-time only.

* MySQL connector library is used for testing SQL integration and is required for running the automated test
suite.

© 2007 EsperTech Inc. - Esper2.0.0 2

Chapter 2. Event Representations

2.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. Event properties capture the
state information for an event. An event is represented by either a POJO (plain-old Java object), a
java.util.Mp or aXML document viaorg. w3c. dom Node.

In Esper, an event can be represented by any of the following underlying Java objects:

Table 2.1. Event Underlying Java Objects

Java Class Description

j ava. | ang. Obj ect Any Java POJO (plain-old java object) with getter methods
following JavaBean conventions; Legacy Java classes not fol-
lowing JavaBean conventions can also serve as events .

java.util.Map Map events are key-values pairs

or g. wdc. dom Node XML document object model (DOM)

2.2. Event Properties

Event properties capture the state information for an event. Event properties be simple as well as indexed,
mapped and nested event properties. The table below outlines the different types of properties and their syntax
in an event expression. This syntax allows statements to query deep JavaBean objects graphs, XML structures
and Map events.

Table 2.2. Typesof Event Properties

Type Description Syntax Example
Simple A property that has a single value that

may be retrieved. name sensor | d
Indexed An indexed property stores an ordered

collection of objects (all of the same name[index] sensor [0]

type) that can be individualy accessed
by an integer-valued, non-negative index
(or subscript).

Mapped A mapped property stores a keyed col-

lection of objects (all of the sametype). = name(’ key’) sensor (" Iight")
Nested A nested property is a property that lives

within another property of an event. name. nest ednane sensor. val ue

Combinations are aso possible For example, a vaid combination could be per-

© 2007 EsperTech Inc. - Esper2.0.0 3

Event Representations

son. address(' honme').street[0].

2.3. Dynamic Event Properties

Dynamic (unchecked) properties are event properties that need not be known at statement compilation time.
Such properties are resolved during runtime.

The idea behind dynamic properties is that for a given underlying event representation we don't always know
all properties in advance. An underlying event may have additional properties that are not known at statement
compilation time, that we want to query on. The concept is especially useful for events that represent rich, ob-
ject-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed, mapped and nes-
ted properties can aso be dynamic properties:
Table 2.3. Types of Event Properties

Type Syntax

Dynamic Simple

nane?

Dynamic Indexed
nane[i ndex] ?

Dynamic Mapped

nane(' key')?

Dynamic Nested
nane?. nest edPr opert yNane

Dynamic properties aways return the j ava. | ang. Ooj ect type. Also, dynamic properties return anul | vaue if
the dynamic property does not exist on events processed at runtime.

As an example, consider an OrderEvent event that provides an "item" property. The "item" property is of type
vj ect and holds areference to an instance of either a Service or Product.

Assume that both Service and Product classes provide a property named "price". Via a dynamic property we
can specify a query that obtains the price property from either object (Service or Product):

select itemprice? from O derEvent

As a second example, assume that the Service class contains a "serviceName" property that the Product class
does not possess. The following query returns the value of the "serviceName" property for Service objects. It
returns anul | -value for Product objects that do not have the "serviceName" property:

sel ect item serviceName? from O der Event

Consider the case where OrderEvent has multiple implementation classes, some of which have a "timestamp"
property. The next query returns the timestamp property of those implementations of the OrderEvent interface
that feature the property:

sel ect tinmestanp? from O der Event

© 2007 EsperTech Inc. - Esper2.0.0 4

Event Representations

The query as above returns a single column named "timestamp?" of type Obj ect .

When dynamic properties are nested, then all properties under the dynamic property are also considered dy-
namic properties. In the below example the query asks for the "direction™ property of the object returned by the
"detail" dynamic property:

sel ect detail?.direction from O der Event
/1 equivalent to
sel ect detail ?.direction? from O der Event

The functions that are often useful in conjunction with dynamic properties are:

e Thecast function casts the value of a dynamic property (or the value of an expression) to a given type.

* Theexi sts function checks whether a dynamic property exists. It returnst r ue if the event has a property of
that name, or falseif the property does not exist on that event.

* Theinstanceof function checks whether the value of a dynamic property (or the value of an expression) is
of any of the given types.

Dynamic event properties work with all event representations outlined next: Java objects, Map-based and XML
DOM-based events.

2.4. Plain-Old Java Object Events

Plain-old Java object events are object instances that expose event properties through JavaBeans-style getter
methods. Events classes or interfaces do not have to be fully compliant to the JavaBean specification; however
for the Esper engine to obtain event properties, the required JavaBean getter methods must be present.

Esper supports JavaBeans-style event classes that extend a superclass or implement one or more interfaces.
Also, Esper event pattern and EPL statements can refer to Java interface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state change or action
that occurred in the past, the relevant event properties should not be changeable. However thisis not a hard re-
quirement and the Esper engine accepts events that are mutable as well.

The hashCode and equal s methods do not need to be implemented. The implementation of these methods by a
Java event class does not affect the behavior of the enginein any way.

Please see Chapter 10, Configuration on options for naming event types represented by Java object event
classes.

2.4.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans specification, and
some of which are uniquely supported by Esper:

» Smple properties have a single value that may be retrieved. The underlying property type might be a Java
language primitive (such as int, a simple object (such as a javalang.String), or a more complex object
whose class is defined either by the Java language, by the application, or by aclass library included with the
application.

¢ Indexed - Anindexed property stores an ordered collection of objects (all of the same type) that can be indi-

© 2007 EsperTech Inc. - Esper2.0.0 5

Event Representations

vidually accessed by an integer-valued, non-negative index (or subscript). Alternatively, the entire set of
values may be retrieved using an array.

« Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that accepts a String-
valued key a mapped property.

» Nested - A nested property is a property that lives within another Java object which itself is a property of an
event.

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed propertiesin this ex-
ample return Java objects but could also return Java language primitive types (such as int or String). The Ad-
dress object and Employee objects can themselves have properties that are nested within them, such as a street-
Name in the Address object or a name of the employee in the Employee object.

public class Enpl oyeeEvent ({
public String getFirstName();
publ i c Address get Address(String type);
publ i c Enpl oyee get Subordi nate(int index);
publ i c Enpl oyee[] get Al | Subordi nates();

Smple event properties require a getter-method that returns the property value. In this example, the get Fi r st -
Nane getter method returnsthef i r st Nane event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes an integer-
type key value and returns the property value, such as the get Subor di nat e method. Or a method that returns an
array-type such as the get Subor di nat es getter method, which returns an array of Employee. In an EPL or
event pattern statement, indexed properties are accessed viathe propert y[i ndex] Ssyntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns the property
value, such as the get Addr ess method. In an EPL or event pattern statement, mapped properties are accessed
viathe property(' key') syntax.

Nested event properties require a getter-method that returns the nesting object. The get Addr ess and get Subor -
di nat e methods are mapped and indexed properties that return a nesting object. In an EPL or event pattern
statement, nested properties are accessed viathe pr opert y. nest edPr oper t y Syntax.

All event pattern and EPL statements allow the use of indexed, mapped and nested properties (or a combination
of these) anywhere where one or more event property names are expected. The below example shows different
combinations of indexed, mapped and nested propertiesin filters of event pattern expressions:

every Enpl oyeeEvent (firstName=" nyNane')

every Enpl oyeeEvent (address(' hone'). street Nane=' Park Avenue')

every Enpl oyeeEvent (subordi nat e[0] . name="anot her Nane')

every Enpl oyeeEvent (al | Subor di nat es[1] . nanme="t hat Nane')

every Enpl oyeeEvent (subordi nate[0] . address(' hone'). street Name=' Vlater Street')

Similarly, the syntax can be used in EPL statements in all places where an event property name is expected,
such asin select lists, where-clauses or join criteria.

sel ect firstName, address('work'), subordinate[0].nanme, subordinate[1l].name
from Enpl oyeeEvent
where address('work').streetName = ' Park Ave'

Property names follows Java standards: the classj ava. beans. I ntrospect or and method get Beanl nf o returns
the property names as derived from the name of getter methods. In addition, Esper configuration provides aflag
to turn off case-sensitive property names. A samplelist of getter methods and property namesis:

© 2007 EsperTech Inc. - Esper2.0.0 6

Event Representations

Table 2.4. JavaBeans-style Getter M ethods and Property Names

Method Property Name Example

get Price() price
sel ect price from MyEvent

get NAVE() NAME

sel ect NAME from MyEvent
get | t enDesc() itemDesc

sel ect itenDesc from MyEvent
get) q

select g from MyEvent
get Q\() QN

sel ect QN from MyEvent
getan() an

sel ect gn from MyEvent
gets() S

sel ect s from MyEvent

Constants are public static fina fields in Java that may also participate in expressions of al kinds, as this ex-
ample shows:

sel ect * from M/Event where property=M/Const ant d ass. FI ELD VALUE

Event properties that are enumeration values can be compared by their enumeration value:

select * from M/Event where enunProp=Enuntl ass. ENUM VALUE 1

Alternatively, a static method may be employed on a class, such as the enumeration class 'EnumClass as be-
low:

sel ect * from MyEvent where enunProp=Enuntl ass. val ueCf (' ENUM VALUE 1')

Instance methods may also be invoked on event instances by specifying a stream name, as shown below:

sel ect myevent. conput eSonet hing() as result from M/Event as mnyevent

Java classes that do not follow JavaBean conventions, such as legacy Java classes that expose public fields, or
methods not following naming conventions, require additional configuration. Via configuration it is also pos-
sible to control case sensitivity in property name resolution. The relevant section in the chapter on configura-
tionis Section 10.4.1.3, “Non-JavaBean and Legacy Java Event Classes’.

2.5.java. util.Mp Events

Events can also be represented by objects that implement the j ava. uti | . Map interface. Event properties of vap
events are the values in the map accessible through the get method exposed by thej ava. uti | . Map interface.

© 2007 EsperTech Inc. - Esper2.0.0 7

Event Representations

The engine can processj ava. uti | . Map eventsviathe sendevent (Map map, String event TypeAl i as) method
on the EPruntinme interface. Entries in the Map represent event properties. Keys must be of type
java.util.string for the engine to be able to look up event property names specified by pattern or EPL state-
ments.

Map event properties can be of any type. Map event properties that are Java application objects or that are of
typej ava. util . Map offer additional power:

« Properties that are Java application objects can be queried via the nested, indexed, mapped and dynamic
property syntax as outlined earlier.

* Properties that are of type vap allow Maps to be nested arbitrarily deep and thus can be used to represent
complex domain information. The nested, indexed, mapped and dynamic property syntax can be used to
query Maps within Maps..

In order to use Map events, the event type name and property names and types must be made known to the en-
gine via Configuration. Please see the examplesin Section 10.4.2, “ Events represented by java.util.Map”.

The code snippet below creates and processes a Map event. The example assumes the Car Locat i onUpdat eEvent
event type alias has been configured.

Map event = new HashMap();

event. put("carld", carld);
event.put("direction", direction);

epRunti me. sendEvent (event, "CarlLocUpdateEvent");

The Car LocUpdat eEvent can now be used in a statement:

select carld from CarLocUpdat eEvent.win:tinme(1l mn) where direction = 1

The engine can aso query Java objects as valuesin aMap event via the nested property syntax. Thus Map events
can be used to aggregate multiple data structures into a single event and query the composite information in a
convenient way. The example below demonstrates a Map event with atransaction and an account object.

Map event = new HashMap();

event. put ("txn", txn);

event . put ("account", account);

epRunt i me. sendEvent (event, "TxnEvent");

An example statement could look as follows.

sel ect account.id, account.rate * txn.anpount
from TxnEvent.win: ti me(60 sec)
group by account.id

2.5.1. Map-Within-Map Nested Events

Strongly-typed nested Map-within-Map events can be used to build rich, type-safe event types on the fly. Use the
addNest abl eEvent TypeAl i as method on Confi gurati on Or Confi gurati onQperati ons for initialization-time
and runtime-time type definition.

Noteworthy points are:

e JavaBean (POJO) objects can also appear as properties in Map-within-map.
e Thereisno limit to the number of nesting levels.
« Dynamic properties can be used to query mvap-within-vap keys that may not be known in advance.

© 2007 EsperTech Inc. - Esper2.0.0 8

Event Representations

* Theenginereturnsanul | value for properties for which the access path into the nested structure cannot be
followed where map entries do not exist.

For demonstration, in this example our top-level event type is an AccountUpdate event, which has an Updated-
Field structure as a property. Inside the UpdatedField structure the example defines various fields, as well as a
property by name 'history" that holds a JavaBean class 'UpdateHistory’ to represent the update history for the ac-
count. The code snippet to define the event typeis thus:

Map<String, oject> updatedFi el dDef = new HashMap<String, Object>();
updat edFi el dDef . put ("nane", String.class);

updat edFi el dDef . put (" addr essLi nel", String.cl ass);

updat edFi el dDef . put (" hi story", UpdateHi story.cl ass);

Map<String, bject> account Updat eDef = new HashMap<String, Object>();
account Updat eDef . put ("account|d", |ong.class);
account Updat eDef . put ("fi el ds", updat edFi el dDef);

epServi ce. get EPAdmi ni strator (). get Configuration().
addNest abl eEvent TypeAl i as(" Account Updat e", account Updat eDef);

The next code snippet popul ates a sample event and sends the event into the engine:

Map<String, Cbject> updatedField = new HashMap<String, Cbject>();
updat edFi el d. put (" nane", "Joe Doe");

updat edFi el d. put (" addr essLi nel", "40 Popul ar Street");

updat edFi el d. put ("hi story", new UpdateHi story());

Map<String, oject> accountUpdate = new HashMap<String, Object>();
account Updat e. put ("account|d", 10009901);
account Update. put ("fi el ds", updatedFi el d);

epServi ce. get EPRunt i me() . sendEvent (account Updat e, "Account Update");

Last, asample query to interrogate AccountUpdate eventsis as follows:

sel ect accountld, fields.name, fields.addressLinel, fields.history.!|astUpdate
from Account Updat e

Note that type information for nested maps is only available to the immediately selecting stream. For example,
the second select-query does not work:

insert into MyStream sel ect fields from NestedMapEvent
/1 this does not work ... instead select the individual fields in the insert-into statenent
select fields.name from MyStream

2.6. org. w3c. dom Node XML Events

Events can also be represented as or g. wac. dom Node instances and send into the engine via the sendEvent
method on EPRunt i me. Please note that configuration is required for alowing the engine to map the event type
aliasto Node element names. See Chapter 10, Configuration.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.
For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wadc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying

© 2007 EsperTech Inc. - Esper2.0.0 9

Event Representations

JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.
Let'slook at how asample XML document could be queried, given the sample XML below.

<?xm version="1.0" encodi ng="UTF-8""?>
<Sensor >
<| D>urn: epc: 1: 4. 16. 36<I D>
<Cbservati on Command="READ PALLET TAGS ONLY">
<I b>00000001<I| D>
<Tag>
<I D>urn: epc: 1: 2. 24. 400<I D>
</ Tag>
<Tag>
<I D>urn: epc: 1: 2. 24. 401<I| D>
</ Tag>
</ Cbservati on>
</ Sensor >

To configure the engine for processing Sensor documents, simply configure a Sensor Event event type alias for
the sensor element name via Configuration. Now the document can be queried as below.

select I D, Cbservation.|D, Observation.Comrand, Observation. Tag[0], count Tags
from Sensor Event. wi n: ti ne(30 sec)

The equivaent XPath expressions to each of the properties are listed below.

* Theequivalent XPath expression to Qoser verati on. | DiS/ Sensor/ Coser vati on/ | D

* Theequivalent XPath expression to Gbser ver at i on. Command iS/ Sensor / Cbser vat i on/ @omand

e The equivalent XPath expression to Gbser verati on. Tag[0] iS/ Sensor/ Cbservati on/ Tag[position() =
1]

¢ The equivaent XPath expression to count Tags iS count (/ Sensor/ Cbser vat i on/ Tag) for returning a count
of tag elements. This assumes the count Tags property has been configured as an XPath property.

By specifying an event property such below:
nest edEl enent . mappedEl enment (' key') . i ndexedEl enent [1]

The equivalent XPath expression is as follows:

/ si mpl eEvent / nest edEl enent / mappedEl enent [@ d=" key'] /i ndexedE!l ement [positi on() = 2]

© 2007 EsperTech Inc. - Esper2.0.0 10

Chapter 3. Processing Model

3.1. Introduction

The Esper processing model is continuous: Update listeners to statements receive updated data as soon as the
engine processes events for that statement, according to the statement's choice of event streams, views, filters
and output rates.

As outlined in Chapter 9, API Reference the interfface for listeners is
com espertech. esper. client. Updat eLi st ener. Implementations must provide a single updat e method that
the engine invokes when results become available:

(Updatelistener

Lu pdate(EvantBean]] newEvents, J

EventBaan[] aldEvents)

The engine provides statement results to update listeners by placing results in
com espertech. esper. event . Event Bean instances. A typical listener implementation queries the Event Bean
instances via getter methods to obtain the statement-generated results.

(EventBean |

t;e‘-:Slnng propertyName) - Object

getUnderlying(y : Object
getEventTypel) | EventType

The get method on the Event Bean interface can be used to retrieve result columns by name. The property name
supplied to the get method can also be used to query nested, indexed or array properties of object graphs as dis-
cussed in more detail in Chapter 2, Event Representations.

The get Under | yi ng method on the Event Bean interface alows update listeners to obtain the underlying event
object. For wildcard selects, the underlying event is the event object that was sent into the engine via the
sendEvent method. For joins and select clauses with expressions, the underlying object implements
java.util . Map.

3.2. Insert Stream

In this section we look at the output of a very ssmple EPL statement. The statement selects an event stream
without using a data window and without applying any filtering, as follows:

select * from Wt hdrawal

This statement selects all w t hdr anal events. Every time the engine processes an event of type W t hdr awal or
any sub-type of Wt hdrawal , it invokes all update listeners, handing the new event to each of the statement's
listeners.

The term insert stream denotes the new events arriving, and entering a data window or aggregation. The insert
stream in this example is the stream of arriving Withdrawal events, and is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in parenthesisis
the withdrawal amount, an event property that is used in the examples that discuss filtering.

© 2007 EsperTech Inc. - Esper2.0.0 11

Processing Model

UpdateListener

Incoming Events New Events Old Events
| |
W1(500) ——» W, | |
| |
| |
Wo(100) ——] W, | |
| |
| |
W3(200) —f W : :
| |
Wa(50) ———= Wa | |
| |
| |
Ws(150) ——m Wi : :
| |
W(300) —— Wi | |
| |

Time

Figure 3.1. Output example for a simple statement

The example statement above results in only new events and no old events posted by the engine to the state-
ment's listeners.

3.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next statement applies a
length window onto the Withdrawal event stream. The statement serves to illustrate the concept of data window
and events entering and leaving a data window:

sel ect * from Wthdrawal . wi n: | ength(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal events into
the length window. When the length window is full, the oldest Withdrawal event is pushed out the window.
The engine indicates to listeners all events entering the window as new events, and all events leaving the win-
dow as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events leaving a data
window, or changing aggregation values. In this example, the remove stream is the stream of Withdrawal
events that |eave the length window, and such events are posted to listeners as old events.

The next diagram illustrates how the length window contents change as events arrive and shows the events pos-
ted to an update listener.

© 2007 EsperTech Inc. - Esper2.0.0 12

Processing Model

UpdateListener

Incoming Events Length Window - 5 Events New Events Old Events
| |
W1(500) — W, | |
| |
| |
W2(100) — ! We | |
| |
| |
Wa(200) ——pm Ws : :
| |
Wa(50) — gl Wy | |
| |
| |
wow —» - ([e))w]mw]) | ow |
| |
W5(300) ——] G We |[w |[wa][we][w D Wis | W |
| |

Time

Figure 3.2. Output examplefor alength window

As before, al arriving events are posted as new events to listeners. In addition, when event W1 |leaves the
length window on arrival of event Wi, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time period. A time
window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds pass, the time window act-
ively pushes the oldest events out of the window resulting in one or more old events posted to update listeners.

Note: By default the engine only delivers the insert stream to listeners and observers. EPL supports optional
i stream irstreamand r st r eamkeywords on select-clauses and on insert-into clauses to control which stream
to deliver, see Section 4.3.7, “Selecting insert and remove stream events’. There is also a related, engine-wide
configuration setting described in Section 10.4.13, “ Engine Settings related to Stream Selection”.

3.4. Filters and Where-clauses

Filters to event streams alow filtering events out of a given stream before events enter a data window. The
statement below shows afilter that selects Withdrawal events with an amount value of 200 or more.

sel ect * from Wt hdrawal (anbunt >=200) . wi n: | engt h(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length window and
are therefore not passed to update listeners. Filters are discussed in more detail in Section 4.4.1, “Filter-based
Event Streams’ and Section 5.4, “Filter Expressions In Patterns’.

© 2007 EsperTech Inc. - Esper2.0.0 13

Processing Model

UpdateListenar

; Filter: Length Window — 5 Events New Events Old Events
Incoming Events Amount==200 | |
W(B00) g W, | |

| |

| |

W2(100) — X | |
| |

| |

W5(200) — we | |
| |

| |

Wa(50) — o >< | |
| |

| |

Wel150) — pol X | |
| |

| |

We(300) —] We | |
| |

Time

Figure 3.3. Output example for a statement with an event stream filter

The where-clause and having-clause in statements eliminate potential result rows at a later stage in processing,
after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed in more detail in
Section 4.5, “ Specifying Search Conditions: the Where Clause”.

sel ect * from Wthdrawal .w n:|ength(5) where anount >= 200

The where-clause applies to both new events and old events. As the diagram below shows, arriving events enter
the window however only events that pass the where-clause are handed to update listeners. Also, as events
leave the data window, only those events that pass the conditions in the where-clause are posted to listeners as
old events.

© 2007 EsperTech Inc. - Esper2.0.0 14

Processing Model

Updatel istener

-)
Incoming Events Length Window - 5 Events Amozlrl:te;ﬁﬂi} New Events Old Events
|
Wi(500) —— | Wi
|
|
Wa(100) —pol X |
|
|
x
oo —w (el) X
|
|
wowo —w - ([mmm]]) X |
|
W;(300) — o G Wi || Ws || Wi || wa || wa D | Ws W
|

Time

Figure 3.4. Output examplefor a statement with where-clause

The where-clause can contain complex conditions while event stream filters are more restrictive in the type of
filters that can be specified. The next statement's where-clause appliesthecei | function of thej ava. | ang. Mat h
Java library class in the where clause. The insert-into clause makes the results of the first statement available to
the second statement:

insert into Wthdrawal Filtered select * from Wthdrawal where Mth. ceil (anbunt) >= 200

select * fromWthdrawal Filtered

3.5. Time Windows

In this section we explain the output model of statements employing a time window view and a time batch
view.

3.5.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on the system
time. Time windows enable us to limit the number of events considered by a query, as do length windows.

As a practical example, consider the need to determine all accounts where the average withdrawal amount per
account for the last 4 seconds of withdrawals is greater then 1000. The statement to solve this problem is shown
below.

sel ect account, avg(anount)
fromWthdrawal . wi n:tine(4 sec)
group by account

havi ng amount > 1000

© 2007 EsperTech Inc. - Esper2.0.0 15

Processing Model

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume a query
that simply selects the event itself and does not group or filter events.

select * fromWthdrawal .win:tinme(4 sec)

The diagram starts at a given timet and displays the contents of thetimewindow att + 4 andt + 5 seconds
and so on.

UpdateListener

. Time Window — 4 seconds
Incoming Events New Events Old Events
At t+d At i+E A t+ES At t+3
1
| t+1
o
| +2
'
| =3
) |]]| W
w | .
™ TN
2

Wy g —

+6

E
EE
B

7

—_— | 1+8 R Wy

Figure 3.5. Output examplefor a statement with a time window

The activity asillustrated by the diagram:

1. Attimet + 4 seconds an event w arrives and enters the time window. The engine reports the new event
to update listeners.

2. Attimet + 5 seconds an event w arrives and enters the time window. The engine reports the new event
to update listeners.

3. Attimet + 6.5 seconds an event w arrives and enters the time window. The engine reports the new
event to update listeners.

4. Attimet + 8 seconds event w leaves the time window. The engine reports the event as an old event to
update listeners.

3.5.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update. Time win-
dows control the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of atime batch view. For the diagram, we assume asimple

© 2007 EsperTech Inc. - Esper2.0.0 16

Processing Model

query as below:

select * fromWthdrawal .win:tinme_batch(4 sec)

The diagram starts at agiventimet and displays the contents of thetimewindow att + 4 andt + 5 seconds
and so on.

UpdateListener

. Time Batch — 4 seconds
Incoming Events New Events Old Events
At t+d Ab1+3 Att+d ALHHES Att+E
!

N

e .
| 2

vy et e

B — Wiand Wy

t+5

+6

1+7

g R

- SR

Wyand W

Figure 3.6. Output examplefor a statement with a time batch view

The activity asillustrated by the diagram:

1. Attimet + 1 seconds anevent w arrives and enters the batch. No call to inform update listeners occurs.
2. Attimet + 3 seconds anevent w arrives and enters the batch. No call to inform update listeners occurs.

3. Attimet + 4 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports events w and W to update listeners.

4. Attimet + 6.5 seconds an event W arrives and enters the batch. No call to inform update listeners oc-
curs.

5. Attimet + 8 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports the event W, as new data to update listeners. The engine reports the events w and W as old data (prior
batch) to update listeners.

3.6. Batch Windows

The built-in data windows that act on batches of events are the wi n: ti me_bat ch and the wi n: | engt h_bat ch
views. Thewi n: ti me_bat ch data window collects events arriving during a given time interval and posts collec-

© 2007 EsperTech Inc. - Esper2.0.0 17

Processing Model

ted events as a batch to listeners at the end of the time interval. The wi n: | engt h_bat ch data window collects a
given number of events and posts collected events as a batch to listeners when the given number of events has
collected.

Let'slook at how atime batch window may be used:

sel ect account, amount from Wthdrawal . win:tinme_batch(l sec)

The above statement collects events arriving during a one-second interval, at the end of which the engine posts
the collected events as new events (insert stream) to each listener. The engine posts the events collected during
the prior batch as old events (remove stream). The engine starts posting events to listeners one second after it
receives the first event and thereon.

For statements containing aggregation functions and/or a group by clause, the engine posts consolidated ag-
gregation results for an event batch. For example, consider the following statement:

sel ect sum(anmpunt) as mysum from Wthdrawal . win:ti me_batch(1l sec)

Note that output rate limiting also generates batches of events following the output model as discussed here.

3.7. Aggregation and Grouping

3.7.1. Insert and Remove Stream

Statements that aggregate events via aggregation functions also post remove stream events as aggregated values
change.

Consider the following statement that alerts when 2 Withdrawal events have been received:

sel ect count(*) as nycount from Wthdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update listeners. The
value of the "mycount” property on that new event is 2. Additionally, when the engine encounters the third
Withdrawal event, it posts an old event to update listeners containing the prior value of the count. The value of
the "mycount” property on that old event isalso 2.

Theistreamor r st reamkeyword can be used to eliminate either new events or old events posted to listeners.
The next statement usesthei st r eamkeyword causing the engine to call the listener only once when the second
Withdrawal event is received:

sel ect istream count(*) as mycount from Wthdrawal having count(*) = 2

3.7.2. Output for Aggregation and Group-By

Following SQL (Standard Query Language) standards for queries against relational databases, the presence or
absence of aggregation functions and the presence or absence of the group by clause dictates the number of
rows posted by the engine to listeners. The next sections outline the output model for batched events under ag-
gregation and grouping. The examples aso apply to data windows that don't batch events and post results con-
tinously as events arrive or leave data windows. The examples also apply to patterns providing events when a
complete pattern matches.

In summary, asin SQL, if your query only selects aggregation values, the engine provides one row of aggreg-

© 2007 EsperTech Inc. - Esper2.0.0 18

Processing Model

ated values. It provides that row every time the aggregation is updated (insert stream), which is when events ar-
rive or abatch of events gets processed, and when the events leave a data window or a new batch of events ar-
rives. The remove stream then consists of prior aggregation values.

Also asin SQL, if your query selects non-aggregated values along with aggregation values in the select clause,
the engine provides a row per event. The insert stream then consists of the aggregation values at the time the
event arrives, while the remove stream is the aggregation value at the time the event leaves a data window, if
any is defined in your query.

The documentation provides output examples for query types in Appendix A, Output Reference and Samples,
and the next sections outlines each query type.

Un-aggregated and Un-grouped
An example statement for the un-aggregated and un-grouped case is as follows:

select * from Wthdrawal .w n:tine_batch(1l sec)

At the end of atime interval, the engine posts to listeners one row for each event arriving during the time inter-
val.

The appendix provides a complete example including input and output events over time at Section A.2, “Output
for Un-aggregated and Un-grouped Queries’

Fully Aggregated and Un-grouped

If your statement only selects aggregation values and does not group, your statement may look as the example
below:

sel ect sun{anobunt)
fromWthdrawal . wi n:tine_batch(1l sec)

At the end of atimeinterval, the engine posts to listeners a single row indicating the aggregation result. The ag-
gregation result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at Section A.3, “Output
for Fully-aggregated and Un-grouped Queries’

Aggregated and Un-Grouped

If your statement selects non-aggregated properties and aggregation values, and does not group, your statement
may be similar to this statement:

sel ect account, sun{anount)
fromWthdrawal . wi n:tine_batch(1 sec)

At the end of atime interval, the engine posts to listeners one row per event. The aggregation result aggregates
all events collected during the time interval.

The appendix provides a complete example including input and output events over time at Section A.4, “Output
for Aggregated and Un-grouped Queries’

Fully Aggregated and Grouped

© 2007 EsperTech Inc. - Esper2.0.0 19

Processing Model

If your statement selects aggregation values and all non-aggregated propertiesin the sel ect clause are listed in
the group by clause, then your statement may look similar to this example:

sel ect account, sun{anount)
from Wthdrawal . wi n:ti ne_batch(1l sec)
group by account

At the end of atime interval, the engine posts to listeners one row per unigue account number. The aggregation
result aggregates per unique account.

The appendix provides a complete example including input and output events over time at Section A.5, “Output
for Fully-aggregated and Grouped Queries’

Aggregated and Grouped

If your statement selects non-aggregated properties and aggregation values, and groups only some properties
using the gr oup by clause, your statement may look as below:

sel ect account, accountNanme, sun(anount)
fromWthdrawal . wi n:tine_batch(1 sec)
group by account

At the end of atime interval, the engine posts to listeners one row per event. The aggregation result aggregates
per unigue account.

The appendix provides a complete example including input and output events over time at Section A.6, “Output
for Aggregated and Grouped Queries’

3.8. Event Bean Query Results

The engine posts events to Updat eLi st ener implementations as com espert ech. esper. event . Event Bean in-
stances. The Event Bean represents arow (event) in your continuous query's result set.

Usetheiterat or method on EPSt at emrent Statements to poll or read data out of statements, if you require read-
based access to statement result sets. Statement iterators also return Event Bean instances.

The Event Bean interface offers property type metadata via the get Event Type method returning an Event Type.
The Event Type provides property name, property type and underlying type information. This information can
be useful to dynamically interrogate query results. The underlying event that an Event Bean represents can be
obtained via the get Under | yi ng method. Please see Chapter 2, Event Representations for more information on
different event underlying objects.

Consider a statement that returns the symbol, count of events per symbol and average price per symbol for tick
events. Our sample statement may declare a fully-qualified Java class name as the event type:
org. sanpl e. St ockTi ckEvent . Assume that this class exists and exposes a symbol property of type String, and
apri ce property of type (Java primitive) double.

sel ect synbol, avg(price) as avgprice, count(*) as mycount
from org. sanpl e. St ockTi ckEvent
group by synbol

The next table summarizes the property names and types as posted by the statement above:

© 2007 EsperTech Inc. - Esper2.0.0 20

Processing Model

Table 3.1. Properties offered by sample statement aggregating price

Name Type Description Java code snippet
synbol javalang.String Value of symbol event property

event Bean. get ("synbol ")
avgpri ce javalang.Double Average price per symbol

event Bean. get ("avgpri ce")
mycount javalang.Long Number of events per symbol

event Bean. get (" nycount ")

A code snippet out of a possible Updat eLi st ener implementation to this statement may look as bel ow:

String synbol = (String) newkEvents[O0].get("synbol");
Doubl e price= (Doubl e) newEvents[O0].get("avgprice");
Long count= (Long) newEvents[O0].get("nycount");

The engine supplies the boxed j ava. | ang. Doubl e and j ava. | ang. Long types as property values rather then
primitive Java types. This is because aggregated values can return anul I value to indicate that no datais avail-
able for aggregation. Also, in a select statement that computes expressions, the underlying event objects to
Event Bean instances are of typej ava. uti | . Map.

Consider the next statement that specifies awildcard selecting the same type of event:

select * fromorg. sanpl e. St ockTi ckEvent where price > 100

The property names and types provided by an Event Bean query result row, as posted by the statement above are
asfollows:

Table 3.2. Properties offered by sample wildcard-select statement

Name Type Description Java code snippet

synbol javalang.String | Value of symbol event property
event Bean. get ("synbol ")

price double Value of price event property
event Bean. get ("price")

As an dternative to querying individual event properties via the get methods, the get Under | yi ng method on
Event Bean returns the underlying object representing the query result. In the sample statement that features a
wildcard-select, the underlying event object is of type or g. sanpl e. St ockTi ckEvent :

St ockTi ckEvent tick = (StockTi ckEvent) newEvents[O0].getUnderlying();

© 2007 EsperTech Inc. - Esper2.0.0 21

Chapter 4. EPL Reference: Clauses

4.1. EPL Introduction

The Event Processing Language (EPL) is a SQL-like language with SELECT, FROM WHERE, GROUP BY, HAVI NG
and ORDER BY clauses. Streams replace tables as the source of data with events replacing rows as the basic unit
of data. Since events are composed of data, the SQL concepts of correlation through joins, filtering and aggreg-
ation through grouping can be effectively leveraged. The | NSERT | NTO clause is recast as a means of forward-
ing events to other streams for further downstream processing. External data accessible through JDBC may be
queried and joined with the stream data. Additional clauses such as the PATTERN and oUTPUT clauses are also
available to provide the missing SQL language constructs specific to event processing.

EPL statements are used to derive and aggregate information from one or more streams of events, and to join or
merge event streams. This section outlines EPL syntax. It also outlines the built-in views, which are the build-
ing blocks for deriving and aggregating information from event streams.

EPL statements contain definitions of one or more views. Similar to tablesin a SQL statement, views define the
data available for querying and filtering. Some views represent windows over a stream of events. Other views
derive statistics from event properties, group events or handle unique event property values. Views can be
staggered onto each other to build a chain of views. The Esper engine makes sure that views are reused among
EPL statements for efficiency.

The built-in set of viewsis:

1. Data window views: wi n: | engt h, wi n: | engt h_bat ch, win:time, wi n:time_bpatch,
win:time_length batch, wn:tinme_accum win:ext_tinmed, ext:sort_w ndow, ext:tinme_order,
st d: uni que, st d: gr oupby, std: | ast event

2. Views that derive statistics: std:size, stat:uni, stat:linest, stat:correl, stat:wei ghted avg,
stat: cube

EPL provides the concept of named window. Named windows are data windows that can be inserted-into and
deleted-from by one or more statements, and that can queried by one or more statements. Named windows have
a global character, being visible and shared across an engine instance beyond a single statement. Use the CRE-

ATE W NDOwclause to create named windows. Use the I NSERT | NTO clause to insert data into a named window,
the ON DELETE clause to remove events from a named window, and the oN SELECT clause to perform a non-
continuous fire-once query on a named window. Finaly, the name of the named window can occur in a state-
ment's FROM clause to query a named window or include the named window in ajoin or subquery.

Variables can come in handy to parameterize statements and change parameters on-the-fly and in response to
events. Variables can be used in an expression anywhere in a statement as well as in the output clause for dy-
namic control of output rates.

Esper can be extended by plugging-in custom developed views and aggregation functions.

4.2. EPL Syntax

EPL queries are created and stored in the engine, and publish results to listeners as events are received by the
engine or timer events occur that match the criteria specified in the query. Events can also be obtained from
running EPL queriesviathesafel terator anditerator methods that provide a pull-data API.

© 2007 EsperTech Inc. - Esper2.0.0 22

EPL Reference: Clauses

The sel ect clause in an EPL query specifies the event properties or events to retrieve. The fromclause in an
EPL query specifies the event stream definitions and stream names to use. The wher e clause in an EPL query
specifies search conditions that specify which event or event combination to search for. For example, the fol-
lowing statement returns the average price for IBM stock ticks in the last 30 seconds.

sel ect avg(price) from StockTick.w n:tinme(30 sec) where synbol =' | BM

EPL queries follow the below syntax. EPL queries can be simple queries or more complex queries. A simple
select contains only asel ect clause and a single stream definition. Complex EPL queries can be build that fea-
ture a more elaborate select list utilizing expressions, may join multiple streams, may contain a wher e clause
with search conditions and so on.

[insert into insert_into_def]

sel ect select_list

fromstreamdef [as nane] [, streamdef [as nane]] [,...]
[where search_conditions]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

[out put out put _specification]

[order by order_by expression_list]

4.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter. Time periods
follow the syntax below.

time-period : [day-part] [hour-part] [minute-part] [seconds-part] [m|liseconds-part]

day-part : nunber ("days" | "day")

hour-part : nunber ("hours" | "hour")

m nute-part : nunber ("mnutes" | "mnute" | "mn")

seconds-part : nunber ("seconds" | "second" | "sec")
m|liseconds-part : nunber ("mlliseconds" | "mllisecond" | "nsec")

Some examples of time periods are:

10 seconds

10 m nutes 30 seconds

20 sec 100 nsec

1 day 2 hours 20 nminutes 15 seconds 110 mlliseconds
0.5 m nutes

4.2.2. Using Comments

Comments can appear anywhere in the EPL or pattern statement text where whitespace is allowed. Comments
can be written in two ways. dash-dash (// ...) commentsand slash-star (/* ... */) comments.

Slash-slash comments extend to the end of the line:

/1 This conment extends to the end of the line.
/1 Two forward slashes with no whitespace between them begin such coments.

select * fromMEvent // this is a slash-slash conment

/1 Al of this text together is a valid statenent.

Slash-star comments can span multiple lines:

© 2007 EsperTech Inc. - Esper2.0.0 23

EPL Reference: Clauses

/[* This conment is a "slash-star" comment that spans multiple |ines.

* It begins with the slash-star sequence with no space between the '/' and '*' characters.
* By convention, subsequent |ines can begin with a star and are aligned, but this is

* not required.

*/

select * from M/Event /* this also works */

Comments styles can also be mixed:

select fieldl, // first comment
/* second coment*/ field2
from MyEvent

4.3. Choosing Event Properties And Events: the Select Clause

The sel ect clauseisrequired in al EPL statements. The sel ect clause can be used to select all properties via
the wildcard *, or to specify alist of event properties and expressions. The sel ect clause defines the event type
(event property names and types) of the resulting events published by the statement, or pulled from the state-
ment viathe iterator methods.

The sel ect clause also offers optional i stream irstreamand rstream keywords to control whether input
stream, remove stream or input and remove stream events are posted to Updat eLi st ener instances and observ-
ers to a statement. By default, the engine provides only the insert stream to listener and observers. See Sec-
tion 10.4.13, “Engine Settings related to Stream Selection” on how to change the default.

The syntax for the sel ect clause is summarized below.

select [istream | irstream| rstrean] * | expression_list ...

Thei st reamkeyword is the default, and indicates that the engine only deliversinsert stream events to listeners
and observers. Thei r st r eamkeyword indicates that the engine delivers both insert and remove stream. Finally,
ther st reamkeyword tells the engine to deliver only the remove stream.

4.3.1. Choosing all event properties: select *

The syntax for selecting all event propertiesin astream is:

select * from stream def

The following statement selects StockTick events for the last 30 seconds of IBM stock ticks.

select * from StockTi ck(synbol="IBM).w n:tinme(30 sec)

The * wildcard and expressions can also be combined in a sel ect clause. The combination selects all event
properties and in addition the computed values as specified by any additional expressions that are part of the
sel ect clause. Here is an example that selects all properties of stock tick events plus a computed product of
price and volume that the statement names 'pricevolume’:

select *, price * volune as pricevolune from StockTi ck(synbol =' | BM)

When using wildcard (*), Esper does not actually copy your event properties out of your event or events. It
simply wraps your native type in an Event Bean interface. Y our application has access to the underlying event
object through the get Under | yi ng method and has access to the property values through the get method.

© 2007 EsperTech Inc. - Esper2.0.0 24

EPL Reference: Clauses

In ajoin statement, using the sel ect * syntax selects one event property per stream to hold the event for that
stream. The property name is the stream aias namein the f r omclause.

4.3.2. Choosing specific event properties

To choose the particular event properties to return:

sel ect event _property [, event_property] [, ...] from stream def

The following statement simply selects the symbol and price properties of stock ticks, and the total volume for
stock tick eventsin a 60-second time window.

sel ect synbol, price, sun{volume) from StockTick(synbol="1BM).w n:tine(60 sec)

The following statement declares a further view onto the event stream of stock ticks. the univariate statistics
view (st at: uni). The statement selects the properties that this view derives from the stream, for the last 100
events of IBM stock ticks in the length window.

sel ect datapoints, total, average, variance, stdev, stdevpa
from St ockTi ck(synmbol =" I BM). w n: | engt h(100). stat: uni (vol une)

4.3.3. Expressions

Thesel ect clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

The following statement selects the volume multiplied by price for a time batch of the last 30 seconds of stock
tick events.

sel ect volunme * price from StockTick.w n:tinme_batch(30 sec)

4.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

sel ect [event property | expression] as identifier [, ...]

The following statement sel ects volume multiplied by price and specifies the name volPrice for the event prop-
erty.

sel ect volune * price as vol Price from StockTi ck.w n: | engt h(100)

4.3.5. Choosing event properties and events in ajoin

If your statement is joining multiple streams, your may specify property names that are unique among the
joined streams, or use wildcard (*) as explained earlier.

In case the property name in your sel ect or other clausesis not unique considering all joined streams, you will
need to use the alias name of the stream as a prefix to the property.

© 2007 EsperTech Inc. - Esper2.0.0 25

EPL Reference: Clauses

This example is a join between the two streams StockTick and News, respectively named as 'tick' and 'news.
The exampl e selects from the StockTick event the symbol value using the 'tick' stream alias as a prefix:

sel ect tick.synbol from StockTick.win:tinme(10) as tick, News.w n:tine(10) as news

Use the wildcard (*) selector in ajoin to generate a property for each stream, with the property value being the
event itself. The output events of the statement below have two properties: the 'tick’ property holds the Stock-
Tick event and the 'news' property holds the News event:

select * from StockTick.win:time(10) as tick, News.w n:tine(10) as news

The following syntax can also be used to specify what stream'’s properties to select:

sel ect streamnane.* [as alias] from...

The selection of ti ck. * selects the StockTick stream events only:

select tick.* from StockTick.win:tinme(10) as tick, News.w n:tinme(10) as news
where tick.synbol = news. synbol

The next example uses the as keyword to name each stream'’s joined events. This instructs the engine to create a
property for each named event:

sel ect tick.* as stocktick, news.* as news
from St ockTi ck.win:time(10) as tick, News.w n:time(10) as news
wher e stock.synbol = news.synbol

The output events of the above example have two properties 'stocktick' and 'news' that are the StockTick and
News events.

4.3.6. Choosing event properties and events from a pattern

If your statement employs pattern expressions, then your pattern expression tags events with a tag name. Each
tag name becomes available for use as a property in the sel ect clause and all other clauses.

For example, here is a very simple pattern that matches on every StockTick event received within 30 seconds
after start of the statement. The sample selects the symbol and price properties of the matching events:

sel ect tick.synbol as synbol, tick.price as price
frompattern[every tick=StockTi ck where timer:w thin(10 sec)]

The use of the wildcard selector, as shown in the next statement, creates a property for each tagged event in the
output. The next statement outputs events that hold a single 'tick' property whose value is the event itself:

select * frompattern[every tick=StockTick where timer:wthin(1l0 sec)]

Y ou may also select the matching event itself using theti ck. * syntax. The engine outputs the StockTick event
itself to listeners:

select tick.* frompattern[every tick=StockTick where tiner:wthin(10 sec)]

4.3.7. Selecting i nsert and renove Stream events

© 2007 EsperTech Inc. - Esper2.0.0 26

EPL Reference: Clauses

The optional i stream i rstreamand r st reamkeywords in the sel ect clause control the event streams posted
to listeners and observers to a statement.

If neither keyword is specified, and in the default engine configuration, the engine posts only insert stream
events via the newkvent s parameter to the updat e method of Updat eLi st ener instances listening to the state-
ment. The engine does not post remove stream events, by default.

The insert stream consists of the events entering the respective window(s) or stream(s) or aggregations, while
the remove stream consists of the events leaving the respective window(s) or the changed aggregation result.
See Chapter 3, Processing Model for more information on insert and remove streams.

The engine posts remove stream events to the ol dEvent s parameter of the updat e method only if either the
i rstreamor therstreamkeyword occurs in the sel ect clause. This behavior can be changed via engine-wide
configuration as described in Section 10.4.13, “ Engine Settings related to Stream Selection”.

By specifying the i st ream keyword you can instruct the engine to only post insert stream events via the
newEvent s parameter to the updat e method on listeners. The engine will then not post any remove stream
events, and the ol dEvent s parameter is always anull value.

By specifying thei r st r eamkeyword you can instruct the engine to post both insert stream and remove stream
events.

By specifying the rstream keyword you can instruct the engine to only post remove stream events via the
newEvent s parameter to the updat e method on listeners. The engine will then not post any insert stream events,
and the ol dEvent s parameter is also always anull value.

The following statement selects only the events that are leaving the 30 second time window.

select rstream* from StockTick.win:tinme(30 sec)

Thei st reamand r st reamkeywordsin the sel ect clause are matched by same-name keywords available in the
insert into clause. Whilethe keywordsinthesel ect clause control the event stream posted to listeners to the
statement, the same keywords in thei nsert i nt o clause specify the event stream that the engine makes avail-
able to other statements.

4.4. Specifying Event Streams: the From Clause

The fromclause is required in all EPL statements. It specifies one or more event streams or named windows.
Each event stream or named window can optionally be given a name by means of the as syntax.

fromstreamdef [as nane] [, streamdef [as streamnane]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either afilter-based event
stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based and filter-based event
streams are al so supported. Joins are described in more detail in Section 4.10, “ Joining Event Streams”.

Esper supports joins against relational databases for access to historical or reference data as explained in Sec-
tion 4.14, “ Joining Relational Data via SQL”. Esper can aso join results returned by an arbitrary method invoc-
ation, as discussed in Section 4.15, “ Joining Non-Relational Data via Method Invocation”.

The stream_name is an optional identifier assigned to the stream. The stream name can itself occur in any ex-

© 2007 EsperTech Inc. - Esper2.0.0 27

EPL Reference: Clauses

pression and provides access to the event itself from the named stream. Also, a stream name may be combined
with a method name to invoke instance methods on events of that stream.

4.4.1. Filter-based Event Streams

For filter-based event streams, the event stream definition stream_def as shown in the f r omclause syntax con-
sists of an event type, optional filter expressions and an optional list of views that derive data from a stream.
The syntax for afilter-based event stream is as below:

event _type ([filter_criteria]) [.view spec] [.view spec] [...]

The following EPL statement shows event type, filter criteria and views combined in one statement. It selects
all event properties for the last 100 events of IBM stock ticks for volume. In the example, the event type is the
fully qualified Java class name or g. esper . exanpl e. St ockTi ck. The expression filters for events where the
property synmbol has a value of "IBM". The optiona view specifications for deriving data from the StockTick
events are a length window and a view for computing statistics on volume. The name for the event stream is
"volumeStats'.

select * from
or g. esper. exanpl e. St ockTi ck(synmbol =" I BM). wi n: | engt h(100) . st at: uni (vol une) as vol uneStats

Esper filters out events in an event stream as defined by filter criteria before it sends events to subsequent
views. Thus, compared to search conditions in awher e clause, filter criteria remove unneeded events early. In
the above example, events with a symbol other then IBM do not enter the time window.

Specifying an event type

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardliess of the event's properties. The example below is
such afilter.

sel ect * from com nypackage. nyevents. Rf i dEvent

Instead of the fully-qualified Java class name any other event name can be mapped via Configuration to a Java
class, making the resulting statement more readabl e;

sel ect * from Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example | Rf i dReadabl e is an inter-
face class.

select * fromorg.nyorg.rfid.|Rfi dReadabl e

Specifying filter criteria

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name:

select * from Rfi dEvent (cat egory="Peri shabl e")

All expressions can be used in filters, including static methods that return a boolean value:

sel ect * from com nyconpany. Rfi dEvent (MyRFI DLi b. i sl nRange(x, y) or (x < 0 and y < 0))

© 2007 EsperTech Inc. - Esper2.0.0 28

EPL Reference: Clauses

Filter expressions can be separated viaa single comma', '. The comma represents alogical AND between filter
expressions:

sel ect * from Rfi dEvent (zone=1, category=10)
...is equivalent to...
select * from Rfi dEvent (zone=1 and cat egor y=10)

The following operators are highly optimized through indexing and are the preferred means of filtering in high-
volume event streams:

e equals=

e notequas!=

e comparison operators< , >, >=, <=
* ranges

* usethebet ween keyword for a closed range where both endpoints are included
e usethein keyword andround () or sguare brackets[] to control how endpoints are included
« for inverted ranges use the not keyword and the bet ween or i n keywords
e ligt-of-values checks using the i n keyword or the not i n keywords followed by a comma-separated list of
values

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions that can be
indexed. Indexing filter values to match event properties of incoming events enables the engine to match in-
coming events faster. The above list of operators represents the set of operators that the engine can best convert
into indexes. The use of commaor logical and in filter expressions does not impact optimizations by the engine.

Filtering Ranges

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates whether an end-
point is included or excluded. The low point and the high-point of the range are separated by the colon : char-
acter.

¢ Open ranges that contain neither endpoint (I ow. hi gh)

e Closed ranges that contain both endpoints [1 ow: hi gh] . The equivalent 'between' keyword aso defines a
closed range.

« Half-open ranges that contain the low endpoint but not the high endpoint [| ow: hi gh)

« Half-closed ranges that contain the high endpoint but not the low endpoint (I ow: hi gh]

The next statement shows afilter specifying arange for x and y values of RFID events. The range includes both
endpoints therefore uses[] hard brackets.

nmypackage. Rfi dEvent (x in [100:200], y in [0:100])
Thebet ween keyword is equivalent for closed ranges. The same filter using the bet ween keyword is:

nmypackage. Rf i dEvent (x between 100 and 200, y between 0 and 50)

Thenot keyword can be used to determine if avalue falls outside a given range:

nypackage. Rfi dEvent (x not in [0:100])

The equivalent statement using the bet ween keyword is:

nmypackage. Rfi dEvent (x not between 0 and 100)

© 2007 EsperTech Inc. - Esper2.0.0 29

EPL Reference: Clauses

Filtering Sets of Values
Thei n keyword for filter criteria determines if agiven value matches any value in alist of values.
In this example we are interested in RFID events where the category matches any of the given values:

nmypackage. Rfi dEvent (category in (' Perishable', 'Container'))

By using thenot in keywords we can filter events with a property value that does not match any of the values
inalist of values:

nypackage. Rf i dEvent (category not in (' Household', 'Electrical'))

Filter Limitations

The following restrictions apply to filter criteria:

* Range and comparison operators require the event property to be of a numeric type.
» Aggregation functions are not allowed within filter expressions.
e Theprev previous event function and the pri or prior event function cannot be used in filter expressions.

4.4.2. Pattern-based Event Streams

Event pattern expressions can also be used to specify one or more event streams in an EPL statement. For pat-
tern-based event streams, the event stream definition stream_def consists of the keyword pat t er n and a pattern
expression in brackets []. The syntax for an event stream definition using a pattern expression is below. Asin
filter-based event streams, an optional list of views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view spec] [.view spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade events. The ex-
ample tags stock tick events with the name "tick" and trade events with the name "trade”.

select * frompattern [every tick=StockTi ckEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types. The generated
events resemble a map with "tick” and "trade" keys. For stock tick events, the "tick” key value is the underlying
stock tick event, and the "trade” key value isanull value. For trade events, the "trade" key value is the underly-
ing trade event, and the "tick" key valueisanull value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock tick or trade
events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sun(tick.price) + sunm(trade.price) as total
frompattern [every tick=StockTi ckEvent or every trade=TradeEvent].w n:tine(30 sec)

Note that in the statement above ti ckPrice and tradepPri ce can each be null values depending on the event
processed. Therefore, an aggregation function such assun(ti ck. price + trade. price)) would aways return
null values as either of the two price properties are always a null value for any event matching the pattern. Use
the coalesce function to handle null values, for example: sun{coal esce(tick.price, 0) + co-
al esce(trade.price, 0)).

© 2007 EsperTech Inc. - Esper2.0.0 30

EPL Reference: Clauses

4.4.3. Specifying Views

Views are used to derive or aggregate data. Views can be staggered onto each other. See the section Chapter 8,
EPL Reference: Views on the views available.

Views can optionally take one or more parameters. These parameters can consist of primitive constants such as
String, boolean or numeric types. Arrays are also supported as a view parameter types.

The below example serves to show views and staggering of views. It uses a car location event that contains in-
formation about the location of a car on ahighway.

The first view st d: groupby(carld) groups car location events by car id. The second view wi n: | engt h(4)
keeps a length window of the 4 last events, with one length window for each car id. The next view
std: groupby(expressway, direction, segnment) groupseach event by its expressway, direction and segment
property values. Again, the grouping is done for each car id considering the last 4 events only. The last view
std: si ze() isused to report the number of events. Thus the below example reports the number of events per
car id and per expressway, direction and segment considering the last 4 events for each car id only.

sel ect * from CarLocEvent. std: groupby(carld).w n:length(4).

st d: groupby(expressway, direction, segnment).std:size()

4.4.4. Using the Stream Name

Your f romclause may assign a name to each stream. This assigned stream name can serve any of the following
pUrposes.

First, the stream name can be used to disambiguate property names. The st r eam nane. pr operty_name Syntax
uniquely identifies which property to select if property names overlap between streams. Here is an example;

sel ect prod. productld, ord.productld from Product Event as prod, O derEvent as ord

Second, the stream name can be used with a wildcard (*) character to select events in a join, or assign new
names to the streamsin ajoin:

/1 Sel ect ProductEvent only
sel ect prod.* from Product Event as prod, OrderEvent

/1 Assign colum nanmes 'product’ and 'order' to each event
sel ect prod.* as product, ord.* as order from Product Event as prod, OrderEvent as ord

Further, the stream name by itself can occur in any expression: The engine passes the event itself to that expres-
sion. For example, the engine passes the ProductEvent and the OrderEvent to the user-defined function 'check-
Order":

sel ect prod. productld, MyFunc.checkOr der(prod, ord)
from Product Event as prod, OrderEvent as ord

Last, you may invoke an instance method on each event of a stream, and pass parameters to the instance meth-
od aswell. Instance method calls are allowed anywhere in an expression.

The next statement demonstrates this capability by invoking a method 'computeTota' on OrderEvent events
and a method 'getMultiplier' on ProductEvent events:

sel ect ord. comput eTotal (prod. getMultiplier()) from Product Event as prod, OrderEvent as ord

© 2007 EsperTech Inc. - Esper2.0.0 31

EPL Reference: Clauses

4.5. Specifying Search Conditions: the Where Clause

Thewher e clause is an optional clause in EPL statements. Viathe wher e clause event streams can be joined and
events can befiltered.

Comparison operators=, <, >, >=, <= I= <> is null, is not null andlogica combinations via
and and or are supported in the wher e clause. The wher e clause can also introduce join conditions as outlined in
Section 4.10, “Joining Event Streams’. wher e clauses can also contain expressions. Some examples are listed
below.

..where fraud.severity = 5 and amount > 500

..where (orderltemorderld is null) or (orderltemclass != 10)
...where (orderltemorderld = null) or (orderltemclass <> 10)
..where itenCount / packageCount > 10

4.6. Aggregates and grouping: the Group-by Clause and the
Having Clause

4.6.1. Using aggregate functions

The aggregate functions aresum avg, count, max, nmin, nedian, stddev, avedev.YOU Can use aggregate
functions to calculate and summarize data from event properties. For example, to find out the total price for all
stock tick eventsin the last 30 seconds, type:

sel ect sun(price) from StockTi ckEvent.w n:tinme(30 sec)

Hereisthe syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to al events in an event stream window or other view, or to one or more
groups of events. From each set of events to which an aggregate function is applied, Esper generates a single
value.

Expr essi on is usualy an event property name. However it can also be a constant, function, or any combination
of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the price was
doubled:

sel ect avg(price * 2) from StockTi ckEvent.w n:time(30 seconds)

You can use the optional keyword di st i nct with all aggregate functions to eliminate duplicate values before
the aggregate function is applied. The optional keyword al I which performs the operation on all events is the
defaullt.

Y ou can use aggregation functions in asel ect clause and in a havi ng clause. Y ou cannot use aggregate func-
tionsin awher e clause, but you can use the wher e clause to restrict the events to which the aggregate is applied.
The next query computes the average and sum of the price of stock tick events for the symbol IBM only, for the
last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sum(price) as sunPrice

© 2007 EsperTech Inc. - Esper2.0.0 32

EPL Reference: Clauses

from St ockTi ckEvent . wi n: | engt h(10)
wher e synbol =' | BM

In the above example the length window of 10 elements is not affected by the wher e clause, i.e. all events enter
and leave the length window regardless of their symbol. If we only care about the last 10 IBM events, we need
to add filter criteria as below.

select 'IBMstats' as title, avg(price) as avgPrice, sum(price) as sunPrice
from St ockTi ckEvent (synbol =" | BM). wi n: | engt h(10)
where synbol =' | BM

Y ou can use aggregate functions with any type of event property or expression, with the following exceptions:

1. Youcanusesum avg, nedian, stddev, avedev with numeric event propertiesonly

Esper ignores any null values returned by the event property or expression on which the aggregate function is
operating, except for the count (*) function, which counts null values as well. All aggregate functions return
null if the data set contains no events, or if all events in the data set contain only null values for the aggregated
expression.

4.6.2. Organizing statement results into groups: the Group-by clause

Thegroup by clauseisoptional in all EPL statements. The group by clause divides the output of an EPL state-
ment into groups. Y ou can group by one or more event property names, or by the result of computed expres-
sions. When used with aggregate functions, gr oup by retrieves the calculations in each subgroup. Y ou can use
group by without aggregate functions, but generally that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in the last 30
seconds:

sel ect symbol, sun(price) from StockTi ckEvent.win:time(30 sec) group by symbol

The syntax of the gr oup by clauseis:

group by arregate_free_expression [, arregate free_expression] [, ...]

Esper places the following restrictions on expressionsin the gr oup by clause:

1. Expressionsinthegroup by cannot contain aggregate functions
2. Event properties that are used within aggregate functions in the sel ect clause cannot also be used in a
group by expression

Y ou can list more then one expression in the group by clause to nest groups. Once the sets are established with
group by the aggregation functions are applied. This statement posts the median volume for all stock tick
events in the last 30 seconds per symbol and tick data feed. Esper posts one event for each group to statement
listeners:

sel ect synbol, tickDataFeed, medi an(vol une)
from St ockTi ckEvent . wi n: ti me(30 sec)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also listed in the
group by clause. The statement thus follows the SQL standard which prescribes that non-aggregated event
propertiesinthe sel ect list must match the gr oup by columns.

© 2007 EsperTech Inc. - Esper2.0.0 33

EPL Reference: Clauses

Esper also supports statements in which one or more event properties in the sel ect list are not listed in the
group by clause. The statement below demonstrates this case. It calcul ates the standard deviation for the last 30
seconds of stock ticks aggregating by symbol and posting for each event the symbol, tickDataFeed and the
standard deviation on price.

sel ect synbol, tickDataFeed, stddev(price) from StockTi ckEvent.w n:tinme(30 sec) group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces one event per
incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the group by clause are not
listed in the sel ect list. This is an example that calculates the mean deviation per synbol and ti ckDat aFeed
and posts one event per group with synbol and mean deviation of price in the generated events. Since tick-
DataFeed is not in the posted results, this can potentially be confusing.

sel ect synbol, avedev(price)
from St ockTi ckEvent . wi n: ti me(30 sec)
group by synbol, tickDataFeed

Expressions are also allowed in the group by list:

sel ect synmbol * price, count(*) from StockTi ckEvent.w n:tine(30 sec) group by synmbol * price

If the group by expression resulted in a null value, the null value becomes its own group. All null values are
aggregated into the same group. If you are using the count (expr essi on) aggregate function which does not
count null values, the count returns zero if only null values are encountered.

Y ou can use awher e clausein a statement with group by. Eventsthat do not satisfy the conditions in the wher e
clause are eliminated before any grouping is done. For example, the statement below posts the number of stock
ticksin the last 30 seconds with avolume larger then 100, posting one event per group (Symbol).

sel ect synbol, count(*) from StockTi ckEvent.w n:time(30 sec) where volunme > 100 group by synbol

4.6.3. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng clause sets condi-
tionsfor the gr oup by clause in the same way wher e sets conditions for the sel ect clause, except wher e cannot
include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total price per symbol
for the last 30 seconds of stock tick events for only those symbols in which the total price exceeds 1000. The
havi ng clause eliminates all symbolswhere the total priceis egqual or less then 1000.

sel ect synbol, sum(price)

from St ockTi ckEvent.win:ti me(30 sec)
group by synbol

havi ng sum(price) > 1000

To include more then one condition in the havi ng clause combine the conditions with and, or or not. Thisis
shown in the statement below which selects only groups with a total price greater then 1000 and an average
volume less then 500.

sel ect synbol, sun(price), avg(vol une)
from St ockTi ckEvent . wi n: ti me(30 sec)
group by synbol

© 2007 EsperTech Inc. - Esper2.0.0 34

EPL Reference: Clauses

havi ng sum(price) > 1000 and avg(vol une) < 500

Esper places the following restrictions on expressionsin the havi ng clause:

1. Any expressionsthat contain aggregate functions must also occur in the sel ect clause

A statement with the havi ng clause should also have a group by clause. If you omit gr oup- by, al the events
not excluded by the wher e clause return as a single group. In that case havi ng acts like awher e except that hav-
i ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The example below
posts events where the price is less then the current running average price of all stock tick eventsin the last 30
seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent . wi n: time(30 sec)
havi ng price < avg(price)

4.6.4. How the stream filter, Where, Group By and Having clauses interact

When you include filters, the wher e condition, the group by clause and the havi ng condition in an EPL state-
ment the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is used). The
filter discards any events not meeting filter criteria.

2. Thewher e clause excludes events that do not meet its search condition.

3. Aggregate functionsin the select list calculate summary values for each group.

4. Thehavi ng clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and havi ng clauses in one statement with a
sel ect clause containing an aggregate function.

sel ect tickDataFeed, stddev(price)

from St ockTi ckEvent (synbol ="' | BM). wi n: | engt h(10)
where vol une > 1000

group by tickDat aFeed

havi ng stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream st ockTi ckEvent . In the example above only
events with symbol IBM enter the length window over the last 10 events, all other events are simply discarded.
The wher e clause removes any events posted by the length window (events entering the window and event
leaving the window) that do not match the condition of volume greater then 1000. Remaining events are ap-
plied to the st ddev standard deviation aggregate function for each tick data feed as specified in the group by
clause. Each ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
passfor ti ckDat aFeed groups with a standard deviation of price greater then 0.8.

4.6.5. Comparing the Group By clause and the std:groupby view

The group by clause as well as the built-in std:groupby view are similar in their ability to group events. This
section explains the key differencesin their behavior and use.

The group by clause works together with aggregation functions in your statement to produce an aggregation
result per group. In greater detail, this means that when a new event arrives, the engine applies the expressions
in the group by clause to determine a grouping key. If the engine has not encountered that grouping key before

© 2007 EsperTech Inc. - Esper2.0.0 35

EPL Reference: Clauses

(anew group), the engine creates a set of new aggregation results for that grouping key and performs the ag-
gregation changing that new set of aggregation results. If the grouping key points to an existing set of prior ag-
gregation results (an existing group), the engine performs the aggregation changing the prior set of aggregation
results for that group.

The std:groupby view is a built-in view that also groups events. The view is described in greater detail in Sec-
tion 8.2.2, “Group-By (std:groupby)”. Its primary use is to create a separate data window per group, or more
generally to create separate instances of all its sub-views for each grouping key encountered.

The next example shows two queries that produce equivalent results. The query using the group by clause is
generally preferable as is easier to read. The second form introduces the st at : uni view which computes uni-
variate statistics for agiven property:

sel ect synbol, avg(price) from StockTi ckEvent group by synbol
/1l ... is equivalent to ...
sel ect synbol, average from StockTi ckEvent. std: gr oupby(synbol). stat: uni (price)

The next example shows two queries that are NOT equivalent as the length window is ungrouped in the first
query, and grouped in the second query:

sel ect synmbol, sunm(price) from StockTi ckEvent.w n: | ength(10) group by synbol
/1 ... NOT equivalent to ...
sel ect synbol, sun{price) from StockTi ckEvent. std: groupby(synbol).w n: | ength(10)

The key difference between the two statementsisthat in the first statement the length window is ungrouped and
appliesto al events regardless of group. While in the second query each group getsits own instance of alength
window. For example, in the second query events arriving for symbol "ABC" get alength window of 10 events,
and events arriving for symbol "DEF" get their own length window of 10 events.

4.7. Stabilizing and Limiting Output: the Output Clause

4.7.1. Output Clause Options

Theout put clause isoptional in Esper and is used to control or stabilize the rate at which events are output. For
example, the following statement outputs, every 60 seconds, the total price for al orders in the 30-minute time
window:

sel ect sun(price) from O derEvent.win:tine(30 mn) output snapshot every 60 seconds

Hereisthe syntax for output rate limiting:

output [all | first | last | snapshot] every output_rate [mnutes | seconds | events]

The al I keyword is the default and specifies that all events in a batch should be output, each incoming row in
the batch producing an output row. Note that for statements that group via the group by clause, the al |
keyword provides specia behavior as below.

The first keyword specifies that only the first event in an output batch is to be output. Using the first
keyword instructs the engine to output the first matching event as soon as it arrives, and then ignores matching
events for the time interval or number of events specified. After the time interval elapsed, or the number of
matching events has been reached, the next first matching event is output again and the following interval the
engine again ignores matching events.

© 2007 EsperTech Inc. - Esper2.0.0 36

EPL Reference: Clauses

Thel ast keyword specifies to only output the last event at the end of the given time interval or after the given
number of matching events have been accumulated. Again, for statements that group via the group by clause
thel ast keyword provides special behavior as below.

The snapshot keyword indicates that the engine output current computation results considering all events as
per views specified and/or current aggregation results. While the other keywords control how a batch of events
between output intervals is being considered, the snapshot keyword outputs all current state of a statement in-
dependent of the last batch. It's output is equivalent to thei t er at or method provided by a statement.

The output_rate is the frequency at which the engine outputs events. It can be specified in terms of time or
number of events. The value can be a number to denote a fixed output rate, or the name of a variable whose
value isthe output rate. By means of a variable the output rate can be controlled externally and changed dynam-
ically at runtime.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert and remove
stream output for the various output rate limiting keywords.

Thetimeinterval can also be specified in terms of minutes; the following statement isidentical to the first one.

select * from StockTi ckEvent.wi n: | ength(5) output every 1.5 mnutes

A second way that output can be stabilized is by batching events until a certain number of events have been col-
lected. The next statement only outputs when either 5 (or more) new or 5 (or more) old events have been
batched.

select * from StockTi ckEvent.wi n:tinme(30 sec) output every 5 events

Additionally, event output can be further modified by the optional 1 ast keyword, which causes output of only
the last event to arrive into an output batch.

sel ect * from St ockTi ckEvent.win:ti me(30 sec) output |ast every 5 events

Using thefirst keyword you can be notified at the start of the interval. The allows to watch for situations such
as arate falling below athreshold and only be informed every now and again after the specified output interval,
but be informed the moment it first happens.

select * from TickRate.win:tinme(30 seconds) where rate<100 output first every 60 seconds

4.7.2. Aggregation, Group By, Having and Output clause interaction

Remove stream events can also useful in conjunction with aggregation and output rate limiting: When the en-
gine posts remove stream events for fully-aggregated queries, it presents the aggregation state before the expir-
ing event leaves the data window. Y our application can thus easily obtain a delta between the new aggregation
value and the prior aggregation value.

The engine evaluates the having-clause at the granularity of the data posted by views. That is, if you utilize a
time window and output every 10 events, the havi ng clause applies to each individual event or events entering
and leaving the time window (and not once per batch of 10 events).

The out put clause interacts in two ways with the gr oup by and havi ng clauses. First, in the out put every n
events case, the number n refers to the number of events arriving into the group by cl ause. That is, if the
group by clause outputs only 1 event per group, or if the arriving events don't satisfy the havi ng clause, then
the actual number of events output by the statement could be fewer than n.

© 2007 EsperTech Inc. - Esper2.0.0 37

EPL Reference: Clauses

Second, the |l ast and al I keywords have specia meanings when used in a statement with aggregate functions
and the gr oup by clause:

» When no keyword is specified, the engine produces an output row for each row in the batch.

* Theall keyword (the default) specifies that the most recent data for all groups seen so far should be output,
whether or not these groups' aggregate values have just been updated

e Thelast keyword specifies that only groups whose aggregate values have been updated with the most re-
cent batch of events should be output.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert and remove
stream output for aggregation and group-by.

By adding an output rate limiting clause to a statement that contains a group by clause we can control output of
groups to obtain one row for each group, generating an event per group at the given output frequency:

sel ect synbol, sum(price) from StockTi ckEvent group by synbol output all every 5 seconds

4.7.3. Runtime Considerations

Output rate limiting provides output events to your application in regular intervals. Between intervals, the en-
gine uses a buffer to hold events until the output condition is reached. If your application has high-volume
streams, you may need to be mindful of the memory needs for output rates.

The out put clause with the snapshot keyword does not require a buffer, al other output keywords do consume
memory until the output condition is reached.

4.8. Sorting Output: the Order By Clause

Theorder by clauseis optional. It is used for ordering output events by their properties, or by expressions in-
volving those properties. .

For example, the following statement outputs batches of 5 or more stock tick events that are sorted first by price
ascending and then by volume ascending:

sel ect synbol from StockTi ckEvent.w n:tine(60 sec)
out put every 5 events
order by price, volune

Hereisthe syntax for the or der by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

If theorder by clauseisabsent then the engine still makes certain guarantees about the ordering of output:

» |f the statement is not a join, does not group via group by clause and does not declare grouped data win-
dows viast d: gr oupby Vview, the order in which events are delivered to listeners and through theii t er at or
pull API isthe order of event arrival.

e |If the statement is a join or outer join, or groups, then the order in which events are delivered to listeners
and through thei t er at or pull APl isnot well-defined. Usethe or der by clause if your application requires
eventsto be delivered in awell-defined order.

Esper places the following restrictions on the expressionsin the or der by clause:

© 2007 EsperTech Inc. - Esper2.0.0 38

EPL Reference: Clauses

1. All aggregate functions that appear in the or der by clause must also appear in the sel ect expression.

Otherwise, any kind of expression that can appear in the sel ect clause, as well as any alias defined in the se-
I ect clause, isalso valid in the order by clause.

4.9. Merging Streams and Continuous Insertion: the Insert Into
Clause

Theinsert into clause is optional in Esper. The clause can be specified to make the results of a statement
available as an event stream for use in further statements, or to insert events into a named window. The clause
can a'so be used to merge multiple event streams to form a single stream of events.

The syntax for thei nsert into clauseisasfollows:

insert [istream| rstrean] into event_streamnane [(property_nane [, property nane])]

Thei st r eam(default) and r st r eamkeywords are optional. If no keyword or thei st r eamkeyword is specified,
the engine supplies the insert stream events generated by the statement. The insert stream consists of the events
entering the respective window(s) or stream(s). If the r st reamkeyword is specified, the engine supplies the re-
move stream events generated by the statement. The remove stream consists of the events leaving the respect-
ive window(s).

The event _stream nane is an identifier that names the event stream (and also implicitly names the types of
events in the stream) generated by the engine. The identifier can be used in further statements to filter and pro-
cess events of that event stream. Thei nsert into clause can consist of just an event stream name, or an event
stream name and one or more property names.

The engine aso allows listeners to be attached to a statement that contain ani nsert into clause. Listeners re-
ceive all events posted to the event stream.

To merge event streams, smply use the same event _st ream nane identifier in all EPL statements that merge
their result event streams. Make sure to use the same number and names of event properties and event property
types match up.

Esper places the following restrictionson thei nsert i nt o clause:

1. The number of elements in the sel ect clause must match the number of elements in the i nsert into
clauseif the clause specifies alist of event property names

2. If the event stream name has already been defined by a prior statement or configuration, and the event
property names and/or event types do not match, an exception isthrown at statement creation time.

The following sample insertsinto an event stream by name CombinedEvent:

insert into Conbi nedEvent

sel ect A custonerld as custld, Atinmestanp - B.tinmestanp as | atency
fromEventAwin:tine(30 min) A, EventB.win:tine(30 mn) B

where A.txnld = B.txnld

Each event in the Conbi nedEvent event stream has two event properties named "custld" and "latency". The
events generated by the above statement can be used in further statements, such as shown in the next statement:

sel ect custld, sun(l atency)
from Conbi nedEvent . wi n: ti ne(30 m n)
group by custld

© 2007 EsperTech Inc. - Esper2.0.0 39

EPL Reference: Clauses

The example statement below shows the alternative form of thei nsert i nt o clause that explicitly defines the
property namesto use.

insert into Combi nedEvent (custld, |atency)
sel ect A custonerld, A tinestanp - B.tinestanp

The r st reamkeyword can be useful to indicate to the engine to generate only remove stream events. This can
be useful if we want to trigger actions when events leave a window rather then when events enter a window.
The statement below generates Conbi nedEvent events when EventA and EventB leave the window after 30
minutes (1800 seconds).

insert rstreaminto Conbi nedEvent
sel ect A custonerld as custld, Atinmestanp - B.tinmestanp as | atency
fromEventAwin:tine(30 min) AL EventB.win:tine(30 mn) B
where A.txnld = B.txnld

Theinsert into clause can be used in connection with patterns to provide pattern results to further statements
for analysis:

insert into ReUpEvent
select linkUp.ip as ip
frompattern [every |inkDown=Li nkDownEvent -> |inkUp=Li nkUpEvent (i p=li nkDown. i p)]

Merging Streams By Event Type

Theinsert into clause allows to merge multiple event streams into a event single stream. The clause names
an event stream to insert into by specifing an event_stream name. The first statement that inserts into the
named stream defines the stream's event types. Further statements that insert into the same event stream must
match the type of eventsinserted into the stream as declared by the first statement.

One approach to merging event streams specifies individual colum names either in the sel ect clause or in the
insert into clause of the statement. This approach has been shown in earlier examples.

Another approach to merging event streams specifies the wildcard (*) in the sel ect clause (or the stream wild-
card) to select the underlying event. The events in the event stream must then have the same event type as gen-
erated by the f r omclause.

Assume a statement creates an event stream named MergedStream by selecting OrderEvent events:

insert into MergedStream select * from O der Event

A statement can use the stream wildcard selector to select only OrderEvent eventsin ajoin:

insert into MergedStream select ord.* fromltenScanEvent, O derEvent as ord

And a statement may also use an application-supplied user-defined function to convert eventsto OrderEvent in-
stances:

insert into MergedStream sel ect MyLib.convert(iten) fromltenScanEvent as item

Esper specificaly recognizes a conversion function: A conversion function must be the only selected column,
and it must return either a Java object or j ava. uti | . Map.

© 2007 EsperTech Inc. - Esper2.0.0 40

EPL Reference: Clauses

4.10. Joining Event Streams

Two or more event streams can be part of the f r om clause and thus both (all) streams determine the resulting
events. The wher e clause lists the join conditions that Esper uses to relate events in the two or more streams.
Reference and historical data such as stored in your relational database, and data returned by a method invoca-
tion, can aso be included in joins. Please see Section 4.14, “Joining Relational Data via SQL” and Sec-
tion 4.15, “ Joining Non-Relational Data via Method Invocation” for details.

Each point in time that an event arrives to one of the event streams, the two event streams are joined and output
events are produced according to the wher e clause.

This example joins 2 event streams. The first event stream consists of fraud warning events for which we keep
the last 30 minutes (1800 seconds). The second stream is withdrawal events for which we consider the last 30
seconds. The streams are joined on account number.

sel ect fraud. account Nunber as accnt Num fraud.warning as warn, W thdraw. anount as anount,
max(fraud. ti nestanp, withdraw timestanp) as timestanp, 'w thdrawl Fraud' as desc
from com espertech. esper. exanpl e. at m FraudWar ni ngEvent . wi n: ti me(30 mn) as fraud,
com espertech. esper. exanpl e. at m Wt hdrawal Event . wi n: ti ne(30 sec) as withdraw
wher e fraud. account Number = w t hdr aw. account Nunber

Joins can also include one or more pattern statements as the next example shows:

sel ect * from FraudWarni ngEvent.win:tinme(30 nin) as fraud,
pattern [every w=Wt hdrawal Event -> Pl NChangeEvent (acct=w.acct)] as wi thdraw
where fraud. account Nunber = withdraw. w. account Nunber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern consists of every
withdrawal event that is followed by a PIN change event for the same account number. It joins the two event
streams on account number.

In ajoin and outer join, if your statement does not declare a data window view or other view onto a stream,
then the engine retains all events for the stream equivalent to the keep-all data window.

The next example joins all FraudWarningEvent events that arrived since the statement was started, with the last
20 seconds of PINChangeEvent events:

sel ect * from FraudWar ni ngEvent as fraud, PINChangeEvent.w n:time(20 sec) as pin
where fraud. account Nunber = pin.account Nunber

4.11. Outer Joins

Esper supports left outer joins, right outer joins and full outer joins between an unlimited number of event
streams. Outer joins can also join reference and historical data as explained in Section 4.14, “ Joining Relational
Datavia SQL", aswell asjoin data returned by a method invocation as outlined in Section 4.15, “ Joining Non-
Relational Data via Method Invocation”.

The keywordsieft, right andfull control the type of the join between two streams. The on clause specifies
one or more properties that join each stream. The synopsisis as follows:

...from streamdef [as nane]
left|right|full outer join stream def
on property = property [and property = property ...]
[left|right|full outer join streamdef on ...]...

© 2007 EsperTech Inc. - Esper2.0.0 41

EPL Reference: Clauses

If the outer join is a left outer join, there will be an output event for each event of the stream on the left-hand
side of the clause. For example, in the left outer join shown below we will get output for each event in the
stream RfidEvent, even if the event does not match any event in the event stream OrderList.

select * from RfidEvent.win:tinme(30 sec) as rfid
left outer join
Order Li st. win: | ength(10000) as orderli st
on rfid.itemd = orderList.itenmd

Similarly, if thejoin is a Right Outer Join, then there will be an output event for each event of the stream on the
right-hand side of the clause. For example, in the right outer join shown below we will get output for each event
in the stream OrderList, even if the event does not match any event in the event stream RfidEvent.

select * from RfidEvent.win:time(30 sec) as rfid
right outer join
OrderList.w n:length(10000) as orderli st
on rfid.itemd = orderList.itemd

For al types of outer joins, if the join condition is not met, the select list is computed with the event properties
of the arrived event while all other event properties are considered to be null.

The last type of outer join isafull outer join. In afull outer join, each point in time that an event arrives to one
of the event streams, one or more output events are produced. In the example below, when either an RfidEvent
or an OrderList event arrive, one or more output event is produced. The next example shows a full outer join
that joins on multiple properties:

select * from RfidEvent.win:tinme(30 sec) as rfid
full outer join
OrderList.w n:length(10000) as orderli st
on rfid.itemd = orderList.itemd and rfid.assetld = orderlList.assetld

Finally, this example outer joins multiple streams. Here the RfidEvent stream is outer joined to both Product-
Name and L ocationDescription via left outer join:

select * from RfidEvent.win:tinme(30 sec) as rfid
|l eft outer join ProductName.w n: keepal | () as refprod
on rfid.productld = refprod. prodld
left outer join LocationDescription.w n:keepall () as refdesc
on rfid.location = refdesc.locld

4.12. Unidirectional Joins and Outer Joins

In ajoin or outer join your statement lists multiple event streams, views and/or patternsin the f romclause. As
events arrive into the engine, each of the streams (views, patterns) provides insert and remove stream events.
The engine evaluates each insert and remove stream event provided by each stream, and joins or outer joins
each event against data window contents of each stream, and thus generates insert and remove stream join res-
ults.

The direction of the join execution depends on which stream or streams are currently providing an insert or re-
move stream event for executing the join. A join is thus multidirectional, or bidirectional when only two
streams are joined. A join can be made unidirectional if your application does not want new results when events
arrive on a given stream or streams.

The uni di rectional keyword can be used in the from clause to identify a single stream that provides the
events to execute the join. If the keyword is present for a stream, all other streams in the f r om clause become

© 2007 EsperTech Inc. - Esper2.0.0 42

EPL Reference: Clauses

passive streams. When events arrive or leave a data window of a passive stream then the join does not generate
join results.

For example, consider a use case that requires us to join stock tick events (TickEvent) and news events
(NewsEvent). Theuni di recti onal keyword allows to generate results only when TickEvent events arrive, and
not when NewsEvent arrive or leave the 10-second time window:

select * from Ti ckEvent unidirectional, NewsEvent.wi n:time(10 sec)
where tick.synbol = news.synbol

The following restrictions apply to unidirectiona joins:

1. Theunidirectional keyword can only be specified for asingle stream in the f r omclause.

2. Receiving data from a unidirectional join viathe pull API (i t erat or method) is not allowed. Thisis be-
cause the engine holds no state for the single stream that provides the events to execute the join.

3. The stream that declares the uni di recti onal keyword cannot declare a data window view or other view
for that stream, since remove stream events are not processed for the single stream.

4.13. Subqueries

A subguery is a sel ect within another statement. Esper supports subgueries in the sel ect clause and in the
wher e clause of EPL statements. Subqueries provide an aternative way to perform operations that would other-
wise require complex joins. Subgueries can also make statements more readabl e then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery, the inner query is
not correlated to the outer query. Here is an example simple subquery within asel ect clause:

sel ect assetld, (select zone from ZoneC osed. std: | astevent) as |astC osed from RFlI DEvent

If the inner query is dependent on the outer query, we will have a correlated subquery. An example of a correl-
ated subquery is shown below. Notice the where clause in the inner query, where the condition involves a
stream from the outer query:

select * from Rfi dEvent as RFID where 'Dock 1' =
(sel ect name from Zones. std: uni que(zonel d) where zoneld = RFID. zonel d)

The example above shows a subquery in the wher e clause. The statement selects RFID eventsin which the zone
name matches a string constant based on zone id. The statement uses the view st d: uni que to guarantee that
only the last event per zone id is held from processing by the subquery.

The next example is a correlated subquery within asel ect clause. In this statement the sel ect clause retrieves
the zone name by means of a subquery against the Zones set of events correlated by zoneid:

sel ect zoneld, (select nane from Zones. std: uni que(zonel d)
where zoneld = RFID. zoneld) as nanme from RFI DEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns anul | value as the
subquery result. To limit the number of events returned by a subquery consider using one of the views
std: | astevent, std: uni que and st d: gr oupby.

Thesel ect clause of asubquery also allows wildcard selects, which return as an event property the underlying
event object of the event type as defined in the f r omclause. An example:

select (select * from MarketData.std:|lastevent()) as nd
frompattern [every tiner:interval (10 sec)]

© 2007 EsperTech Inc. - Esper2.0.0 43

EPL Reference: Clauses

The output events to the statement above contain the underlying MarketData event in a property named "md".
The statement populates the last MarketData event into a property named "md" every 10 seconds following the
pattern definition, or populatesanul I valueif no MarketData event has been encountered so far.

Aggregation functions may be used in the sel ect clause of the subselect as this example outlines:

sel ect * from Market Dat a
where price > (select nmax(price) from MarketDat a(synbol =' GOOG). std: | astevent())

As the sub-select expression is evaluated first, the query above actually never fires for the GOOG symbol, only
for other symbols that have a price higher then the current maximum for GOOG. As a sidenote, thei nsert i n-
t o clause can also be handy to compute aggregation results for use in multiple subqueries.

The following restrictions apply to subqueries:

1. The subquery stream definition must define a data window or other view to limit subquery results, redu-
cing the number of events held for subquery execution

2. Subqueries can only consist of asel ect clause, afromclause and awher e clause. The group by and hav-
i ng clauses, aswell asjoins, outer-joins and output rate limiting are not permitted within subgueries.

3. If using aggregation functions in a subquery, note these limitations:

a. None of the properties of the correlated stream(s) can be used within aggregation functions.

b. The properties of the subselect stream must al be within aggregation functions.

c. Thewhere clause cannot be used to correlate between the subselect stream and the enclosing stream,
since the engine would otherwise be forced to re-evaluate the aggregation considering al events in
the subsel ect-stream data window, which would likely be a very expensive operation.

Performance of your statement containing one or more subqueries principally depends on two parameters. First,
if your subguery correlates one or more columns in the subquery stream with the enclosing statement's streams
via equals '=', the engine automatically builds the appropriate indexes for fast row retrieval based on the key
values correlated (joined). The second parameter is the number of rows found in the subquery stream and the
complexity of the filter criteria (wher e clause), as each row in the subquery stream must evaluate against the
wher e clausefilter.

4.13.1. The 'exi sts' keyword

Theexi sts condition is considered "to be met" if the subquery returns at least onerow. Thenot exi sts condi-
tion is considered true if the subquery returns no rows.

Let'stake alook at asimple example. The following is an EPL statement that uses the exi st s condition:

sel ect assetld from RFl DEvent as RFID
where exists (select * from Asset. std: uni que(assetld) where assetld = RFID. asset | d)

This select statement will return all RFID events where there is at least one event in Assets unique by asset id
with the same asset id.

4.13.2. The 'in' keyword

The i n subquery condition is true if the value of an expression matches one or more of the values returned by
the subquery. Consequently, the not i n condition is true if the value of an expression matches none of the val-
ues returned by the subquery.

© 2007 EsperTech Inc. - Esper2.0.0 44

EPL Reference: Clauses

The next statement demonstrates the use of the i n subquery condition:

sel ect assetld from RFl DEvent as RFID
where zone in (select zone from ZoneUpdate.win:tine(10 m n) where status = 'cl osed')

The above statement demonstrated the i n subquery to select RFID events for which the zone status is in a
closed state.

4.14. Joining Relational Data via SQL

This chapter outlines how reference data and historical datathat are stored in a relational database can be quer-
ied via SQL within EPL statements.

Esper can join and outer join all types of event streams to stored data. In order for such data sources to become
accessible to Esper, some configuration is required. The Section 10.4.7, “ Relational Database Access’ explains
the required configuration for database accessin greater detail, and includes information on configuring a query
result cache.

Esper does not parse of otherwise inspect your SQL query. Therefore your SQL can make use of any database-
specific SQL language extensions or features that your database provides.

If you have enabled query result caching in your Esper database configuration, Esper retains SQL query results
in cache following the configured cache eviction policy.

Also if you have enabled query result caching in your Esper database configuration and provide EPL wher e
clause and/or on clause (outer join) expressions, then Esper builds indexes on the SQL query results to enable
fast lookup. Thisis especialy useful if your queries return alarge number of rows. For building the proper in-
dexes, Esper inspects the expression found in your EPL query where clause, if present. For outer joins, Esper
also inspects your EPL query on clause. Esper analyzes the EPL on clause and wher e clause expressions, if
present, looking for property comparison with or without logical AND-relationships between properties. When
a SQL query returns rows for caching, Esper builds the appropriate index and lookup strategies for fast row
matching against indexes.

The following restrictions currently apply:

* Only one event stream and one SQL query can be joined; Joins of two or more event streams with an SQL
query are not yet supported.

e Sub-viewson an SQL query are not allowed; That is, one cannot create atime or length window on an SQL
query. However one can usethei nsert i nt o Syntax to make join results available to a further statement.

e Your database software must support JDBC prepared statements that provide statement meta data at com-
pilation time. Most major databases provide this function. A workaround is available for databases that do
not provide this function.

» JDBC drivers must support the getMetadata feature. A workaround is available as below for JDBC drivers
that don't support getting metadata.

The next sections assume basic knowledge of SQL (Structured Query Language).

4.14.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of the database and
aparameterized SQL query. The syntax to usein the f r omclause of an EPL statement is:

sql : dat abase_nane [" paraneterized_sql _query "]

© 2007 EsperTech Inc. - Esper2.0.0 45

EPL Reference: Clauses

The engine uses the database name identifier to obtain configuration information in order to establish a data-
base connection, as well as settings that control connection creation and removal. Please see Section 10.4.7,
“Relational Database Access’ to configure an engine for database access.

Following the database name is the SQL query to execute. The SQL query can contain one or more substitution
parameters. The SQL query string is placed in single brackets|[and]. The SQL query can be placed in either
single quotes (') or double quotes (). The SQL query grammer is passed to your database software unchanged,
allowing you to write any SQL query syntax that your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${ event_property _name} . The engine resolves
event_property_name at statement execution time to the actual event property value supplied by the events in
the joined event stream.

The engine determines the type of the SQL query output columns by means of the result set metadata that your
database software returns for the statement. The actual query results are obtained via the get bj ect on
java.sql . Result Set.

The sample EPL statement below joins an event stream consisting of Cust oner Cal | Event events with the res-
ults of an SQL query against the database named My Cust omer DB and table Cust oner :

sel ect custld, cust_nane from CustonerCall Event,
sql : MyCustonerDB [' sel ect cust_nane from Custoner where cust_id = ${custld} ']

The example above assumes that Cust orer Cal | Event supplies an event property named cust 1 d. The SQL
query selects the customer name from the Customer table. The wher e clause in the SQL matches the Customer
table column cust _i d with the value of cust1d in each cust oner Cal | Event event. The engine executes the
SQL query for each new Cust oner Cal | Event encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event. Else the engine
generates one output event for each row returned by the SQL query. An outer join as described in the next sec-
tion can be used to control whether the engine should generate output events even when the SQL query returns
NO rows.

The next example adds a time window of 30 seconds to the event stream Cust oner Cal | Event . It also renames
the selected properties to customerName and customerld to demonstrate how the naming of columnsin an SQL
query can be used in the sel ect clause in the EPL query. And the example uses explicit stream names via the
as keyword.

sel ect custonerld, custonerNanme from
Cust oner Cal | Event. wi n: ti ne(30 sec) as cce,
sql : MyCust onmer DB ["sel ect cust _id as customerld, cust_name as customnmer Nane from Custoner
where cust_id = ${cce.custld}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events enter the window,
and remove stream (rstream) events as events leave the window. The engine executes the given SQL query for
each cust oner Cal | Event in both the insert stream and the remove stream. As a performance optimization, the
i streamor r st reamkeywordsin the sel ect clause can be used to instruct the engine to only join insert stream
or remove stream events, reducing the number of SQL query executions.

4.14.2. SQL Query and the EPL were Clause

Consider using the EPL wher e clause to join the SQL query result to your event stream. Similar to EPL joins
and outer-joins that join event streams or patterns, the EPL wher e clause provides join criteria between the SQL
query results and the event stream (as a side note, an SQL wher e clause is a filter of rows executed by your

© 2007 EsperTech Inc. - Esper2.0.0 46

EPL Reference: Clauses

database on your database server before returning SQL query results).

Esper analyzes the expression in the EPL wher e clause, if present, and builds the appropriate indexes from that
information at runtime, to ensure fast matching of event stream events to SQL query results, even if your SQL
query returns alarge number of rows. Y our applications must ensure to configure a cache for your database us-
ing Esper configuration, as such indexes are held with regular data in a cache. If you application does not en-
able caching of SQL query results, the engine does not build indexes on cached data.

The sample EPL statement below joins an event stream consisting of O der Event events with the results of an
SQL query against the database named M/Ref DB and table Synbol Ref er ence:

sel ect synbol, synbol Desc from Order Event as orders,
sql : MyRef DB [' sel ect symnbol Desc from Synbol Ref erence'] as reference
where reference. synbol = orders. synbol

Notice how the EPL wher e clause joins the O der Event stream to the Synbol Ref er ence table. In this example,
the SQL query itself does not have a SQL wher e clause and therefore returns al rows from table Synbol Ref er -
ence.

If your application enables caching, the SQL query fires only at the arrival of the first o der Event event. When
the second O der Event arrives, the join execution uses the cached query result. If the caching policy that you
specified in the Esper database configuration evicts the SQL query result from cache, then the engine fires the
SQL query again to obtain a new result and places the result in cache.

If SQL result caching is enabled and your EPL wher e clause, as show in the above example, provides the prop-
erties to join, then the engine indexes the SQL query results in cache and retains the index together with the
query result in cache. Thus your application can benefit from high performance index-based lookups as long as
the SQL query results are found in cache.

4.14.3. Outer Joins With SQL Queries

Y ou can use outer joins to join data obtained from an SQL query and control when an event is produced. Use a
left outer join, such asin the next statement, if you need an output event for each event regardless of whether or
not the SQL query returns rows. If the SQL query returns no rows, the join result populates null values into the
selected properties.

sel ect custld, custNane from
Cust oner Cal | Event as cce
|l eft outer join
sql : MyCust onmer DB ["sel ect cust_id, cust_name as cust Nane
from Custoner where cust_id = ${cce.custld}"] as cq
on cce.custld = cq.cust_id

The statement above always generates at least one output event for each Cust oner Cal | Event, containing all
columns selected by the SQL query, even if the SQL query does not return any rows. Note the on expression
that isrequired for outer joins. The on acts as an additional filter to rows returned by the SQL query.

4.14.4. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use is to poll or re-
quest data from a database at regular intervals. The next statement is an example that shows a pattern that fires
every 5 seconds to query the NewQrder table for new orders:

insert into NewOrders
sel ect orderld, order Anount from
pattern [every tinmer:interval (5 sec)],

© 2007 EsperTech Inc. - Esper2.0.0 47

EPL Reference: Clauses

sql : MyCustonerDB [' sel ect orderld, orderAmount from NewOrders']

4.14.5. JDBC Implementation Overview

The engine translates SQL queriesinto JDBC j ava. sql . Prepar edSt at enent Statements by replacing ${ name}
parameters with '? placeholders. It obtains name and type of result columns from the compiled Pr epar ed-
St at enent meta data when the EPL statement is created.

The engine supplies parameters to the compiled statement via the set Gbj ect method on pr epar edSt at ement .
The engine uses the get bj ect method on the compiled statement Pr epar edSt at ement to obtain column val-
ues.

4.14.6. Oracle Drivers and No-Metadata Workaround

Certain JDBC database drivers are known to not return metadata for precompiled prepared SQL statements.
This can be a problem as metadata is required by Esper. Esper obtains SQL result set metadata to validate an
EPL statement and to provide column types for output events. JDBC drivers that do not provide metadata for
precompiled SQL statements require a workaround. Such drivers do generally provide metadata for executed
SQL statements, however do not provide the metadata for precompiled SQL statements.

Please consult the Chapter 10, Configuration for the configuration options available in relation to metadata re-
trieval.

To obtain metadata for an SQL statement, Esper can aternatively fire a SQL statement which returns the same
column names and types as the actual SQL statement but without returning any rows. This kind of SQL state-
ment is referred to as a sample statement in below workaround description. The engine can then use the sample
SQL statement to retrieve metadata for the column names and types returned by the actual SQL statement.

Applications can provide a sample SQL statement to retrieve metadata via the net adat asql keyword:

sql : dat abase_nane ["paraneterized_sql _query" netadatasql "sql _neta _query"]

The sgl_meta_query must be an SQL statement that returns the same number of columns, the same type of
columns and the same column names as the parameterized_sgl_query, and does not return any rows.

Alternatively, applications can choose not to provide an explicit sample SQL statement. If the EPL statement
does not use the net adat asgl Syntax, the engine applies lexical analysisto the SQL statement. From the lexical
analysis Esper generates a sample SQL statement adding a restrictive clause "where 1=0" to the SQL statement.

Alternatively, applications can add the following tag to the SQL statement: ${ $ESPER- SAMPLE- WHERE} . If the
tag exists in the SQL statement, the engine does not perform lexical analysis and simply replaces the tag with
the SQL wher e clause "where 1=0". Therefore this workaround is applicable to SQL statements that cannot be
correctly lexically analyzed. The SQL text after the placeholder is not part of the sample query. For example:

sel ect mycol from sqgl:nyDB |
"select mycol from nytesttabl e ${$ESPER- SAMPLE- WHERE} where'],

4.15. Joining Non-Relational Data via Method Invocation

Y our application may need to join data that originates from a web service, a distributed cache, an object-ori-
ented database or simply data held in memory by your application. Esper accommodates this need by allowing

© 2007 EsperTech Inc. - Esper2.0.0 48

EPL Reference: Clauses

amethod invocation (or procedure call or function) in the f r omclause of a statement.

Esper can join and outer join all types of event streams to the data returned by your method invocation. In addi-
tion, Esper can be configured to cache the data returned by your method invocations.

The following restrictions currently apply:

« Only one event stream and one method invocation can be joined; That is, in ajoin with a method invocation
only one other event streamis allowed.

» Sub-views on a method invocations are not allowed; That is, one cannot create a time or length window on
a method invocation. However one can use thei nsert i nt o Syntax to make join results available to a fur-
ther statement.

4.15.1. Joining Method Invocation Results

The syntax for amethod invocation in the f r omclause of an EPL statement is:

met hod: cl ass_nane. net hod_nane[(par anet er _expr essi ons) |

The net hod keyword denotes a method invocation. It is followed by a class name and a method name separated
by a dot (.) character. If you have parameters to your method invocation, these are placed in round brackets
after the method name. Any expression is alowed as a parameter, and individual parameter expressions are
separated by a comma. Expressions may also use event properties of the joined stream.

In the sample join statement shown next, the method 'lookupAsset’ provided by class 'MyLookupLib' returns
one or more rows based on the asset id (a property of the AssetMoveEvent) that is passed to the method:

sel ect * from Asset MoveEvent, met hod: M/LookupLi b. | ookupAsset (asset | d)

The following statement demonstrates the use of the wher e clause to join events to the rows returned by a meth-
od invocation, which in this example does not take parameters:

sel ect assetld, assetDesc from Asset MoveEvent as asset,
nmet hod: MyLookuplLi b. get Asset Descri ptions() as desc
where asset.assetid = desc. assetid

Y our method invocation may return zero, one or many rows for each method invocation. If you have caching
enabled through configuration, then Esper can avoid the method invocation and instead use cached results.
Similar to SQL joins, Esper also indexes cached result rows such that join operations based on the wher e clause
can be very efficient, especially if your method invocation returns a large number of rows.

If the time taken by method invocations is critical to your application, you may configure local caches as Sec-

tion 10.4.5, “ Cache Settings for Method Invocations” describes.

4.15.2. Providing the Method

Your application must provide a Java class that exposes a public static method. The method must accept the
same number and type of parameters as listed in the parameter expression list.

If your method invocation returns either no row or only one row, then the return type of the method can be a
Javaclassor ajava. uti| . Map. If your method invocation can return more then one row, then the return type of
the method must be an array of Javaclass or an array of Mvap.

© 2007 EsperTech Inc. - Esper2.0.0 49

EPL Reference: Clauses

If you are using a Java class or an array of Java class as the return type, then the class must adhere to JavaBean
conventions: it must expose properties through getter methods.

If you are using j ava. uti | . Map as the return type or an array of map, then the map should have stri ng-type
keys and object values (Map<String, Object>). When using Map as the return type, your application must
provide a second method that returns property metadata, as the next section outlines.

Y our application method must return either of the following:

1. Anull vaueor an empty array to indicate an empty result (no rows).
2. A Javaobject or Map to indicate a one-row result, or an array that consists of a single Java abject or Map.
3. Anarray of Javaobjects or Map instances to return multiple result rows.

As an example, consider the method 'getAssetDescriptions’ provided by class 'MyLookupLib' as discussed
earlier:

sel ect assetld, assetDesc from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookupLi b. get Asset Descri pti ons() as desc
where asset.assetid = desc. assetid

The 'getAssetDescriptions’ method may return multiple rows and is therefore declared to return an array of the
class'AssetDesc'. The class AssetDesc is a POJO class (not shown here):

public class MyLookupLib {
pubI ic static AssetDesc[] getAssetDescriptions() {

return new AssetDesc[] {...};

}

The example above specifies the full Java class name of the class 'MyLookupLib' class in the EPL statement.
The package name does not need to be part of the EPL if your application imports the package using the auto-
import configuration through the APl or XML, as outlined in Section 10.4.4, “ Class and package imports’.

4.15.3. Using a map Return Type

Your application may returnj ava. util. Map or an array of Map from method invocations. If doing so, your ap-
plication must provide metadata about each row: it must declare the property name and property type of each
Map entry of arow. Thisinformation allows the engine to perform type checking of expressions used within the
Statement.

Y ou declare the property names and types of each row by providing a method that returns property metadata.
The metadata method must follow these conventions:

1. The method name providing the property metadata must have same method name appended by the literal
Met adat a.

2. Themethod must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a map of String property name keys and
java.l ang. d ass property nametypes (Map<String, d ass>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based on asset id

© 2007 EsperTech Inc. - Esper2.0.0 50

EPL Reference: Clauses

and asset code:

sel ect assetld, location, x _coord, y coord from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookupLi b. get Asset Hi st ory(assetld, assetCode) as history

A sample implementation of the class 'MyL ookupLib' is shown below.

public class MyLookupLib {

/1 For each colum in a row, provide the property nane and type

11

public static Map<String, C ass> getAssetHi storyMetadata() {
Map<String, C ass> propertyNames = new HashMap<String, dass>();
propertyNames. put ("l ocati on", String.class);

propertyNanes. put ("x_coord", |nteger.class);
propertyNanes. put ("y_coord", |nteger.class);
return propertyNanes;

}

/'l Lookup rows based on assetld and asset Code

I

public static Map<String, Cbject>[] getAssetHistory(String assetld, String assetCode) {
Map rows = new Map[2]; // this sanple returns 2 rows

for (int i =0; i <2; i++) {
rows[i] = new HashMap();
rows[i].put("location", "soneval ue");
rows[i].put("x_coord", 100);
/1 ... set nmore values for each row

}

return rows;

}

In the example above, the 'getAssetHistoryMetadata method provides the property metadata: the names and
types of properties in each row. The engine calls this method once per statement to determine event typing in-
formation.

The 'getAssetHistory' method returns an array of Map objects that are two rows. The implementation shown
aboveis asimple example. The parameters to the method are the assetld and assetCode properties of the Asset-
MoveEvent joined to the method. The engine calls this method for each insert and remove stream event in As-
setMoveEvent.

To indicate that no rows are found in ajoin, your application method may return either anul | value or an array
of size zero.

4.16. Creating and Using Named Windows

A named window is a global data window that can take part in many statement queries, and that can be inser-
ted-into and deleted-from by multiple statements.

Thecreate w ndow clause declares a new named window. The named window starts up empty. Events must be
inserted into the named window using thei nsert into clause. Events can also be deleted from a named win-
dow viatheon del et e clause.

Events enter the named window by means of i nsert i nto clause of asel ect statement. Events leave a named
window either because the expiry policy of the declared data window removes events from the named window,
or through statements that use the on del et e clause to explicitly delete from a named window.

To query a named window, simply use the window name in the f r omclause of your statement, including state-
ments that contain subqueries, joins and outer-joins.

© 2007 EsperTech Inc. - Esper2.0.0 51

EPL Reference: Clauses

4.16.1. Creating Named Windows: the Create W ndow clause

The create w ndow statement creates a named window by specifying a window name and one or more data
window views, as well as the type of event to hold in the named window.

The syntax for creating a named window is as follows:

create w ndow wi ndow_name. vi ew_speci fications as [select |ist_of_properties fron]j event_type

The window_name you assign to the named window can be any identifier. The name should not already be in
use as an event type or stream name.

The view_specifications are one or more data window views that define the expiry policy for removing events
from the data window. Named windows must explicitly declare a data window view. Thisis required to ensure
that the policy for retaining events in the data window iswell defined. To keep all events, use the keep-all view:
It indicates that the named window should keep al events and only remove events from the named window that
are deleted via the on del et e clause. The view specification can only list data window views, derived-value
views are not allowed since these don't represent an expiry policy.

Thesel ect clauseand list_of properties are optional. If present, they specify the column names and, implicitly
by definition of the event type, the column types of events held by the named window. Expressions other then
column names are not allowed in the sel ect list of properties. Wildcards (*) and wildcards with additional
properties can also be used.

Finally, the event_type is required and provides the name of the event type of events held in the data window,
unless column names and types have been explicitly selected viasel ect .

The next statement creates a named window 'AllOrdersNamedWindow' for which the expiry policy issimply to
keep al events. Assume that the event type 'OrderMapEventType' has been configured. The named window is
to hold events of type 'OrderMapEventType":

create w ndow Al | O der sNanedW ndow. wi n: keepal | () as Order MapEvent Type

The below sample statement demonstrates the sel ect syntax. It defines a named window in which each row
has the three properties 'symbol’, 'volume' and 'price’. This named window actively removes events from the
window that are older then 30 seconds.

create w ndow O dersTi meW ndow. wi n: ti me(30 sec) as
sel ect synbol, volune, price from O derEvent

In an alternate form, the as keyword can be used to rename columns:

create wi ndow OrdersTi neW ndow. wi n: ti me(30 sec) as
sel ect synbol as sym volune as vol, price from O derEvent

A new named window starts up empty. It must be explicitly inserted into by one or more statements, as dis-
cussed below.

If your application stops or destroys the statement that creates the named window, any consuming statements
no longer receive insert or remove stream events. The named window can also not be deleted from after it was
stopped or destroyed.

The create w ndow Statement posts to listeners any events that are inserted into the named window as new
data. The statement posts all deleted events or events that expire out of the data window to listeners as the re-
move stream (old data). The named window contents can aso be iterated on via the pull API to obtain the cur-

© 2007 EsperTech Inc. - Esper2.0.0 52

EPL Reference: Clauses

rent contents of a named window.

4.16.2. Deleting From Named Windows: the on Del et e clause

An on del et e clause removes events from a named window. The clause can be used to remove all events, or
only events that match certain criteria, or events that correlate with an arriving event or a pattern of arriving
events.

The syntax for theon del et e clauseisasfollows:

on event _type[(filter_criteria)] [as alias_nane]
del ete from w ndow_nane [as alias_nane]
[where criteria_expression]

The event_type is the name or alias of the type of events that trigger removal from the named window. It is op-
tionaly followed by filter_criteria which are filter expressions to apply to arriving events. The optiona as
keyword can be used to assign an alias for use in the wher e clause. Patterns can also be specified in the on
clause as described in the next section.

The window_name is the name of the named window to delete events from. The as keyword is aso available to
assign an alias to the named window.

The optional where clause contains a criteria_expression that correlates the arriving (triggering) event to the
events to be removed from the named window. The criteria_expression may aso simply filter for eventsin the
named window to be removed from the named window.

Theiterator of the EPSt at ement Object representing the on del et e clause can also be helpful: It returns the
last batch of deleted events in response to the last triggering event, in any order, or null if the last triggering
event did not remove any rows.

Let'slook at a couple of examples. In the simplest form, this statement deletes all events from the named win-
dow 'AllOrdersNamedWindow' when any 'FlushOrderEvent' arrives:

on FlushOrder Event del ete from Al | O der sNanedW ndow

This example adds a wher e clause to the example above. Upon arrival of a triggering 'ZeroVolumeEvent', the
statement removes from the named window any orders that have a volume of zero or less:

on ZeroVol uneEvent del ete from Al | O der sNanedW ndow where vol une <= 0

The next example shows a more compl ete use of the syntax, and correlates the triggering event with events held
by the named window:

on NewOr der Event (vol une>0) as nmyNewOr ders
del ete from Al | Or der sNanedW ndow as nmyNanedW ndow
wher e myNanmedW ndow. synbol = nyNewOr der s. synbol

In the above sample statement, only if a 'NewOrderEvent' event with a volume greater then zero arrives does
the statement trigger. Upon triggering, all events in the named window that have the same value for the symbol
property as the triggering 'NewOrderEvent' event are then removed from the named window. The statement
also showcases the as keyword to assign alias names for use in the wher e expression.

For correlated queries (as above) that correlate triggering events with events held by a named window, Esper
internally creates efficient indexes to enable high performance removal of events especialy from named win-
dows that hold large numbers of events.

© 2007 EsperTech Inc. - Esper2.0.0 53

EPL Reference: Clauses

Y our application can subscribe alistener to your on del et e Statements to determine removed events. The state-
ment post any events that are deleted from a named window to all listeners attached to the statement as new
data. Upon iteration, the statement provides the last deleted event, if any.

Using Patterns in the on Del ete Clause

By means of patternstheon del et e clauseand on sel ect clause (described below) can ook for more complex
conditions to occur, possibly involving multiple events or the passing of time. The syntax for on del et e with a
pattern expression is show next:

on pattern [pattern_expression] [as alias_nane]
del ete from w ndow_nane [as alias_nane]
[where criteria_expression]

The pattern_expression is any pattern that matches zero or more arriving events. Tags can be used to name
events in the pattern and can occur in the optional wher e clause to correlate to events to be removed from a
named window.

In the next example the triggering pattern fires every 10 seconds. The effect is that every 10 seconds the state-
ment removes from 'MyNamedWindow" all rows:

on pattern [every timer:interval (10 sec)] delete from MyNanmedW ndow

The following example shows the use of tagsin a pattern:

on pattern [every ord=0Order Event (vol ume>0) or every flush=Fl ushOr der Event]
del ete from Order Wndow as w n
where ord.id = win.id or flush.id = win.id

The pattern above looks for OrderEvent events with a volume value greater then zero and tags such events as
‘ord’. The pattern also looks for FlushOrderEvent events and tags such events as 'flush’. The wher e clause de-
letes from the 'OrderWindow' named window any events that match in the value of the 'id' property either of the
arriving events.

4.16.3. Inserting Into Named Windows

Theinsert into clause inserts events into named windows. Your application must ensure that the column
names and types match the declared column names and types of the named window to be inserted into.

In this example we first create a named window using some of the columns of an OrderEvent event type:

create wi ndow Order sWndow. wi n: keepal | () as sel ect synbol, volume, price from O der Event

The insert into the named window selects individual columns to be inserted:

insert into OrdersWndow synbol, volunme, price) select nane, count, price from FXO der Event
/[l .. alternative form..
insert into OrdersWndow sel ect nane as synbol, vol as volune, price from FXOr der Event

Following above statement, the engine enters every FXOrderEvent arriving into the engine into the named win-
dow 'OrderswWindow'.

The following EPL creates a named window for an event type backed by a Java class, and inserts into the win-
dow any 'OrderEvent' where the symbol value is IBM:

© 2007 EsperTech Inc. - Esper2.0.0 54

EPL Reference: Clauses

create w ndow O der sW ndow as com nyconpany. O der Event
insert into OrdersWndow select * from com nyconpany. O der Event (synbol =' | BM)

The last example adds one column named 'derivedPrice' to the 'OrderEvent’ type by specifying a wildcard, and
uses a user-defined function to populate the column:

create wi ndow OrdersWndow as select *, price as derivedPrice from O der Event
insert into OrdersWndow sel ect *, MyFunc.func(price, percent) as derivedPrice from O derEvent

Event representations based on Java base classes or interfaces, and subclasses or implementing classes, are
compatible as these statements show:

/1l create a naned wi ndow for the base cl ass
create wi ndow OrdersW ndow as sel ect * from Product BaseEvent

/1l The Servi ceProduct Event cl ass subcl asses the Product BaseEvent cl ass
insert into OrdersW ndow sel ect * from Servi ceProduct Event

/1 The Merchandi seProduct Event cl ass subcl asses t he Product BaseEvent cl ass
insert into OrdersW ndow sel ect * from Merchandi seProduct Event

To avoid duplicate events stored in a named window, use a subquery to test whether an event already existsin
the named window:

insert into OrdersW ndow
sel ect * from Servi ceProduct Event as spe
where not exists (select * from OrdersWndow as win where win.id = spe.id)

A statement that removes events from a named window via the on del et e clause and a statement that inserts
events into a named window viathei nsert into can be combined to replace events in the named window, by
creating the two statementsin the order asindicated by the sample:

/'l create in this order
on Servi ceProduct Event as spe delete from OrdersWndow as win where win.id = spe.id
insert into OrdersW ndow sel ect * from Servi ceProduct Event

4.16.4. Selecting From Named Windows

A named window can be referred to by any statement in the f r omclause of the statement. Filter criteria can also
be specified. Additional views may be used onto named windows however such views cannot include data win-
dow views.

A statement selecting all events from a named window 'AllOrdersNamedWindow' is shown next. The named
window must first be created viathe cr eat e wi ndow clause before use.

select * from Al |l O der sNamedW ndow

The statement as above simply receives the unfiltered insert and remove stream of the named window and re-
ports that stream to its listeners. An iterator on such statement returns all eventsin the named window, if any.

The next statement derives an average price per symbol from all events posted by a named window:

sel ect synbol, avg(price) from Al Il O der sNamedW ndow group by synbol

Y our application may create a consuming statement such as above on an empty named window, or your applic-
ation may create the above statement on an aready filled named window. The engine provides correct resultsin

© 2007 EsperTech Inc. - Esper2.0.0 55

EPL Reference: Clauses

either case: At the time of statement creation the Esper engine internally initializes the consuming statement
from the current named window, also taking your declared filters into consideration. Thus, your statement de-
riving data from a named window does not start empty if the named window already holds one or more events.

If you require a subset of the datain the named window, you can specify one or more filter expressions onto the
named window as shown here:

sel ect synbol, avg(price) from Al Il O der sNamedW ndow sect or =" energy') group by synbol

By adding a filter to the named window, the aggregation and grouping as well as any views that may be de-
clared onto to the named window receive afiltered insert and remove stream. The above statement thus outputs,
continuously, the average price per symbol for al ordersin the named window that belong to a certain sector.

A side note on variablesin filters filtering events from named windows. The engine initializes consuming state-
ments at statement creation time and changes aggregation state continuously as events arrive. If the filter criter-
ia contain variables and variable values changes, then the engine does not re-evaluate or re-build aggregation
state. In such a case you may want to place variables in the havi ng clause which evaluates on already-built ag-
gregation state.

The following example further declares a view into the named window. Such a view can be a plug-in view or
one of the built-in views, but cannot be a data window view (with the exception of the group-by view which is
alowed).

select * from Al |l O der sNamedW ndow(vol ume>0, price>0). myconpany: nypl ugi nvi ew()

Data window views cannot be used onto named windows since named windows post insert and remove streams
for the events entering and leaving the named window, thus the expiry policy and batch behavior are well
defined by the data window declared for the named window. For example, the following is not allowed and
fails at time of statement creation:

/1 not a valid statenent
sel ect * from Al |l O der sNanedW ndow. wi n: ti ne(30 sec)

4.16.5. Triggered Select on Named Windows: the on Sel ect clause

Theon sel ect clause performs a one-time, hon-continuous query on a named window every time a triggering
event arrives or atriggering pattern matches. The query can consider all events in the named window, or only
events that match certain criteria, or events that correlate with an arriving event or a pattern of arriving events.

The syntax for theon sel ect clauseisasfollows:

on event _type[(filter_criteria)] [as alias_nane]
[insert into insert_into_def]

sel ect select_list

fromw ndow_nane [as alias_nane]

[where criteria_expression]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

[order by order_by_ expression_list]

The event_type is the name or alias of the type of events that trigger the query against the named window. It is
optionally followed by filter_criteria which are filter expressions to apply to arriving events. The optional as
keyword can be used to assign an alias. Patterns can also be specified in the on clause, see the samplesin Sec-
tion 4.16.2.1, “Using Patternsin the On Delete Clause”.

© 2007 EsperTech Inc. - Esper2.0.0 56

EPL Reference: Clauses

Theinsert into clause works as described in Section 4.9, “Merging Streams and Continuous Insertion: the Insert
Into Clause’. The select clause is described in Section 4.3, “Choosing Event Properties And Events: the Select
Clause”. For all clauses the semantics are equivalent to a join operation: The properties of the triggering event
or events are availablein the sel ect clause and all other clauses.

The window_name in the f r omclause is the name of the named window to select events from. The as keyword
is also available to assign an alias to the named window. The as keyword is helpful in conjunction with wild-
card in the sel ect clause to select named window events viathe syntax sel ect alias.* .

The optional where clause contains a criteria_expression that correlates the arriving (triggering) event to the
events to be considered from the named window. The criteria_expression may also simply filter for eventsin
the named window to be considered by the query.

Thegroup by clause, the havi ng clause and the or der by clause are all optional and work as described in earli-
er chapters.

The similarities and differences between an on sel ect clause and aregular or outer join are as follows:

1. A joinis evauated when any of the streams participating in the join have new events (insert stream) or
events leaving data windows (remove stream). A join is therefore bi-directional or multi-directional.
However, the on sel ect statement has one triggering event or pattern that causes the query to be evalu-
ated and is thus uni-directional .

2. The query within the on sel ect Sstatement is not continuous: It executes only when a triggering event or
pattern occurs. Aggregation and groups are computed anew considering the contents of the named window
at the time the triggering event arrives.

Theiterator of the EPSt at ement Object representing the on sel ect clause returns the last batch of selected
eventsin response to the last triggering event, or null if the last triggering event did not select any rows.

For correlated queries that correlate triggering events with events held by a named window, Esper internally
creates efficient indexes to enable high performance querying of events. It analyzes the wher e clause to build
one or more indexes for fast lookup in the named window based on the properties of the triggering event.

The next statement demonstrates the concept. Upon arrival of a QueryEvent event the statement selects all
events in the 'OrdersNamedWindow' named window:

on QueryEvent select win.* from O der sNanedW ndow as wi n

The engine executes the query on arrival of atriggering event, in this case a QueryEvent. It posts the query res-
ults to any listeners to the statement, in a single invocation, as the new data array. By prefixing the wildcard (*)
selector with the stream name, the sel ect clause returns only events of the named window and does not also
return triggering events.

Thewher e clause filters and correlates events in the named window with the triggering event, as shown next:

on QueryEvent (vol une>0) as query
sel ect query.synbol, query.volune, w n.synbol from O dersNanedW ndow as w n
where w n. synmbol = query. synbol

Upon arrival of a QueryEvent, if that event has a value for the volume property that is greater then zero, the en-
gine executes the query. The query considers all events currently held by the 'OrdersNamedWindow' that match
the symbol property value of the triggering QueryEvent event. The engine then posts query results to the state-
ment's listeners.

© 2007 EsperTech Inc. - Esper2.0.0 57

EPL Reference: Clauses

Aggregation, grouping and ordering of results are possible as this example shows.

on QueryEvent as queryEvent

sel ect synmbol, sum(vol unme) from O der sNanedW ndow as wi n
group by synbol

havi ng volune > 0

order by synbol

The above statement outputs the total volume per symbol for those groups where the sum of the volume is
greater then zero, ordered by symbol ascending. The engine computes and posts the output based on the current
contents of the 'OrdersNamedWindow' named window considering all events in the named window, since the
query does not have awher e clause.

4.16.6. Triggered Playback from Named Windows: the on I nsert clause

Theon insert clauseisanon sel ect clause as described in the prior chapter with the addition of ani nsert
i nt o clause.

Similar totheon sel ect clause, the engine executes the query when atriggering event arrives. It then provides
the query results as an event stream to further statements. It populates the event stream that is named in theii n-
sert into clause.

The statement below provides the query results to any consumers of the MyOrderStream, upon arrival of a
QueryEvent event:

on QueryEvent as query
insert into MyOrderStream
sel ect win.* from O der sNanedW ndow as win

Here is a sample consuming statement of the MyOrderStream. The statement further filters the events provided
by theon i nsert statement by user id and reports atotal of volume per symbol:

sel ect synbol, sun{volunme) from MyOrderStreamuserld="userl') group by synbol

4.17. Variables

A variable is a scalar value that is available for use in al statements including patterns. Variables can be used
in an expression anywhere in a statement aswell asin the out put clause for output rate limiting.

Variables must first be declared or configured before use, by defining each variable's type and name. Variables
can be created viathe create vari abl e Syntax or declared by configuration. Variables can be assigned new
values by using the on set syntax or viathe set Vari abl eval ue methods on EPRunt i me. The EPRunt i me also
provides method to read variable values.

The engine guarantees consistency and atomicity of variable reads and writes on a statement-level (thisis a soft

guarantee, see below). Variables are optimized for fast read access and are al so multithread-safe.

4.17.1. Creating Variables: the Create Vari abl e clause

Thecreate vari abl e Syntax creates a new variable by defining the variable type and name. In aternative to
the syntax, variables can also be declared in the runtime and engine configuration options.

The synopsisfor creating avariable is as follows:

© 2007 EsperTech Inc. - Esper2.0.0 58

EPL Reference: Clauses

create variabl e variabl e_type variabl e_name [= assi gnnent_expression]

The variable_type can be any of the following:

vari abl e_type
;. string

| char

| character

| bool

| bool ean

| byte

| short

| int

| integer

| long

| doubl e

| float

The variable name is an identifier that names the variable. The variable name should not already be in use by
another variable.

The assi gnment _expr essi on is optional. Without an assignment expression the initial value for the variable is
nul | . If present, it suppliestheinitial value for the variable.

The EPSt at enent object of the create vari abl e Statement provides access to variable values. The pull AP
methodsi t er at or and saf el t er at or return the current variable value. Listenerstothecreat e vari abl e State-
ment subscribe to changes in variable value: the engine posts new and old value of the variable to all listeners
when the variable value is updated by anon set Statement.

The example below creates a variable that provides a threshold value. The name of the variable is
var _t hreshol d and itstypeis| ong. The variable€'sinitial valueisnul I as no other value has been assigned:

create variable |ong var_threshold

This statement creates an integer-type variable named var _out put _r at e and initidlizesit to the value ten (10):

create variable integer var_output_rate = 10

In addition to creating a variable via the create vari abl e syntax, the runtime and engine configuration API
also alows adding variables. The next code snippet illustrates the use of the runtime configuration API to cre-
ate a string-typed variable:

epServi ce. get EPAdni ni strator (). get Configuration()
.addVari abl e("nyVar", String.class, "init value");

4.17.2. Setting Variable Values: the on set clause

Theon set statement assigns a new value to one or more variables when atriggering event arrives or atrigger-
ing pattern occurs. Use the set Vari abl eval ue methods on EPRunt i me to assign variable values programmatic-
aly.

The synopsis for setting variable valuesis:

on event _type[(filter_criteria)] [as alias_nane]
set variabl e_name = expression [, variable_nane = expression [,...]]

The event_type is the name or alias of the type of events that trigger the variable assignments. It is optionally

© 2007 EsperTech Inc. - Esper2.0.0 59

EPL Reference: Clauses

followed by filter_criteria which are filter expressions to apply to arriving events. The optional as keyword can
be used to assign an alias. Patterns can also be specified in the on clause.

The comma-separated list of variable names and expressions set the value of one or more variables. All new
variable values are applied atomically: the changes to variable values by the on set statement become visible
to other statements all at the same time. No changes are visible to other processing threads until the on set

statement completed processing, and at that time all changes become visible at once.

The EPst at enent 0bject provides access to variable values. The pull APl methodsi t er at or and saf el t er at or
return the current variable values for each of the variables set by the statement. Listeners to the statement sub-
scribe to changes in variable values: the engine posts new variable values of all variables to any listeners.

In the following example, a variable by name var_out put _rat e has been declared previously. When a Ne-
wOutputRateEvent event arrives, the variable is updated to a new value supplied by the event property 'rate':

on NewQut put Rat eEvent set var_output_rate = rate

The next example shows two variables that are updated when a ThresholdUpdateEvent arrives:

on Threshol dUpdat eEvent as t
set var_threshold_| ower = t.|ower,
var _t hreshol d_hi gher = t. hi gher

The sample statement shown next counts the number of pattern matches using a variable. The pattern looks for
OrderEvent events that are followed by CancelEvent events for the same order id within 10 seconds of the Or-
derEvent:

on pattern[every a=Order Event -> (Cancel Event(orderld=a.orderld) where timer:wthin(1l0 sec))]
set var_counter = var_counter + 1

4.17.3. Using Variables

A variable name can be used in any expression and can also occur in an output rate limiting clause. This section
presents examples and discusses performance, consistency and atomicity attributes of variables.

The next statement assumes that a variable named 'var_threshold' was created to hold a total price threshold
value. The statement outputs an event when the total price for a symbol is greater then the current threshold
value:

sel ect synbol, sun{price) from Ti ckEvent
group by synbol
havi ng sun(price) > var_threshold

In this example we use a variable to dynamicaly change the output rate on-the-fly. The variable
'var_output_rate' holds the current rate at which the statement posts a current count to listeners:

sel ect count(*) from Ti ckEvent output every var_output_rate seconds

Variables are optimized towards high read frequency and lower write frequency. Variable reads do not incur
locking overhead (99% of the time) while variable writes do incur locking overhead.

The engine softly guarantees consistency and atomicity of variables when your statement executes in response
to an event or timer invocation. Variables acquire a stable value (implemented by versioning) when your state-
ment starts executing in response to an event or timer invocation, and variables do not change value during exe-
cution. When one or more variable values are updated viaon set statements, the changes to al updated vari-

© 2007 EsperTech Inc. - Esper2.0.0 60

EPL Reference: Clauses

ables become visible to statements as one unit and only when theon set statement completes successfully.

The atomicity and consistency guarantee is a soft guarantee. If any of your application statements, in response
to an event or timer invocation, execute for atime interval longer then 15 seconds (default interval length), then
the engine may use current variable values after 15 seconds passed, rather then then-current variable values at
the time the statement started executing in response to an event or timer invocation.

The length of the time interval that variable values are held stable for the duration of execution of a given state-
ment is by default 15 seconds, but can be configured via engine default settings.

© 2007 EsperTech Inc. - Esper2.0.0 61

Chapter 5. EPL Reference: Patterns

5.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition. Patterns can
also be time-based.

Pattern expressions can consist of filter expressions combined with pattern operators. Expressions can contain
further nested pattern expressions by including the nested expression(s) in () round brackets.

There are 5 types of operators.

Operators that control pattern subexpression repetition: every

Logical operators: and, or, not

Temporal operators that operate on event order: - > (followed-by)

Guards are where-conditions that control the lifecycle of subexpressions. Examplesareti mer: wi t hi n.
Observers observe time events as well as other events. Examplesaretiner:interval andtimer: at .

bk wdNE

5.2. How to use Patterns

5.2.1. Pattern Syntax

Thisis an example pattern expression that matches on every Ser vi ceMeasur enent events in which the value of
thel at ency event property is over 20 seconds, and on every Ser vi ceMeasur enent event in which the success
property isfalse. Either one or the other condition must be true for this pattern to match.

every (spi ke=Servi ceMeasur enent (| at ency>20000) or error=Servi ceMeasur enent (success=f al se))

In the example above, the pattern expression starts with an every operator to indicate that the pattern should
fire for every matching events and not just the first matching event. Within the every operator in round brack-
etsis a nested pattern expression using the or operator. The left hand of the or operator is a filter expression
that filters for events with a high latency value. The right hand of the operator contains a filter expression that
filters for events with error status. Filter expressions are explained in Section 5.4, “Filter Expressions In Pat-
terns’.

The example above assigned the tags spi ke and er r or to the eventsin the pattern. The tags are important since
the engine only places tagged events into the output event(s) that a pattern generates, and that the engine sup-
plies to listeners of the pattern statement. The tags can further be selected in the select-clause of an EPL state-
ment as discussed in Section 4.4.2, “ Pattern-based Event Streams”.

Patterns can aso contain comments within the pattern as outlined in Section 4.2.2, “Using Comments’.

Pattern statements are created via the EPAdni ni strat or interface. The EPAdni ni strat or interface allows to
create pattern statements in two ways. Pattern statements that want to make use of the EPL sel ect clause or
any other EPL constructs use the cr eat eEPL method to create a statement that specifies one or more pattern ex-
pressions. EPL statements that use patterns are described in more detail in Section 4.4.2, “Pattern-based Event
Streams”. Use the syntax as shown in below example.

EPAdmi ni strator admi n = EPServi ceProvi der Manager . get Def aul t Provi der () . get EPAdmi ni strator () ;

String event Nanme = Servi ceMeasurenent. cl ass. get Nanme() ;

© 2007 EsperTech Inc. - Esper2.0.0 62

EPL Reference; Patterns

EPSt at enent myTri gger = admin.createEPL("select * frompattern [" +
"every (spike=" + eventNane + "(|atency>20000) or error=" + eventNane + "(success=false))]");

Pattern statements that do not need to make use of the EPL sel ect clause or any other EPL constructs can use
the cr eat ePat t er n method, asin below example.

EPSt at enent nyTrigger = adm n. createPattern(
"every (spike=" + eventNane + "(|atency>20000) or error=" + eventNane + "(success=false))");

5.2.2. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The listener inter-
faceisthecom espertech. esper. cli ent. Updat eLi st ener interface.

The example below shows an anonymous implementation of the
com espertech. esper. client. Updat eLi st ener interface. We add the anonymous listener implementation to
the nyPat t er n Statement created earlier. The listener code simply extracts the underlying event class.

nmyPat t er n. addLi st ener (new Updat eLi st ener ()
{

public voi d update(Event Bean[] newEvents, EventBean[] ol dEvents)

{

Servi ceMeasur enent spi ke = (Servi ceMeasurenent) newEvents[0].get("spi ke");
Servi ceMeasurenment error = (Servi ceMeasurenent) newkEvents[O].get("error");
. I/ either spike or error can be null, depending on which occurred
. I/ add nore |ogic here
}
1)

Listeners receive an array of Event Bean instances in the newEvent s parameter. There is one Event Bean instance
passed to the listener for each combination of events that matches the pattern expression. At least one Event -
Bean instance is always passed to the listener.

The properties of each Event Bean instance contain the underlying events that caused the pattern to fire, if
events have been named in the filter expression via the nane=event Type syntax. The property name is thus the
name supplied in the pattern expression, while the property type is the type of the underlying class, in this ex-
ample Ser vi ceMeasur enent .

5.2.3. Pulling Data from Patterns

Data can also be obtained from pattern statements via the safelterator() anditerator() methods on Ep-
statenent (the pull API). If the pattern had fired at least once, then the iterator returns the last event for which
it fired. The hasNext () method can be used to determine if the pattern had fired.

if (myPattern.iterator().hasNext())

{
Servi ceMeasurenment event = (Servi ceMeasurenment) view. iterator().next().get("alert");
. I/ sone nore code here to process the event
}
el se
{
. // no matching events at this tine
}

© 2007 EsperTech Inc. - Esper2.0.0 63

EPL Reference; Patterns

5.3. Operator Precedence

The operators at the top of this table take precedence over operators lower on the table.

Table5.1. Pattern Operator Precedence

Example

every MyEvent
timer:interval (5 min) and not MyEvent

MyEvent where timer:within(l sec)

Precedence Operator Description

1 unary every, not

2 Guard post- where tinmer:within (or
fix plug-in pattern guard)

3 and and

4 or or

5 followed-by ->

every (MyEvent and MyQt her Event)

every (MyEvent or MyQt her Event)

every (MyEvent -> M/Qt her Event)

If you are not sure about the precedence, please consider placing parenthesis () around your subexpressions.
Parenthesis can a so help make expressions easier to read and understand.

Note that we are also providing the EPL grammar as a HTML file as part of the documentation set on the

project website.

The following table outlines sample equivaent expressions, with and without the use of parenthesis for subex-

pressions.

Table5.2. Equivalent Pattern Expressions

Expression Equivalent Reason

every A or B (every A) or B The every operator has higher precedence then the or oper-
ator

every A->BorC (every A) ->(Bor C) The or operator has higher precedence then the f ol | oved-
by operator

AandBorC (AandB)orC The and operator has higher precedence then the or operat-
or

every A where every (A where The every operator has higher precedence then the

timer:within(5)

5.4. Filter Expressions In Patterns

timer:within(5)) timer:within guard postfix

The simplest form of filter is a filter for events of a given type without any conditions on the event property

© 2007 EsperTec

h Inc. - Esper2.0.0

64

EPL Reference; Patterns

values. This filter matches any event of that type regardless of the event's properties. The example below is
such afilter. Note that this event pattern would stop firing as soon as the first RfidEvent is encountered.

com nypackage. mnyevent s. Rf i dEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the ever y keyword.

every com nmypackage. nyevents. Rf i dEvent

The example above specifies the fully-qualified Java class name as the event type. Via configuration, the event
pattern above can be simplified by using the aias that has been defined for the event type.

every RfidEvent

Interfaces and superclasses are also supported as event types. In the below example | Rf i dReadabl e is an inter-
face class, and the statement matches any event that implements this interface:

every org. myorg.rfid.|Rfi dReadabl e

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name:

Rfi dEvent (cat egor y="Peri shabl e")

All expressions can be used in filters, including static method invocations that return a boolean value:

Rfi dEvent (com nyconpany. MyRFI DLi b. i sl nRange(x, y) or (x<0 and y < 0))

Filter expressions can be separated via a single comma ', '. The comma represents a logical AND between ex-
pressions:

Rfi dEvent (zone=1, category=10)
...is equivalent to...
Rfi dEvent (zone=1 and cat egor y=10)

The following set of operators are highly optimized through indexing and are the preferred means of filtering
high-volume event streams:

e equals=

e notequals!=

e comparison operators< , >, >=, <=
* ranges

» usethebet ween keyword for a closed range where both endpoints are included
e usethein keyword and round () or square brackets[] to control how endpoints are included
e forinverted ranges use the not keyword and the bet ween or i n keywords
* list-of-values checks using the i n keyword or thenot i n keywords followed by a comma-separated list of
values

At compile time as well as at run time, the engine scans new filter expressions for subexpressions that can be
indexed. Indexing filter values to match event properties of incoming events enables the engine to match in-
coming events faster. The above list of operators represents the set of operators that the engine can best convert
into indexes. The use of commaor logical and in filter expressions does not impact optimizations by the engine.

For more information on filters please see Section 4.4.1, “Filter-based Event Streams”.

© 2007 EsperTech Inc. - Esper2.0.0 65

EPL Reference; Patterns

Filter criteria can also refer to events matching prior named events in the same expression. Below pattern is an
example in which the pattern matches once for every RfidEvent that is preceded by an RfidEvent with the same
asset id.

every A=Rfi dEvent -> B=Rfi dEvent (asset| d=A assetld)

The syntax shown above allows filter criteriato reference prior results by specifying the event name tag of the
prior event, and the event property name. This syntax can be used in al filter operators or expressionsincluding
ranges and thei n set-of-values check:

every A=RfidEvent ->
B=Rfi dEvent (MyLi b. i sl nRadi us(A.x, Ay, X, y) and zone in (1, A zone))

5.5. Pattern Operators

5.5.1. Every

The every operator indicates that the pattern subexpression should restart when the subexpression qualified by
the every keyword evaluates to true or false. Without the ever y operator the pattern subexpression stops when
the pattern subexpression evaluates to true or false.

Thus the every operator works like a factory for the pattern subexpression contained within. When the pattern
subexpression within it fires and thus quits checking for events, the every causes the start of a new pattern
subexpression listening for more occurances of the same event or set of events.

Every time a pattern subexpression within an every operator turns true the engine starts a new active subex-
pression looking for more event(s) or timing conditions that match the pattern subexpression. If the every oper-
ator is not specified for a subexpression, the subexpression stops after the first match was found.

This pattern fires when encountering event A and then stops looking.

A

This pattern keeps firing when encountering event A, and doesn't stop looking.

every A

Let's consider an example event sequence as follows.

A, B, C1 B, A, D, A3 B3 E, A, F, B,

Table5.3. '"Every' operator examples

Example Description

every (A->B) Detect event A followed by event B. At the time when B occurs the pattern
matches, then the pattern matcher restarts and looks for event A again.

1. Matcheson B, for combination {Al, Bl}
2. Matcheson B, for combination {A2, B3}
3. MatchesonB 4 for combination { A " B 4}

© 2007 EsperTech Inc. - Esper2.0.0 66

EPL Reference; Patterns

Example Description

every A -> B The pattern fires for every event A followed by an event B.

1. Matcheson B, for combination {Ar Bl}
2. Matcheson B, for combination {Az, Bs} and {A3, B3}
3. MatchesonB 4 for combination { A B 4}

A -> every B The pattern fires for an event A followed by every event B.

Matcheson B, for combination{A, B }.
Matches on B, for combination {Al, Bz}'
Matches on B, for combination {Al, Bs}
Matches on B, for combination{A , B}

Eal R A
W N R

every A -> every B The pattern fires for every event A followed by every event B.

Matches on B, for combination {Al, Bl}.

Matches on B, for combination {Ar Bz}.

Matches on B, for combination {Al, Bs} and {Az, B3} and {A3, Bs}
Matches on B, for combination {Al, B4} and {Az' B4} and {Ag, B4} and
{A, B}

Eal I\ o
2w N e

The examples show that it is possible that a pattern fires for multiple combinations of events that match a pat-
tern expression. Each combination is posted as an Event Bean instance to the updat e method in the Updat eL-
i st ener implementation.

Let's consider the every operator in conjunction with a subexpression that matches 3 events that follow each
other:

every (A->B -> 0

The pattern first looks for event A. When event A arrives, it looks for event B. After event B arrives, the pattern
looks for event C. Finally when event C arrives the pattern fires. The engine then starts looking for event A

again.

Assume that between event B and event C a second event A, arrives. The pattern would ignore the A, entirely
since it's then looking for event C. As observed in the prior example, the ever y operator restarts the subexpres-
sionA -> B -> conly when the subexpression fires.

In the next statement the ever y operator applies only to the A event, not the whole subexpression:

every A->B ->C

This pattern now matches for any event A that is followed by an event B and then event C, regardless of when
the event A arrives. Oftentimes this can be practical in combination with the and not syntax and the
timer:within syntax asthe next example shows.

Every Operator Example

In this example we consider a generic pattern in which the pattern must match for each A event followed by aB
and followed by a C event, in which both B and C must arrive within 1 hour of the A event. The first approach

© 2007 EsperTech Inc. - Esper2.0.0 67

EPL Reference; Patterns

to the pattern is as follows:

every A -> (B ->C where tiner:wthin(l hour)

Consider the following sequence of events arriving:
AL A, B G B, G

First, the pattern as above never stops looking for A events since the every operator instructs the pattern to
keep looking for A events.

When A . arrives, the pattern starts a new subexpression that keeps A 1 in memory and looks for any B event. At
the same time, it also keeps looking for more A events.

When A, arrives, the pattern starts a new subexpression that keeps A, in memory and looks for any B event. At
the same time, it also keeps looking for more A events.

After the arrival of A, there are 3 subexpressions active:

1. Thefirst active subexpression with Al in memory, looking for any B event
2. The second active subexpression with A, in memory, looking for any B event
3. A third active subexpression, looking for the next A event

In the pattern above, we have specified a 1-hour lifetime for subexpressions looking for B and C events. Thus,
if no B and no C event arrive within 1 hour after AL the first subexpression goes away. If no B and no C event
arrive within 1 hour after A, the second subexpression goes away. The third subexpression however stays
around looking for more A events.

The pattern as shown above thus matches on arrival of C, for combination {Al, B, Cl} and for combination
{Az’ B, Cl}, provided that B, and C, arrive within an hour of A, and A,

Y ou may now ask how to match on {Al, Bl, Cl} and {A2, Bz’ Cz} instead, since you may need to correlate on
agiven property.

The pattern as discussed above matches every A event followed by the first B event followed by the next C
event, and doesn't specifically qualify the B or C eventsto look for based on the A event. To look for specific B
and C events in relation to a given A event, the correlation must use one or more of the properties of the A
event, such asthe"id" property:

every a=A -> (B(id=a.id -> C(id=a.id)) where tiner:w thin(l hour)

The pattern as shown above thus matches on arrival of C, for combination {A, B,, C } and on arrival of C, for
combination {Az’ Bz, Cz} .

Sensor Example

This example looks at temperature sensor events named Sample. The pattern detects when 3 sensor events in-
dicate a temperature of more then 50 degrees uninterrupted within 90 seconds of the first event, considering
events for the same sensor only.

every sanpl e=Sanpl e(tenp > 50) ->
((Sanpl e(sensor=sanpl e. sensor, tenp > 50) and not Sanpl e(sensor =sanpl e. sensor, tenp <= 50))
->
(Sanpl e(sensor =sanpl e. sensor, tenp > 50) and not Sanpl e(sensor=sanpl e. sensor, tenp <= 50))
) where tinmer:wthin(90 seconds))

© 2007 EsperTech Inc. - Esper2.0.0 68

EPL Reference; Patterns

The pattern starts a new subexpression in the round braces after the first followed-by operator for each time a
sensor indicated more then 50 degrees. Each subexpression then lives a maximum of 90 seconds. Each subex-
pression ends if a temperature of 50 degress or less is encountered for the same sensor. Only if 3 temperature
events in arow indicate more then 50 degrees, and within 90 seconds of the first event, and for the same sensor,
does this pattern fire.

5.5.2. And

Similar to the Java & & operator the and operator requires both nested pattern expressions to turn true before the
whole expression turns true (ajoin pattern).

Pattern matches when both event A and event B are found.

A and B

Pattern matches on any sequence A followed by B and C followed by D, or C followed by D and A followed by
B

(A->B) and (C -> D

Note that in an and pattern expression it is not possible to correlate events based on event property values. For
example, thisisan invalid pattern:

[/ This is NOT valid
a=A and B(id = a.id)

The above expression is invalid as it relies on the order of arrival of events, however in an and expression the
order of eventsis not specified and events fulfill an and condition in any order. The above expression can be
changed to use the followed-by operator:

/[l This is valid

a=A -> B(id = a.id)

/1 anot her exanple using 'and' ...

a=A -> (B(id = a.id) and C(id = a.id))

5.5.3.Or

Similar to the Java “||" operator the or operator requires either one of the expressions to turn true before the
whole expression turns true.

Look for either event A or event B. Asalways, A and B can itself be nested expressions as well.

A or B

Detect all stock ticks that are either above or below a threshold.

every (StockTick(synbol="1BM, price < 100) or StockTick(synbol="IBM, price > 105)

5.5.4. Not

The not operator negates the truth value of an expression. Pattern expressions prefixed with not are automatic-
ally defaulted to true upon start, and turn permanently false when the expression within turns true.

© 2007 EsperTech Inc. - Esper2.0.0 69

EPL Reference; Patterns

Thenot operator is generally used in conjuntion with the and operator or subexpressions as the below examples
show.

This pattern matches only when an event A is encountered followed by event B but only if no event C was en-
countered before either event A and B, counting from the time the pattern is started:

(A ->B) and not C

Assume we'd like to detect when an event A is followed by event D, without any B or C events between the A
and D events:

A -> (D and not (B or Q)

It may help your understanding to discuss a pattern that usesthe or operator and the not operator together:

a=A -> (b=B or not C

In the pattern above, when an A event arrives then the engine starts the subexpression B or not C. Assoon as
the subexpression starts, the not operator turns to true. The or expression turns true and thus your listener re-
ceives an invocation providing the A event in the property 'a. The subexpression does not end and continues
listening for B and C events. Upon arrival of a B event your listener receives a second invocation. If instead aC
event arrives, the not turns permanently false however that does not affect the or operator (but would end an
and operator).

5.5.5. Followed-by

The followed by - > operator specifies that first the left hand expression must turn true and only then is the right
hand expression evaluated for matching events.

Look for event A and if encountered, look for event B. As aways, A and B can itself be nested event pattern
expressions.

A->B
Thisis a pattern that fires when 2 status eventsindicating an error occur one after the other.

St at usEvent (st atus=' ERROR) -> St at usEvent (st atus=' ERROR)

5.6. Pattern Guards

Guards are where-conditions that control the lifecycle of subexpressions. Custom guard functions can also be
used. The section Chapter 11, Extension and Plug-in outlines guard plug-in development in greater detail.

Take as an example the following pattern expression:

M/Event where tiner.w thin(10 sec)

In this pattern the ti mer: wi t hi n guard controls the subexpression that is looking for MyEvent events. The
guard terminates the subexpression looking for MyEvent events after 10 seconds after start of the pattern. Thus
the pattern alerts only once when the first MyEvent event arrives within 10 seconds after start of the pattern.

The every keyword requires additional discussion since it also controls subexpression lifecycle. Let's add the

© 2007 EsperTech Inc. - Esper2.0.0 70

EPL Reference; Patterns

every keyword to the example pattern:

every MyEvent where timer.wthin(1l0 sec)

The difference to the pattern without every isthat each MyEvent event that arrives now starts a new subexpres-
sion, including a new guard, looking for a further MyEvent event. The result is that, when a MyEvent arrives
within 10 seconds after pattern start, the pattern execution will ook for the next MyEvent event to arrive within
10 seconds after the previous one.

By placing parentheses around the every keyword and its subexpression, we can have the ever y under the con-
trol of the guard:

(every MyEvent) where tinmer.w thin(10 sec)

In the pattern above, the guard terminates the subexpression looking for all MyEvent events after 10 seconds
after start of the pattern. This pattern aerts for all MyEvent events arriving within 10 seconds after pattern start,
and then stops.

Guards do not change the truth value of the subexpression of which the guard controls the lifecycle, and there-
fore do not cause arestart of the subexpression when used with the every operator. For example, the next pat-
tern stops returning matches after 10 seconds unless a match occured within 10 seconds after pattern start:

every ((A and B) where tiner.w thin(10 sec))

5.6.1. timer:within

Theti mer: wi t hi n guard acts like a stopwatch. If the associated pattern expression does not turn true within the
specified time period it is stopped and permanently false. The ti mer: wi t hi n guard takes a time period (see
Section 4.2.1, “ Specifying Time Periods’) or a number of seconds as a parameter.

This pattern firesif an A event arrives within 5 seconds after statement creation.

A where tiner:within (5 seconds)

This pattern fires for all A eventsthat arrive within 5 seconds. After 5 seconds, this pattern stops matching even
if more A eventsarrive.

(every A) where tinmer:within (5 seconds)

This pattern is similar to the first pattern but here every time A arrives within 5 seconds, the pattern begins
looking for A for another 5 seconds. As long as A events arrive within 5 seconds after the last A, the pattern
does not stop matching.

every (A where timer:within (5 sec))

This pattern matches for any one A or B event in the next 5 seconds.

(Aor B) where tiner:within (5 sec)

This pattern matches for any 2 errors that happen 10 seconds within each other.

every (StatusEvent(status='ERROR) -> StatusEvent(status='ERROR) where tinmer:within (10 sec))

The following guards are equivalent:

© 2007 EsperTech Inc. - Esper2.0.0 71

EPL Reference; Patterns

tinmer:w thin(2 mnutes 5 seconds)
tinmer:w thin(125 sec)
timer:w thin(125)

5.7. Pattern Observers

Observers observe time-based events for which the thread-of-control originates by the engine timer thread.
Custom observers can also be developed that observe timer events or other engine-external events. The section
Chapter 11, Extension and Plug-in outlines observer plug-in development in greater detail.

5.7.1. timer:interval

Thetinmer:interval observer waits for the defined time before the truth value of the observer turns true. The
observer takes atime period (see Section 4.2.1, “ Specifying Time Periods’) or a number of seconds as a para-
meter.

After event A arrived wait 10 seconds then indicate that the pattern matches.

A -> tiner:interval (10 seconds)

The pattern below fires every 20 seconds.

every tiner:interval (20 sec)

The next example pattern fires for every event A that is not followed by an event B within 60 seconds after
event A arrived. B must have the same "id" property value as A.

every a=A -> (timer:interval (60 sec) and not B(id=a.id))

5.7.2. timer:at

Thetimer: at observer is similar in function to the Unix “crontab” command. At a specified time the expres-
sionturnstrue. The at operator can also be made to pattern match at regular intervals by using an ever y operat-
orinfront of theti ner: at operator.

Thesyntaxis: timer:at (minutes, hours, days of month, nonths, days of week [, seconds]).

The value for seconds is optional. Each element allows wildcard * values. Ranges can be specified by means of
lower bounds then acolon ‘:’ then the upper bound. The division operator */ x can be used to specify that every
X, valueisvalid. Combinations of these operators can be used by placing these into square brackets([]).

This expression pattern matches every 5 minutes past the hour.
every tinmer:at(5, *, *, *, *)

The below ti ner: at pattern matches every 15 minutes from 8am to 5pm on even numbered days of the month
aswell ason thefirst day of the month.

timer:at (*/15, 8:17, [*/2, 1], *, *)

The below table outlines the fields, valid values and keywords available for each field:

© 2007 EsperTech Inc. - Esper2.0.0 72

EPL Reference; Patterns

Table 5.4. Properties offered by sample statement aggregating price

Field Name Mandatory? Allowed Values Additional Keywords
Minutes yes 0-59
Hours yes 0-23
Days Of Month yes 1-31 last, weekday, lastweekday
Months yes 1-12
Days Of Week yes 0 (Sunday) - 6 last
(Saturday)
Seconds no 0-59

The keyword | ast used in the days-of-month field means the last day of the month (current month). To specify
the last day of another month, a value for the month field has to be provided. For example: ti mer: at (*, *,
| ast, 2, *) isthelast day of February.

Thel ast keyword in the day-of-week field by itself simply means Saturday. If used in the day-of-week field
after another value, it means "the last xxx day of the month" - for example "5 last" means "the last friday of the
month". So the last Friday of the current month will be: tirmer:at(*, *, *, *, 5 last).Andthelast Friday
of Junetinmer:at(*, *, *, 6, 5 last).

The keyword weekday is used to specify the weekday (Monday-Friday) nearest the given day. Variant could in-
clude month like in: timer:at (*, *, 30 weekday, 9, *) which is Friday September 28th (no jump over
month).

The keyword | ast weekday is a combination of two parameters, the | ast and the weekday keywords. A typical
example could be: timer:at(*, *, *, |astweekday, 9, *) which will define Friday September 28th
(example year is 2007).

© 2007 EsperTech Inc. - Esper2.0.0 73

Chapter 6. EPL Reference: Operators

Esper arithmetic and logical operator precedence follows Java standard arithmetic and logical operator preced-

ence.

6.1. Arithmetic Operators

The below table outlines the arithmetic operators available.

Table 6.1. Syntax and results of arithmetic operators

Operator Description

+, -
As unary operators they denote a positive or
negative expression. As binary operators they
add or subtract.

* /

%

Multiplication and division are binary operat-
ors.

Modulo binary operator.

6.2. Logical And Comparsion Operators

The below table outlines the logical and comparison operators available.

Table 6.2. Syntax and results of logical and comparison operators

Operator Description

NOT
Returns true if the following condition is
false, returnsfaseif itistrue.

OR
Returns true if either component condition is
true, returnsfalseif both are false.

AND
Returns true if both component conditions are
true, returnsfalseif either isfalse.

=1 !=1 <1 > <:1 >=|

Comparison.

6.3. Concatenation Operators

© 2007 EsperTech Inc. - Esper2.0.0

74

EPL Reference: Operators

The below table outlines the concatenation operators available.

Table 6.3. Syntax and results of concatenation operators

Operator Description

Concatenates character strings

6.4. Binary Operators

The below table outlines the binary operators available.

Table 6.4. Syntax and results of binary operators

Operator Description

&
Bitwise AND if both operands are numbers;

conditionad AND if both operands are
boolean

Bitwise OR if both operands are numbers;
conditional OR if both operands are boolean

Bitwise exclusive OR (XOR)

6.5. Array Definition Operator

The{ and} curly braces are array definition operators following the Java array initialization syntax. Arrays can
be useful to pass to user-defined functions or to select array datain a select clause.

Array definitions consist of zero or more expressions within curly braces. Any type of expression is allowed
within array definitions including constants, arithmetic expressions or event properties. Thisis the syntax of an
array definition:

{ [expression [,expression...]] }

Consider the next statement that returns an event property named act i ons. The engine populates the act i ons
property as an array of j ava. | ang. String vaues with a length of 2 elements. The first element of the array
contains the obser vati on property value and the second element the conmand property value of RFI DEvent
events.

sel ect {observation, conmand} as actions from RFI DEvent

The engine determines the array type based on the types returned by the expressions in the array definiton. For
example, if all expressions in the array definition return integer values then the type of the array is
java.lang. I nteger[]. If the types returned by all expressions are compatible number types, such as integer

© 2007 EsperTech Inc. - Esper2.0.0 75

EPL Reference: Operators

and double vaues, the engine coerces the array element values and returns a suitable type,
java.lang. Doubl e[] in this example. The type of the array returned is obj ect[] if the types of expressions
cannot be coerced or return object values. Null values can also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

select * from RFI DEvent where Filter.nyFilter(zone, {1,2,3})

6.6. The 'in' Keyword

Thei n keyword determines if a given value matches any value in alist. The syntax of the keyword is:

test_expression [not] in (expression [,expression...])

The test_expression is any valid expression. The keyword is followed by a list of expressions to test for a
match. The optional not keyword specifies that the result of the predicate be negated.

The result of an i n expression is of type Bool ean. If the value of test expression is equal to any expression
from the comma-separated list, the result value is t rue. Otherwise, the result value is f al se. All expressions
must be of the same type as or a compatible type to test_expression.

The next example shows how thei n keyword can be applied to select certain command types of RFID events:

sel ect * from RFI DEvent where command in (' OBSERVATI ON', ' SIGNAL')

The statement is equivalent to:

sel ect * from RFI DEvent where command = ' OBSERVATI ON' or command = ' SI GNAL'

6.7. The 'bet wveen' Keyword

The bet ween keyword specifies arange to test. The syntax of the keyword is:

test _expression [not] between begi n_expressi on and end_expression

The test_expression is any valid expression and is the expression to test for in the range defined by be-
gin_expression and end_expression. Thenot keyword specifies that the result of the predicate be negated.

The result of abet ween expression is of type Bool ean. If the value of test_expression is greater then or equal to
the value of begin_expression and less than or equal to the value of end_expression, theresultistrue.

The next example shows how the bet ween keyword can be used to select events with a price between 55 and 60
(inclusive).

sel ect * from StockTi ckEvent where price between 55 and 60

The equivalent expression without bet ween is:

select * from StockTi ckEvent where price >= 55 and price <= 60

And also equivalent to:

select * from StockTi ckEvent where price between 60 and 55

© 2007 EsperTech Inc. - Esper2.0.0 76

EPL Reference: Operators

6.8. The 'li ke' Keyword

The Ii ke keyword provides standard SQL pattern matching. SQL pattern matching alows you to use ' _* to
match any single character and * % to match an arbitrary number of characters (including zero characters). In
Esper, SQL patterns are case-sensitive by default. The syntax of 1 i ke is:

test_expression [not] like pattern_expression [escape string |literal]

The test_expression is any valid expression yielding a String-type or a numeric result. The optiona not
keyword specifies that the result of the predicate be negated. Thel i ke keyword is followed by any valid stand-
ard SQL pattern_expression yielding a String-typed result. The optional escape keyword signals the escape
character to escape' _* and' % valuesin the pattern.

The result of a like expression is of type Bool ean. If the value of test expression matches the pat-
tern_expression, theresult value ist r ue. Otherwise, the result valueisf al se.

An examplefor thel i ke keyword is below.

sel ect * from PersonLocati onEvent where nane |ike '%ack%

The escape character can be defined as follows. In this example the where-clause matches events where the suf-
fix property isasingle' _* character.

sel ect * from PersonLocati onEvent where suffix like '"!_' escape '!’

6.9. The 'regexp' Keyword

Theregexp keyword is aform of pattern matching based on regular expressions implemented through the Java
java. util.regex package. The syntax of regexp is:

test _expression [not] regexp pattern_expression

The test_expression is any valid expression yielding a String-type or a numeric result. The optional not
keyword specifies that the result of the predicate be negated. The r egexp keyword is followed by any valid reg-
ular expression pattern_expression yielding a String-typed result.

The result of aregexp expression is of type Bool ean. If the value of test_expression matches the regular ex-
pression pattern_expression, the result value ist r ue. Otherwise, the result valueisf al se.

An example for ther egexp keyword is below.

sel ect * from PersonLocati onEvent where nanme regexp '*Jack*'

© 2007 EsperTech Inc. - Esper2.0.0 77

Chapter 7. EPL Reference: Functions

7.1. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement. These func-
tions can appear anywhere where expressions are allowed.

Esper alows static Java library methods as single-row functions, and also features built-in single-row functions.
In addition, Esper allows instance method invocations on named streams.

Esper auto-imports the following Java library packages:

* javalang.*
e javamath.*
* javatext.*
e javautil.*

Thus Java static library methods can be used in al expressions as shown in below example:

sel ect synbol, WMath.round(vol une/ 1000)
from St ockTi ckEvent . wi n: ti me(30 sec)

In general, arbitrary Java class names have to be fully qualified (e.g. javalang.Math) but Esper provides a
mechanism for user-controlled imports of classes and packages as outlined in Section 10.4.4, “Class and pack-
age imports’.

The below table outlines the built-in single-row functions available.

Table 7.1. Syntax and results of single-row functions

Single-row Function Result

case val ue Returns resul t where the first val ue equals
when conpare_val ue then result
[when conpare_val ue then result ...]
[el se result]

conpar e_val ue.

end
case Returnstheresul t for the first condition that
when condition then result istrue.

[when condition then result ...]
[el se result]

end
cast (expressi on, type_nane) Casts the result of an expression to the given
type.
coal esce(expression, expression [, expression ...]) Returnsthefirst non-nul | valueinthelist, or
nul | if there are no non-nul | values.
current _tinmestanp[()] Returns the current engine time asal ong mil-

© 2007 EsperTech Inc. - Esper2.0.0 78

EPL Reference: Functions

Single-row Function Result

lisecond value. Reserved keyword with op-
tional parenthesis.

exi st s(dynam c_property_nane) Returns true if the dynamic property exists
for the event, or false if the property does not
exist.

i nst anceof (expression, type_name [, type_nanme ...]) Returns true if the expression returns an ob-

ject whose type is one of the types listed.

max(expression, expression [, expression ...]) Returns the highest numeric value among the
2 or more comma-separated expressions.

m n(expressi on, expression [, expression ...]) Returns the lowest numeric value among the
2 or more comma-separated expressions.

prev(expression, event_property) Returns a property value of a previous event,
relative to the event order within a data win-
dow

prior(integer, event property) Returns a property value of a prior event, rel-

ative to the natura order of arrival of events

7.1.1. The case Control Flow Function

The case control flow function has two versions. The first version takes avalue and alist of compare values to
compare against, and returns the result where the first value equals the compare value. The second version
takesalist of conditions and returns the result for the first condition that is true.

Thereturn type of acase expression is the compatible aggregated type of all return values.

The example below shows the first version of a case statement. It has a String return type and returns the
value 'one'.

sel ect case 1 when 1 then 'one' when 2 then 'two' else 'nore' end from...

The second version of the case function takes a list of conditions. The next example has a Bool ean return type
and returns the boolean value true.

sel ect case when 1>0 then true else false end from...

7.1.2. The cast Function

The cast function casts the return type of an expression to a designated type. The function accepts two para-
meters: The first parameter is the property hame or expression that returns the value to be casted. The second
parameter is the typeto cast to.

© 2007 EsperTech Inc. - Esper2.0.0 79

EPL Reference: Functions

Valid parameters for the second (type) parameter are:

e Any of the Java built-in types: i nt, |ong, byte, short, char, double, float, string, wherestring
isashort notation for j ava. | ang. Stri ng. The type nameis not case-sensitive. For example:

cast(price, double)

» Thefully-qualified class name of the classto cast to, for example:

cast (product, org. myproducer. Product)

The cast function is often used to provide a type for dynamic (unchecked) properties. Dynamic properties are
properties whose type is not known at compile type. These properties are always of typej ava. | ang. Obj ect .

The cast function as shown in the next statement casts the dynamic "price" property of an "item" in the Or-
derEvent to adouble value.

sel ect cast(itemprice?, double) from O derEvent

Thecast function returnsanul | valueif the expression result cannot be casted to the desired type, or if the ex-
pression result itself isnul I .

Thecast function adheres to the following type conversion rules:

* For al numeric types, the cast function utilitzesj ava. | ang. Nunber to convert numeric types, if required.
e Forcaststostring orjava. |l ang. String, thefunction callst oSt ri ng on the expression result.
» For casts to other abjects including application objects, the cast function considers a Java class's super-

classesaswell asall directly or indirectly-implemented interfaces by superclasses.

7.1.3. The coal esce Function

The result of the coal esce function is the first expression in alist of expressions that returns a non-null value.
The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo':

sel ect coal esce(null, '"foo') from...

7.1.4. The current _Ti nest anp Function

The current _ti nestanp function is a reserved keyword and requires no parameters. The result of the cur-
rent _ti mest anp function isthel ong-type millisecond value of the current engine system time.

The function returns the current engine timestamp at the time of expression evaluation. When using external-
timer events, the function provides the last value of the externally-supplied time at the time of expression evalu-
ation.

This example selects the current engine time:

sel ect current_tinmestanp from MyEvent
/'l equivalent to

© 2007 EsperTech Inc. - Esper2.0.0 80

EPL Reference: Functions

sel ect current_tinestanp() from M/Event

7.1.5. The Exi sts Function

The exi st s function returns a boolean value indicating whether the dynamic property, provided as a parameter
to the function, exists on the event. The exi st s function accepts a single dynamic property hame as it's only
parameter.

The exi st s function is for use with dynamic (unchecked) properties. Dynamic properties are properties whose
typeis not known at compile type. Dynamic properties return a null value if the dynamic property does not ex-
ists on an event, or if the dynamic property exists but the value of the dynamic property is null.

The exi st's function as shown next returns true if the "item" property contains an object that has a "service-
Name" property. It returns false if the "item" property is null, or if the "item" property does not contain an ob-
ject that has a property named "serviceName" :

sel ect exists(item serviceNane?) from O derEvent

7.1.6. The I nst ance- & Function

Thei nstanceof function returns a boolean value indicating whether the type of value returned by the expres-
sion is one of the given types. The first parameter to thei nst anceof function is an expression to evaluate. The
second and subsequent parameters are Java type names.

The function determines the return type of the expression at runtime by evaluating the expression, and com-
pares the type of object returned by the expression to the defined types. If the type of abject returned by the ex-
pression matches any of the given types, the function returns t rue. If the expression returned nul | or a type
that does not match any of the given types, the function returnst al se.

Thei nst anceof function is often used in conjunction with dynamic (unchecked) properties. Dynamic proper-
ties are properties whose type is not known at compile type.

This example usesthei nst anceof function to select different properties based on the type:

sel ect case when instanceof (item com myconpany. Service) then servi ceNane?
when instanceof (item com nmyconpany. Product) then product Nane? end
from O der Event

Thei nstanceof function returnsf al se if the expression tested by instanceof returned null.

Valid parameters for the type parameter list are:

e Any of the Javabuilt-intypes. int, long, byte, short, char, double, float, string, wherestring
is a short notation for j ava. | ang. Stri ng. The type name is not case-sensitive. For example, the next func-
tion testsif the dynamic "price" property is either of type float or type double:

i nst anceof (price?, double, float)

» Thefully-qualified class name of the classto cast to, for example:

i nst anceof (product, org.nyproducer. Product)

© 2007 EsperTech Inc. - Esper2.0.0 8l

EPL Reference: Functions

The function considers an event class's superclasses as well as all the directly or indirectly-implemented inter-
faces by superclasses.

7.1.7. The Mm n and max Functions

The mi n and max function take two or more parameters that itself can be expressions. The i n function returns
the lowest numeric value among the 2 or more comma-separated expressions, while the max function returns the
highest numeric value. The return type is the compatible aggregated type of al return values.

The next example shows the max function that has a Doubl e return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from...

The nmi n function returns the lowest value. The statement below uses the function to determine the smaller of
two timestamp values.

sel ect synmbol, mn(ticks.tinmestanp, news.tinestanp) as mnT
from St ockTi ckEvent.win:ti me(30 sec) as ticks, NewsEvent.w n:tinme(30 sec) as news
where ticks.synbol = news.synbol

7.1.8. The previ ous Function

The pr ev function returns the property value of a previous event. The first parameter denotes the i-th previous
event in the order established by the data window. The second parameter is a property name for which the func-
tion returns the value for the previous event.

This example selects the value of the pri ce property of the 2nd-previous event from the current Trade event.

sel ect prev(2, price) from Trade. w n: | ength(10)

Since the prev function takes the order established by the data window into account, the function works well
with sorted windows. In the following example the statement selects the symbol of the 3 Trade events that had
the largest, second-largest and third-largest volume.

sel ect prev(0, synbol), prev(l, synbol), prev(2, synbol)
from Trade. ext:sort(vol une, true, 10)

The i-th previous event parameter can aso be an expression returning an Integer-type value. The next statement
joins the Trade data window with an RankSel ect i onEvent event that provides ar ank property used to ook up
acertain position in the sorted Trade data window:

sel ect prev(rank, synmbol) from Trade. ext:sort(volume, true, 10), RankSel ecti onEvent

And the expression count (*) - 1 alows usto select the oldest event in the length window:

sel ect prev(count(*) - 1, price) from Trade.w n: | ength(100)

The prev function returnsanul | value if the data window does not currently hold the i-th previous event. The
example below illustrates this using a time batch window. Here the pr ev function returns a null value for any
events in which the previous event is not in the same batch of events. Note that the pri or function as discussed
below can be used if anull value is not the desired resullt.

sel ect prev(1l, synbol) from Trade.w n:tine_batch(1 m n)

© 2007 EsperTech Inc. - Esper2.0.0 82

EPL Reference: Functions

Previous Event per Group

The combination of prev function and group-by view returns the property value for a previous event in the giv-
en group.

Let'slook at an example. Assume we want to obtain the price of the previous event of the same symbol as the
current event.

The statement that follows solves this problem. It declares a group-by view grouping on the symbol property
and atime window of 1 minute. As aresult, when the engine encounters a new symbol value that it hasn't seen
before, it creates a new time window specifically to hold events for that symbol. Consequently, the previous
function returns the previous event within the respective time window for that event's symbol value.

sel ect prev(1l, price) as prevPrice from Trade. std: groupby(synbol).win:time(1l mn)

In a second example, assume we need to return, for each event, the current top price per symbol. We can use
the pr ev to obtain the highest price from a sorted data window, and use the group-by view to group by symbol:

sel ect prev(0, price) as topPricePer Symbol
from Trade. std: groupby(synbol). ext:sort(price, false, 1)

Restrictions

The following restrictions apply to the pr ev functions and its results:

e Thefunction always returnsanul | value for remove stream (old data) events
e The function requires a data window view, or a group-by and data window view, without any additional
sub-views. Datawindow views are: length window, time and time batch window and sorted window

Comparison to the prior Function

The prev function is similar to the pri or function. The key differences between the two functions are as fol-
lows:

» The prev function returns previous events in the order provided by the data window, while the pri or func-
tion returns prior eventsin the order of arrival as posted by a stream's declared views.

e The prev function requires a data window view while the pri or function does not have any view require-
ments.

» Theprev function returns the previous event grouped by a criteria by combining the st d: gr oupby view and
a datawindow. The pri or function returns prior events posted by the last view regardless of data window
grouping.

* Theprev function returnsanul | value for remove stream events, i.e. for events leaving a data window. The
pri or function does not have this restriction.

7.1.9. The prior Function

The pri or function returns the property value of a prior event. The first parameter is an integer value that de-
notes the i-th prior event in the natural order of arrival. The second parameter is a property name for which the
function returns the value for the prior event.

This example selects the value of the pri ce property of the 2nd-prior event to the current Trade event.

select prior(2, price) from Trade

© 2007 EsperTech Inc. - Esper2.0.0 83

EPL Reference: Functions

Thepri or function can be used on any event stream or view and does not have any specific view requirements.
The function operates on the order of arrival of events by the event stream or view that provides the events.

The next statement uses a time batch window to compute an average volume for 1 minute of Trade events,
posting results every minute. The select-clause employsthe pri or function to select the current average and the
average before the current average:

sel ect average, prior(1, average)
from TradeAverages.wi n:tine_batch(1 mn).stat: uni (vol une)

7.2. Aggregate Functions

The syntax of the aggregation functions and the results they produce are shown in below table.

Table 7.2. Syntax and results of aggregate functions

Aggregate Function Result

sum([all|distinct] expression)
Totals the (distinct) values in the expression, returning a value of | ong,
doubl e, float or integer type depending on the expression

avg([all|distinct] expression)
Average of the (distinct) values in the expression, returning a value of
doubl e type

count([all|distinct] expression)
Number of the (distinct) non-null values in the expression, returning a
value of | ong type

count(*)
Number of events, returning avalue of | ong type

max([all|distinct] expression)
Highest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

min([all|distinct] expression)
Lowest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

median([all|distinct] expression)
Median (distinct) value in the expression, returning a value of doubl e
type

stddev([all|distinct] expression)
Standard deviation of the (distinct) values in the expression, returning a
value of doubl e type

avedev([all|distinct] expression)
Mean deviation of the (distinct) values in the expression, returning a
value of doubl e type

7.3. User-Defined Functions

© 2007 EsperTech Inc. - Esper2.0.0 84

EPL Reference: Functions

A user-defined function (UDF) can be invoked anywhere as an expression itself or within an expresson. The
function must ssimply be a public static method that the classloader can resolve at statement creation time. The
engine resolves the function reference at statement creation time and verifies parameter types.

User-defined functions can be also be invoked on instances of an event: Please see Section 4.4.4, “Using the
Stream Name” to invoke event instance methods on a named stream.

The example below assumes a class Myd ass that exposes a public static method nmyFunct i on accepting 2 para-
meters, and returing a numeric type such as doubl e.

sel ect 3 * com myconpany. MyCl ass. nyFunction(price, volune) as nyVal ue
from St ockTick.wi n:tinme(30 sec)

User-defined functions also take array parameters as this example shows. The section on Section 6.5, “Array
Definition Operator” outlines in more detail the types of arrays produced.

sel ect * from RFI DEvent where com nmyconpany.rfid. M/Checker.i sl nZone(zone, {10, 20, 30})

Java class names have to be fully quaified (e.g. javalang.Math) but Esper provides a mechanism for user-
controlled imports of classes and packages as outlined in Section 10.4.4, “Class and package imports’.

User-defined functions can return any value including nul I, Java objects or arrays. Therefore user-defined
functions can serve to transform, convert or map events, or to extract information and assemble further events.

The following statement is a simple pattern that looks for events of type E1 that are followed by events of type
E2. It assignsthe tags"el" and "e2" that the function can use to assemble afinal event for output:

sel ect MyLi b. mapEvents(el, e2) frompattern [every el=El -> e2=E2]

A function that converts from one event type to another event type is shown in the next example. The first
statement declares a stream that consists of MyEvent events. The second statement employs a conversion func-
tion to convert MyOtherEvent events to events of type MyEvent:

insert into MyStream sel ect * from MyEvent
insert into MyStream sel ect MyLi b. convert(other) from MyQ her Event as ot her

In the example above, assuming the event classes MyEvent and MyOtherEvent are Java classes and not aliases,
the static method should have the following footprint:

public static MyEvent convert (MO her Event ot her Event)

© 2007 EsperTech Inc. - Esper2.0.0 85

Chapter 8. EPL Reference: Views

This chapter outlines the views that are built into Esper. All views can be arbitrarily combined as many of the
examples below show. The section on Chapter 3, Processing Model provides additional information on the re-
lationship of views, filtering and aggregation.

Esper organizes built-in views in namespaces and names. Views that provide dliding or tumbling data windows
are in the wi n namespace. Other most commonly used views are in the st d namespace. The ext namespace are
views that order events. The st at namespace is used for views that derive statistical data.

Esper distinguishes between data window views and derived-value views. Data windows, or data window
views, are views that retain incoming events until an expiry policy indicates to release events.

The next table summarizes data window views:

Table 8.1. Built-in Data Window Views

View

L ength window

Length batch window

Time window

Syntax

win:length(size)

win:length_batch(size)

win:time(time period)

Description

Sliding length window extending the
specified number of elements into the
past

Tumbling window that batches events
and releases them when a given min-
imum number of events has been col-
lected

Sliding time window extending the
specified time interval into the past

Externally-timed window

Time batch window

Time-Length
batch window

Time-Accumulating
dow

combination

win-

win:ext_timed(timestamp
time period)

property,

win:time_batch(time period)

win:time_length_batch(time period,

size)

win:time_accum(time period)

Sliding time window, based on the
millisecond time value supplied by an
event property

Tumbling window that batches events
and releases them every specified time
interval

Tumbling multi-policy time and
length batch window with flow con-
trol options

Sliding time window accumulates
events untii no more events arrive
within agiven time interval

Keep-All window win:keepall() The Kkeep-all data window view
simply retains al events
Sorted window ext:sort(property names, descending, Sorts by values of the specified prop-

Size)

erties and keeps only the top events up
tothe given size

Time-Order View

ext:time_order(property
time_period)

name,

Orders events that arrive out-of-order,
using a timestamp-property supplied

© 2007 EsperTech Inc. - Esper2.0.0

86

EPL Reference: Views

View

Unique

Group By

Last Event

Syntax

std:unique(property name(s))

std:groupby(property name(s))

std:lastevent()

Description
by each event to be ordered

Retains only the most recent among
events having the same value for the
specified property or properties. Acts
as a length window of size 1 for each
distinct value of the property

Groups events into sub-views by the
value of the specified field or fields,
generally used to provide a separate
data window per group

Retains the last event, acts as a length
window of size 1

The table below summarizes views that derive information from received events and present the derived in-
formation as an insert and remove stream:

Table 8.2. Built-in Derived-Value Views

View

Size

Syntax
std:size()

Description

Derives a count of the number of
events in a data window, or in an in-
sert stream if used without a data win-
dow.

Univariate statistics

Regression

Correlation

Weighted average

Multi-dimensional statistics

stat:uni(property name)

stat:linest(property name, property
name)

stat:correl(property name, property
name)

stat:weighted_avg(property
property hame)

name,

stat:cube(values to derive, property
datapoint, property column, row,

page)

Calculates univariate statistics on an
event property

Calculates regression on two event
properties

Cdculates the correlation value on
two event properties

Calculates weighted average given a
weight field and a field to compute the
average for

Groups and calculates statistics by one
or more event properties

A Note on View Parameters

View parameters follow the view namespace name and view name in parenthesis. Where the view parameters
include one or more event property names, property names can be placed in single or double quotes, or appear

unquoted:

sel ect * from St ockTi ckEvent. stat: gr oupby(feed).w n: | engt h(10)

. equivalent to ...

sel ect * from St ockTi ckEvent. stat: groupby(' feed').w n: | ength(10)

© 2007 EsperTech Inc. - Esper2.0.0

87

EPL Reference: Views

Expressions are not allowed as view parameters.

8.1. Window views

8.1.1. Length window (wi n: I engt h)

This view is a moving (sliding) length window extending the specified number of elements into the past. The
view takes a single numeric parameter that defines the window size:

wi n: | engt h(si ze)
The below example calculates univariate statistics on price for the last 5 stock ticks for symbol 1BM.

select * from StockTi ckEvent (synbol =" IBM). wi n: | ength(5).stat:uni(price)

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. The statistics on priceis calculated only for the last 10 events for each symbol.

select * from StockTi ckEvent. st d: groupby(synbol). w n: | ength(10).stat: uni(price)

8.1.2. Length batch window (wi n: | engt h_bat ch)

This window view buffers events (tumbling window) and releases them when a given minimum number of
events has been collected. The view takes the number of events to batch as a parameter:

wi n: | engt h_bat ch(si ze)

The next statement buffers events until a minimum of 5 events have collected. Listeners to updates posted by
this view receive updated information only when 5 or more events have collected.

sel ect * from St ockTi ckEvent.w n: | engt h_bat ch(5)

8.1.3. Time window (wi n: ti nme)

This view is a moving (sliding) time window extending the specified time interval into the past based on the
system time. This view takes a time period (see Section 4.2.1, “Specifying Time Periods’) or a number of
seconds as a parameter:

win:time(tine period)
wi n:time(nunber of seconds)

For the IBM stock tick eventsin the last 1 second, calculate statistics on price.

select * from StockTi ckEvent (synbol =" IBM).win:tinme(l sec).stat:uni(price)

The same statement rewritten to use a parameter supplying number-of-secondsiis:

select * from StockTi ckEvent (synbol =" IBM).win:time(1).stat:uni(price)

© 2007 EsperTech Inc. - Esper2.0.0 88

EPL Reference: Views

The following time windows are equivalent specifications:

win:tinme(2 mnutes 5 seconds)
win:time(l25 sec)
win:time(125)

8.1.4. Externally-timed window (wi n: ext _ti ned)

Similar to the time window, this view is a moving (diding) time window extending the specified time interval
into the past, but based on the millisecond time value supplied by an event property. The view takes two para-
meters: the name of the event property to return the long-typed timestamp value, and atime period or a number
of seconds:

wi n: ext _tinmed(tinestanp_property_name, tine_period)
wi n:ext_timed(tinmestanp_property_nane, nunber_of seconds)

The key difference comparing the externally-timed window to the regular time window is that the window
dlides not based on the engine time, but strictly based on the timestamp property value of the events entering
the window. The agorithm underlying the view compares the timestamp value of the oldest event with the
timestamp value of the newest arriving event on event arrival. If the time interval between the oldest and new-
est event is larger then the timer period parameter, then the algorithm removes all oldest events tail-first until
the difference between the oldest and newest event is within the time interval. The window therefore slides only
when events arrive and only considers each event's timestamp property and not engine time.

This view holds stock tick events of the last 10 seconds based on the timestamp property in St ockTi ckEvent .

sel ect * from St ockTi ckEvent.w n: ext_tined(ti nestanp, 10 seconds)

The externally-timed data window expects to receive event in timestamp order. The view is not useful for or-
dering eventsin time order, please us the time-order view instead.

8.1.5. Time batch window (wi n: ti ne_bat ch)

This window view buffers events (tumbling window) and rel eases them every specified time interval in one up-
date. The view takes atime period or anumber of seconds as a parameter.

Wi n:time_batch(tinme_period)
Wi n: ti me_bat ch(nunber _of _seconds)

The below example batches eventsinto a5 second window releasing new batches every 5 seconds. Listenersto
updates posted by this view receive updated information only every 5 seconds.

select * from StockTi ckEvent.wi n:time_batch(5 sec)

8.1.6. Time-Length combination batch window (wi n: ti me_| engt h_bat ch)

This data window view is a combination of time and length batch (tumbling) windows. Similar to the time and
length batch windows, this view batches events and rel eases the batched events when either one of the follow-
ing conditions occurs, whichever occurs first: the data window has collected a given number of events, or agiv-

© 2007 EsperTech Inc. - Esper2.0.0 89

EPL Reference: Views

en timeinterval has passed.

The view parameters take 2 forms. The first form accepts a time period or number of seconds, and a parameter
for the number of events:

win:time_|length_batch(tine_period or nunber_of _seconds, nunber of events)

The next example shows a time-length combination batch window that batches up to 100 events or all events
arriving within a 1-second time interval, whichever condition occurs first:

select * from MyEvent.win:tinme_| ength_batch(1 sec, 100)

In this example, if 100 events arrive into the window before a 1-second time interval passes, the view posts the
batch of 100 events. If less then 100 events arrive within a 1-second interval, the view posts al events that ar-
rived within the 1-second interval at the end of the interval.

By default, if there are no events arriving in the current interval (insert stream), and no events remain from the
prior batch (remove stream), then the view does not post results to listeners. This view allows overriding this
default behavior viaflow control keywords.

The synopsis of the view with flow control parametersis:

win:time_|l ength_batch(tine_period or nunmber_of _seconds, nunber of events,
"flow control keyword [, keyword...]")

The ForcE_UPDATE flow control keyword instructs the view to post an empty result set to listenersif thereis no
data to post for an interval. The view begins posting no later then after one time interval passed after the first
event arrives.

The START_EAGER flow control keyword instructs the view to post empty result sets even before the first event
arrives, starting atime interval at statement creation time. As when using FORCE_UPDATE, the view also posts an
empty result set to listenersif there is no data to post for an interval, however it starts doing so at time of state-
ment creation rather then at the time of arrival of the first event.

Taking the two flow control keywords in one sample statement, this example presents a view that waits for 10
seconds or reacts when the 5th event arrives, whichever comes first. It posts empty result sets after one interval
after the statement is created, and keeps posting an empty result set as no events arrive during intervals:

select * from MyEvent.win:tinme_| ength_batch(10 sec, 5, "FORCE_UPDATE, START_EAGER')

8.1.7. Time-Accumulating window (wi n: ti ne_accum)

This data window view is a specialized moving (dliding) time window that differs from the regular time win-
dow in that it accumulates events until no more events arrive within a given time interval, and only then re-
leases the accumulated events as aremove stream.

The view accepts a single parameter: the time period or number of seconds specifying the length of the timein-
terval during which no events must arrive until the view releases accumulated events. The synopsis is as fol-
lows:

Wi n:time_accum(time_period or nunber_of seconds)

The next example shows a time-accumulating window that accumulates events, and then releases events if

© 2007 EsperTech Inc. - Esper2.0.0 90

EPL Reference: Views

within the time interval no more events arrive;

select * from M/Event.wi n:tinme_accun(10 sec)

This example accumulates events, until when for a period of 10 seconds no more MyEvent events arrive, at
which time it posts all accumulated MyEvent events.

Y our application may only be interested in the batches of events as events leave the data window. This can be
done simply by selecting the remove stream of this data window, populated by the engine as accumulated
events leave the data window all-at-once when no events arrive during the time interval following the time the
last event arrived:

select rstream* from MyEvent.w n:tine_accun(10 sec)

If there are no events arriving, then the view does not post results to listeners.

8.1.8. Keep-All window (wi n: keepal |)

This keep-all data window view simply retains al events. The view does not remove events from the data win-
dow, unless used with a named window and the on del et e clause.

The view accepts no parameters. The synopsisis asfollows:
wi n: keepal | ()
The next example shows a keep-all window that accumulates all events received into the window:

sel ect * from M/Event.w n: keepal | ()

Note that since the view does not release events, care must be taken to prevent retained events from using all
available memory.

8.2. Standard view set

8.2.1. Unique (st d: uni que)

The uni que view is aview that includes only the most recent among events having the same value for the spe-
cified field or list of fields.

The synopsisis:

std: uni que(property_nane [, property name ...])

The view acts as a length window of size 1 for each distinct value of the event property, or combination of
event property values. It thus posts as old events the prior event of the same property value(s), if any.

The below example creates a view that retains only the last event per symbol.

sel ect * from StockTi ckEvent. st d: uni que(synbol)

The next example creates a view that retains the last event per symbol and feed.

© 2007 EsperTech Inc. - Esper2.0.0 91

EPL Reference: Views

select * from StockTi ckEvent. st d: uni que(synbol, feed)

8.2.2. Group-By (st d: gr oupby)

This view groups events into sub-views by the value of the specified field or combination of fields. The view
takes a single property name to supply the group-by values, or alist of property names as the synopsis shows:

st d: groupby(property_nanme [, property _nane ...])

This example calculates statistics on price separately for each symbol.

select * from StockTi ckEvent. std: gr oupby(synbol). stat:uni (price)

The group-by view can also take multiple fields to group by. This example cal culates statistics on price for each
symbol and feed:

select * from StockTi ckEvent. std: groupby(synbol, feed).stat:uni(price)

The order in which the group-by view appears within sub-views of a stream controls the data the engine derives
from events for each group. The next 2 statements demonstrate this using alength window.

This example keeps alength window of 10 events of stock trade events, with a separate length window for each
symbol. The engine calculates statistics on price for the last 10 events for each symbol. During runtime, the en-
gine actually allocates a separate length window for each new symbol arriving.

select * from StockTi ckEvent. st d: groupby(synbol). w n: | ength(10).stat:uni(price)

By putting the group-by view in position after the length window, we can change the semantics of the query.
The query now returns the statistics on price per symbol for only the last 10 events across al symbols. Here the
engine allocates only one length window for al events.

select * from StockTi ckEvent.wi n: | engt h(10). std: groupby(synbol). stat:uni(price)

We have learned that by placing the group-by view before other views, these other views become part of the
grouped set of views. The engine dynamically allocates a new view instance for each subview, every time it en-
counters a new group Kkey such as a new vaue for symbol. Therefore, in
st d: groupby(symbol). wi n: | engt h(10) the engine allocates a new length window for each distinct symbol.
However inwi n: | engt h(10) . st d: gr oupby(synbol) the engine maintains asingle length window.

Multiple group-by views can also be used in the same statement. The statement below groups by symbol and
feed. As the statement declares the time window after the group-by view for symbols, the engine alocates a
new time window per symbol however reports statistics on price per symbol and feed. The query results are
statistics on price per symbol and feed for the last 1 minute of events per symbol (and not per feed).

select * from StockTi ckEvent. st d: groupby(synbol). wi n:time(1l mnute)
.std: groupby(feed).stat:uni(price)

Last, we consider the permutation where the time window is declared after the group-by. Here, the query results
are statistics on price per symbol and feed for the last 1 minute of events per symbol and feed.

select * from StockTi ckEvent. st d: gr oupby(synbol , feed)
.win:tine(l mnute).stat:uni(price)

© 2007 EsperTech Inc. - Esper2.0.0 92

EPL Reference: Views

8.2.3. Size (st d: si ze)

Thisview ssimply posts the number of events received from a stream or view. The synopsisis simply:

std: si ze()

The view posts a single long-typed property named si ze. The view posts the prior size as old data, and the cur-
rent size as new data to update listeners of the view. Viatheit er at or method of the statement the size value
can also be polled (read).

When combined with a data window view, the size view reports the current and prior number of eventsin the
datawindow. This example reports the number of tick events within the last 1 minute:

sel ect size from StockTi ckEvent.win:tinme(l mn).std:size()

The size view is also useful in conjunction with a group-by view to count the number of events per group. The
EPL below returns the number of events per symbol.

sel ect size from StockTi ckEvent. std: groupby(synbol). std: size()

When used without a data window, the view simply counts the number of events:

sel ect size from StockTi ckEvent. std: si ze()

All views can be used with pattern statements as well. The next EPL snippet shows a pattern where we look for
tick events followed by trade events for the same symbol. The size view counts the number of occurances of the
pattern.

select size frompattern[every s=StockTi ckEvent -> TradeEvent (synbol =s. synbol)] . std: si ze()

8.2.4. Last Event (std: | ast event)
This view exposes the last element of its parent view:

std: | astevent ()

The view acts as alength window of size 1. It thus posts as old events the prior event in the stream, if any.
This example statement retains statistics calculated on stock tick price for the symbol IBM.

select * from StockTi ckEvent (synbol ="' I1BM). stat:uni (price).std:|astevent()

8.3. Statistics views

8.3.1. Univariate statistics (stat: uni)

Thisview calculates univariate statistics on an event property. The view takes a single event property name as a
parameter. The event property must be of numeric type:

stat:uni (event_property_nane)

© 2007 EsperTech Inc. - Esper2.0.0 93

EPL Reference: Views

Table 8.3. Univariate statistics derived properties

Property Name Description

dat apoi nt s Number of values, equivalent to count (*) for the stream
total Sum of values

aver age Average of values

vari ance Variance

st dev Sampl e standard deviation (square root of variance)

st devpa Population standard deviation

The below exampl e selects the standard deviation on price for stock tick events for the last 10 events.

sel ect stdev from StockTi ckEvent.w n: | ength(10).stat: uni (price)

8.3.2. Regression (stat:linest)

This view calculates regression on two event properties. The view takes two event property hames as paramet-
ers. The event properties must be of numeric type:

stat:linest(event_property_nane_1, event_property_name_2)

Table 8.4. Regression derived properties

Property Name Description
sl ope Slope
Yl nt er cept Y Intercept

Calculate slope and y-intercept on price and offer for all eventsin the last 10 seconds.

sel ect slope, Yintercept from StockTi ckEvent.w n:time(10 seconds).stat:linest(price, offer)

8.3.3. Correlation (stat: correl)

This view calculates the correlation value on two event properties. The view takes two event property names as
parameters. The event properties must be of numeric type:

stat:correl (event _property_name_1, event_property_nane_2)

Table 8.5. Correlation derived properties

Property Name Description

correl ation Correlation between two event properties

© 2007 EsperTech Inc. - Esper2.0.0 94

EPL Reference: Views

Calculate correlation on price and offer over all stock tick eventsfor IBM.

sel ect correlation from StockTi ckEvent (synbol ="' IBM).stat:correl (price, offer)

8.3.4. Weighted average (st at : wei ght ed_avg)

This view returns the weighted average given a weight field and a field to compute the average for. The view
takes two event property names as parameters. The event properties must be of numeric type:

st at: wei ght ed_avg(event _property_nanme_field, event_property_nane_wei ght)

Table 8.6. Weighted average derived properties

Property Name Description

aver age Weighted average

A statement that derives the volume-weighted average price for the last 3 seconds:

sel ect average
from St ockTi ckEvent (synbol =" IBM).w n:ti me(3 seconds). stat: wei ghted_avg(price, vol une)

8.3.5. Multi-dimensional statistics (st at : cube)

This view works similar to the st d: gr oupby views in that it groups information by one or more event proper-
ties. The view accepts 3 or more parameters: The first parameter to the view defines the univariate statistics
values to derive. The second parameter is the property name to derive data from. The remaining parameters
supply the event property names to use to derive dimensions.

stat: cube(val ues_to_derive, property_nanme_dat apoi nt, property_nane_col um)

stat:cube(val ues_to_derive, property_nane_datapoi nt, property_nane_col um,
property_nane_r ow)

stat:cube(values_to_derive, property_nane_datapoi nt, property_nane_col um,
property_nane_row, property_nane_page)

Table 8.7. Multi-dim derived properties

Property Name Description
cube The cube following the com espert ech. esper. vi ew. st at . ol ap. Cube inter-
face

The example below derives the count, average and standard deviation latency of service measurement events
per customer.

sel ect cube from Servi ceMeasurenent. stat: cube({‘datapoints’, ‘average , ‘stdev'},
| at ency, custoner)

© 2007 EsperTech Inc. - Esper2.0.0 95

EPL Reference: Views

This example derives the average latency of service measurement events per customer, service and error status
for eventsin the last 30 seconds.

sel ect * from Servi ceMeasurenent. w n: | engt h(30000) . st at: cube({' average’},
| at ency, custoner, service, status)

8.4. Extension View Set

8.4.1. Sorted Window View (ext: sort)

This view sorts by values of the specified event properties and keeps only the top events up to the given size.
The syntax to sort on a single event property is as follows.

ext:sort(property_name, is_descending, size)

To sort on amultiple event properties the syntax is as follows.

sort({ property_nane, is_descending [, property_nanme, is_descending ...] }, size)

The view below sorts on price descending keeping the lowest 10 prices and reporting statistics on price.

select * from StockTi ckEvent.ext:sort(price, false, 10).stat:uni(price)

The following example sorts events first by price in descending order, and then by symbol name in ascending
(alphabetical) order, keeping only the 10 events with the highest price (with ties resolved by alphabetical order
of symbol).

sel ect * from St ockTi ckEvent.ext:sort({'price', true, 'synbol', false}, 10)

8.4.2. Time-Order View (ext: ti me_order)

This view orders events that arrive out-of-order, using a timestamp-property supplied by each event to be
ordered, and by comparing the event timestamp to engine system time.

The syntax for this view is as follows.

ext:time_order(tinmestanp_property_nane, time_period or nunber_of _seconds)

The first parameter to the view is the name of the property on the event that supplies the timestamp value. The
timestamp is expected to be along-typed millisecond value that denotes an event's time of consideration by the
view. Thisistypically the time of arrival. The second parameter is a number of seconds or the time period spe-
cifying the time interval that an arriving event should maximally be held, in order to consider older events ar-
riving at alater time.

Since the view compares an event's timestamp property to engine time, the view requires that the event
timestamp values and current engine time are both following the same clock. Therefore, to the extend that the
clocks that originated both timestamps differ, the view may produce inaccurate results.

As an example, the next statement usesthe arri val _ti me property of MyTi mest anpedEvent eventsto order and
release events by arrival time:

© 2007 EsperTech Inc. - Esper2.0.0 96

EPL Reference: Views

insert into Arrival Ti mneOr der edStream
sel ect rstream* from MyTi nest anpedEvent . ext:tine_order(arrival _time, 10 sec)

In the example above, the arrival _ti me property holds a long-typed timestamp value in milliseconds. On ar-
rival of an event, the engine compares the timestamp value of each event to the tail-time of the window. The
tail-time of the window is, in this example, 10 seconds before engine time (continuously dliding). If the
timestamp value indicates that the event is older then the tail-time of the time window, the event isreleased im-
mediately in the remove stream. If the timestamp value indicates that the event is newer then the tail-time of the
window, the view retains the event until engine time moves such that the event timestamp is older then tail-
time.

The examples thus holds each arriving event in memory anywhere from zero seconds to 10 seconds, to allow
for older events (considering arrival time timestamp) to arrive. In other words, the view holds an event with an
arrival time equal to engine time for 10 seconds. The view holds an event with an arrival time that is 2 seconds
older then engine time for 8 seconds. The view holds an event with an arrival time that is 10 or more seconds
older then engine time for zero seconds, and releases such (old) events immediately into the remove stream.

The insert stream of this diding window consists of al arriving events. The remove stream of the view is
ordered by timestamp value: The event that has the oldest timestamp value is released first, followed by the
next newer events. Note the statement above uses the r st r eam keyword to select ordered events only and uses
theinsert into clauseto makes such ordered stream available for subsequent statements to use.

It is up to your application to populate the timestamp property into your events for consideration by the view.
The view also works well if you use externally-provided time viatimer events.

© 2007 EsperTech Inc. - Esper2.0.0 97

Chapter 9. APl Reference

9.1. API Overview

Esper has 2 primary interfaces that this section outlines. The administrative interface and the runtime interface.

Use Esper's administrative interface to create and manage EPL and pattern statements, and set runtime config-
urations, as discussed in Section 4.1, “EPL Introduction” and Section 5.1, “ Event Pattern Overview”.

Use Esper's runtime interface to send events into the engine, emit events and get statistics for an engine in-
stance.

The JavaDoc documentation is also a great source for API information.

9.2. Engine Instances

Each instance of an Esper engine is completely independent of other engine instances and has its own adminis-
trative and runtime interface.

An instance of the Esper engine is obtained via static methods on the EPSer vi cePr ovi der Manager class. The
get Def aul t Provi der method and the get Provi der (String URI) methods return an instance of the Esper en-
gine. The latter can be used to obtain multiple instances of the engine for different URI values. The EPSer vi ce-

Provi der Manager determines if the URI matches all prior URI values and returns the same engine instance for
the same URI value. If the URI has not been seen before, it creates a new engine instance.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the default engine in-
stance return the same instance.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;

This code snippet gets an Esper engine for URI RFI DPr ocessor 1. Subsequent calls to get an engine with the
same URI return the same instance.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der (" RFI DProcessor 1") ;

An existing Esper engine instance can be reset viathei ni ti al i ze method on the EPSer vi cePr ovi der instance.
This stops and removes all statements in the Engine.

9.3. The Administrative Interface

9.3.1. Creating Statements

Create event pattern expression and EPL statements via the administrative interface EPAdni ni strat or .
This code snippet gets an Esper engine then creates an event pattern and an EPL statement.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPAdni ni strator admi n = epServi ce. get EPAdm ni strator();

EPSt at enent 10secRecur Tri gger = admi n. createPattern(

© 2007 EsperTech Inc. - Esper2.0.0 98

APl Reference

“every timer:at(*, *, *, *, *, */10)");

EPSt at enent count Stmt = admi n. cr eat eEPL(

"sel ect count (*) from Market Dat aBean.win:time(60 sec)");

Note that event pattern expressions can also occur within EPL statements. This is outlined in more detail in

Section 4.4.2, “ Pattern-based Event Streams”.

The cr eat e methods on EPAdni ni st rat or are overloaded and allow an optional statement name to be passed to
the engine. A statement name can be useful for retrieving a statement by name from the engine at a later time.
The engine assigns a statement name if no statement name is supplied on statement creation.

The creat ePat t ern and cr eat eEPL methods return EPSt at ement instances. Statements are automatically star-
ted and active when created. A statement can also be stopped and started again viathe st op and st art methods

shown in the code snippet below.

count St nt . st op() ;
count Stnt.start();

9.3.2. Receiving Statement Results

Esper provides three choices for your application to receive statement results. Y our application can use all three
mechanisms alone or in any combination for each statement. The choices are:

Table 9.1. Choices For Receiving Statement Results

Name M ethods on EPSt at enent

Listener Callbacks | addLi stener and r enovel-

i stener

Subscriber Object set Subscri ber

Description

Your application provides implementations of the Up-
dateLi stener Or the Statenent Awar eUpdat eLi st ener
interface to the statement. Listeners receive Event Bean
instances containing statement results.

The engine continuoudly indicates results to al listeners
as soon they occur, and following output rate limiting
clausesif specified.

Since Esper 2.0 it is advised to use the Subscriber Object
when possible.

Y our application provides a POJO (plain Java object) that
exposes methods to receive statement results.

The engine continuously indicates results to the single
subscriber as soon they occur, and following output rate
limiting clausesif specified.

This is the fastest method to receive statement results, as
the engine delivers strongly-typed results directly to your
application objects without the need for building an
Event Bean result set asin the Listener Callback choice.

There can be at most 1 Subscriber Object registered per

© 2007 EsperTech Inc. - Esper2.0.0

99

APl Reference

Name Methods on EPSt at enent Description

statement. If you require more than one listener, use the
Listener Callback instead (or in addition). The Subscriber
Object is bound to the statement with a strongly typed
support which ensure direct delivery of new events
without type conversion. This optimization is made pos-
sible because there can only be 0 or 1 Subscriber Object

per statement.
Pull API safelterator anditerat- o
or Your application asks the statement for results and re-
ceives a set of events via
java. util.lterator<EventBean>.

This is useful if your application does not need continu-
ous indication of new resultsin real-time.

Your application may attach one or more listeners, zero or one single subscriber and in addition use the Pull
API on the same statement. There are no limitations to the use of iterator, subscriber or listener alone or in com-
bination to receive statement results.

The best delivery performance can generally be achieved by attaching a subscriber and by not attaching listen-
ers. The engine is aware of the listeners and subscriber attached to a statement. The engine uses this informa-
tion internally to reduce statement overhead. For example, if your statement does not have listeners or a sub-
scriber attached, the engine does not need to continuously generate results for delivery.

9.3.3. Setting a Subscriber Object

A subscriber object is a direct binding of query results to a Java object. The object, a POJO, receives statement
results via method invocation. The subscriber class need not implement an interface or extend a superclass.

Subscriber objects have several advantages over listeners. First, they offer a substantial performance benefit:
Query results are delivered directly to your method(s) through Java virtual machine method calls, and there is
no intermediate representation (Event Bean). Second, as subscribers receive strongly-typed parameters, the sub-
scriber code tendsto be simpler.

This chapter describes the requirements towards the methods provided by your subscriber class.

The engine can deliver results to your subscriber in two ways:

1. Each evert in the insert stream results in amethod invocation, and each event in the remove stream results
in further method invocations. Thisistermed row-by-row delivery.

2. A single method invocation that delivers al rows of the insert and remove stream. This is termed multi-
row delivery.

Row-By-Row Delivery

Y our subscriber class must provide a method by name updat e to receive insert stream events row-by-row. The
number and types of parameters declared by the updat e method must match the number and types of columns
as specified in the sel ect clause, inthe same order asin thesel ect clause.

© 2007 EsperTech Inc. - Esper2.0.0 100

APl Reference

For example, if your statement is:

sel ect orderld, price, count(*) from O der Event

Then your subscriber updat e method looks as follows:

public class MySubscriber {

public void update(String orderld, double price, long count) {...}

Each method parameter declared by the updat e method must be assignable from the respective column type as
listed inthe sel ect -clause, in the order selected. The assignability rules are:

* Widening of types follows Java standards. For example, if your sel ect clause selects an integer value, the
method parameter for the same column can be typed int, long, float or double (or any equivalent boxed

type).

e Auto-boxing and unboxing follows Java standards. For example, if your select clause selects an
java.lang. | nt eger value, the method parameter for the same column can be typed i nt . Note that if your
sel ect clause column may generate nul I values, an exception may occur at runtime unboxing the nul |
value.

* Interfaces and super-classes are honored in the test for assignability. Therefore j ava. | ang. oj ect can be
used to accept any sel ect clause column type

Wildcards

If your sel ect clause contains one or more wildcards (*), then the equivalent parameter type is the underlying
event type of the stream selected from.

For example, your statement may be:
select *, count(*) from O derEvent

Then your subscriber updat e method looks as follows:

public voi d update(Order Event order Event, long count) {...}

In ajoin, the wildcard expands to the underlying event type of each stream in the join in the order the streams
occur in the f romclause. An example statement for ajoinis:

select *, count(*) from OrderEvent order, O derH story hist

Then your subscriber updat e method should be:

public voi d updat e(Order Event order Event, OrderHistory orderHi story, long count) {...}

The stream wildcard syntax and the stream name itself can also be used:

select hist.*, order from OrderEvent order, O derHi story hist

The matching updat e method is:

public void update(OrderHistory orderHistory, OderEvent orderEvent) {...}

© 2007 EsperTech Inc. - Esper2.0.0 101

APl Reference

Row Delivery as Map and Object Array

Alternatively, your updat e method may simply choose to accept j ava. uti | . Map as a representation for each
row. Each columnin the sel ect clause isthen made an entry in the resulting Map. The Map keys are the column
alias nameif supplied, or the expression string itself for columns without an alias.

The updat e method for vap delivery is:

public void update(Map row) {...}

The engine also supports delivery of sel ect clause columns as an object array. Each item in the object array
represents acolumn in the sel ect clause. The updat e method then looks as follows:

public void update(Cbject[] row {...}

Delivery of Remove Stream Events

Your subscriber receives remove stream events if it provides a method named updat eRSt ream The method
must accept the same number and types of parameters as the updat e method.

An example statement:

sel ect orderld, count(*) from OrderEvent.w n:tine(20 sec) group by orderld

Then your subscriber updat e and updat eRSt r eammethods should be:

public void update(String, long count) {...}
public void updateRStream(String orderld, long count) {...}

Delivery of Begin and End Indications

If your subscriber requires a notification for begin and end of event delivery, it can expose methods by name
start and end.

The st art method must take two integer parameters that indicate the number of events of the insert stream and
remove stream to be delivered. The engine invokes the st art method immediately prior to delivering events to
the updat e and updat eRSt r eammethods.

The end method must take no parameters. The engine invokes the end method immediately after delivering
events to the updat e and updat eRSt r eammethods.

An example set of delivery methods:

/1 Called by the engine before delivering events to update nethods
public void start(int insertStreaniength, int renpbveStreaniLength)

/1 To deliver insert stream events
public void update(String orderld, long count) {...}

/! To deliver renpve stream events
public void updateRStreanm(String orderld, long count) {...}

/1 Called by the engine after delivering events
public void end() {...}

Multi-Row Delivery

© 2007 EsperTech Inc. - Esper2.0.0 102

APl Reference

In place of row-by-row delivery, your subscriber can receive al events in the insert and remove stream via a
single method invocation.

The event delivery follow the scheme as described earlier in Section 9.3.3.1.2, “Row Delivery as Map and Ob-
ject Array ”. The subscriber class must provide one of the following methods:

Table 9.2. Update Method for Multi-Row Delivery of Underlying Events

Method Description

update(Object[][] i nsertStream oject[][]

r enpvest r eam The first dimension of each Object array is the event

row, and the second dimension is the column match-
ing the column order of the statement sel ect clause

updat e(Map[] i nsert Stream Map[] re-
Each map represents one event, and Map entries rep-

resent columns of the statement sel ect clause

noveStream

Wildcards

If your sel ect clause contains a single wildcard (*) or wildcard stream selector, the subscriber object may also
directly receive arrays of the underlying events. In this case, the subscriber class should provide a method up-
date(Underlying[] insertStream Underlying[] removeSream) , such that Underlying represents the class
of the underlying event.

For example, your statement may be:

select * from OrderEvent.w n:tine(30 sec)

Y our subscriber class exposes the method:

public void update(OrderEvent[] insertStream O derEvent[] renoveStream) {...}

9.3.4. Adding Listeners

Your application can subscribe to updates posted by a statement via the addLi st ener and r enovelLi st ener
methods on EPSt at enent . Y our application must to provide an implementation of the Updat eLi st ener or the
St at ement Awar eUpdat eLi st ener interface to the statement:

Updat eLi st ener nyLi stener = new MyUpdat eLi st ener();
count St nt . addLi st ener (nyLi st ener);

EPL statements and event patterns publish old data and new data to registered Updat eLi st ener listeners. New
data published by statements is the events representing the new values of derived data held by the statement.
Old data published by statements constists of the events representing the prior values of derived data held by
the statement.

It is important to understand that Updat eLi st ener listeners receive multiple result rows in one invocation by
the engine: the new data and old data parameters to your listener are array parameters. For example, if your ap-
plication uses one of the batch data windows, or your application creates a pattern that matches multiple times
when asingle event arrives, then the engine indicates such multiple result rows in one invocation and your new
data array carries two or more rows.

© 2007 EsperTech Inc. - Esper2.0.0 103

APl Reference

A second listener interface is the Stat ement Awar eUpdat eLi st ener interface. A St at enent Awar eUpdat el -
i stener isespecially useful for registering the same listener object with multiple statements, as the listener re-
ceives the statement instance and engine instance in addition to new and old data when the engine indicates
new results to alistener.

St at enment Awar eUpdat eLi st ener myLi st ener = new MySt mt Awar eUpdat eLi st ener () ;
st at enent . addLi st ener (myLi st ener) ;

To indicate results the engine invokes this method on st at ement Awar eUpdat eLi st ener listeners. up-
dat e(Event Bean[] newkvents, EventBean[] ol dEvents, EPStatenent statenment, EPServiceProvider

epSer vi ceProvi der)

9.3.5. Using lterators

Subscribing to events posted by a statement is following a push model. The engine pushes data to listeners
when events are received that cause data to change or patterns to match. Alternatively, you need to know that
statements serve up data that your application can obtain viathe safel terator and it erat or methods on EP-
st at enent . Thisis called the pull APl and can come in handy if your application is not interested in all new up-
dates, and only needs to perform afrequent or infrequent poll for the latest data.

The saf el t er at or method on EPSt at enent returns a concurrency-safe iterator returning current statement res-
ults, even while concurrent threads may send events into the engine for processing. The safe iterator guarantees
correct results even as events are being processed by other threads. The cost is that the iterator obtains and
holds a statement lock that must be released viathe cl ose method on the Saf el t er at or instance.

Theit erat or method on EPSt at enent returns a concurrency-unsafe iterator. Thisiterator is only useful for ap-
plications that are single-threaded, or applications that themselves perform coordination between the iterating
thread and the threads that send events into the engine for processing. The advantage to this iterator is that it
does not hold alock.

The next code snippet shows a short example of use of safe iterators:

EPSt at enent statement = epAdmin. createEPL("sel ect avg(price) as avgPrice from MyTi ck");
/1l .. send events into the engine
[/ then use the pull API...
Saf el t er at or <Event Bean> safelter = statenent.safelterator();
try {
for (;safelter.hasNext();) {
/1 .. process event ..
Event Bean event = safelter.next();
Systemout. println("avg:" + event.get("avgPrice");
}
}

finally {
safelter.close(); // Note: safe iterators nmust be closed
}

Thisis ashort example of use of the regular iterator that is not safe for concurrent event processing:

doubl e averagePrice = (Double) epl Statenent.iterator().next().get("average");

Thesafelterator anditerator methods can be used to pull results out of all statements, including statements
that join streams, contain aggregation functions, pattern statements, and statements that contain awher e clause,
group by clause, havi ng clause or or der by clause.

For statements without an or der by clause, thei t er at or method returns events in the order maintained by the

© 2007 EsperTech Inc. - Esper2.0.0 104

APl Reference

data window. For statements that contain an order by clause, thei t er at or method returns events in the order
indicated by the or der by clause.

Esper places the following restrictions on the pull APl and usage of the saf el terat or andi t er at or methods:

1. In multithreaded applications, use the saf el t er at or method. Note: make sure your application closes the
iterator via the cl ose method when done, otherwise the iterated statement stays locked and event pro-
cessing for that statement does not resume.

2. In multithreaded applications, thei t er at or method does not hold any locks. The iterator returned by this
method does not make any guarantees towards correctness of results and fail-behavior, if your application
processes events into the engine instance by multiple threads. Use the saf el t er at or method for concur-
rency-safe iteration instead.

3. Sincethesafelterator anditerator methods return events to the application immediately, the iterator
does not honor an output rate limiting clause, if present. That is, the iterator returns results as if thereis no
output-rate clause for the statement. Use a separate statement and the i nsert i nt o clause to control the
output rate for iteration.

9.3.6. Managing Statements

The EPAdni ni st rat or interface provides the facilities for managing statements:

e Usetheget st at ement method to obtain an existing started or stopped statement by name

» Usetheget St at ement Names methods to abtain alist of started and stopped statement names

e Use the startAll Statenents, stopAl | Statements and destroyAl | Stat ements methods to manage all
statements in one operation

9.3.7. Runtime Engine Configuration

Certain configuration changes are available to perform on an engine instance while in operation. Such configur-
ation operations are available via the get Conf i gur ati on method on EPAdni ni st rat or, Which returns an Con-
figurationQperations object.

The configuration operations available on a running engine instance are as follows. Please see Chapter 10, Con-
figuration for more information.

* Add an new event type for a JavaBean class, legacy Java class or custom Java class
e Addannew DOM XML event type
e Addan new Map-based event type

9.4. The Runtime Interface

The EPRunt i ne interface is used to send events for processing into an Esper engine, and to emit Events from an
engine instance to the outside world.

The below code snippet shows how to send a Java object event to the engine. Note that the sendEvent method
is overloaded. As events can take on different representation classes in Java, the sendEvent takes parametersto
reflect the different types of events that can be send into the engine. The Chapter 2, Event Representations sec-
tion explains the types of events accepted.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRunti nme runtine = epService. get EPRunti me();

/'l Send an exanpl e event containing stock market data
runti me. sendEvent (new Mar ket Dat aBean(' 1 BM, 75.0));

© 2007 EsperTech Inc. - Esper2.0.0 105

APl Reference

Events, in theoretical terms, are observations of a state change that occured in the past. Since one cannot
change an event that happened in the past, events are best modelled as immutable objects.

Note that the Esper engine relies on events that are sent into an engine to not change their state. Typicaly, ap-
plications create a new event object for every new event, to represent that new event. Application should not
modify an existing event that was sent into the engine.

Another important method in the runtime interface is the r out e method. This method is designed for use by Up-
dat eLi st ener implementations that need to send events into an engine instance.

9.4.1. Receiving Unmatched Events

Your application can register an implementation of the Unmat chedLi st ener interface with the EPRunt i ne
runtime viathe set Unmat chedLi st ener method to receive events that were not matched by any statement.

Events that can be unmatched are all events that your application sends into the runtime via one of the
sendEvent Of r out e methods, or that have been generated viaani nsert i nt o clause.

For an event to become unmatched by any statement, the event must not match any statement's event stream fil-
ter criteria. Note that the EPL wher e clause or havi ng clause are not considered part of the filter criteria for a
stream, as explained by example below.

In the next statement all MyEvent events match the statement's event stream filter criteria, regardless of the
value of the 'quantity’ property. As long as the below statement remains started, the engine would not deliver
MyEvent events to your registered Unmat chedLi st ener instance:

select * from My/Event where quantity > 5

In the following statement a MyEvent event with a 'quantity’ property value of 5 or less does not match this
statement's event stream filter criteria. The engine delivers such an event to the registered Unmat chedLi st ener
instance provided no other statement matches on the event:

select * from M/Event (quantity > 5)

For patterns, if no pattern sub-expression is active for an event type, an event of that type also counts as un-
matched in regards to the pattern statement.

9.4.2. Emit Facility for Publish-Subscribe

The et and addEni t t edLi st ener methods can be used to emit events from a runtime to a registered set of
one or more emitted event listeners. This mechanism is available as a service to enable channel-based publish-
subscribe of events emitted from an engine instance via the eni t method. Emitting eventsis not integrated with
EPL and isavailable only viathe EPRunt i me interface.

Events are emitted on an event channel identified by a name. Listeners are implementations of the Eni t t ed-
Li st ener interface. Viathe addEni tt edLi st ener method a listener can be added to the specified event chan-
nel. The lister receives only those events posted to that channel. The channel parameter to addEni t t edLi st ener
also allows null values. If anull channel value is specified, the listeners receives emitted events posted on any
channel.

© 2007 EsperTech Inc. - Esper2.0.0 106

APl Reference

9.5. Events Received from the Engine

The Esper engine posts events to registered Updat eLi st ener instances (‘push' method for receiving events). For
all statements events can also be pulled from statements via the safel terator and i terat or methods. Both
pull and push supply Event Bean instances representing the events generated by the engine or events supplied to
the engine. Each Event Bean instance represents an event, with each event being either an artificial event, com-
posite event or an event supplied to the engine viaits runtime interface.

The get Event Type method supplies an event's event type information represented by an Event Type instance.
The Event Type supplies event property names and types as well as information about the underlying object to
the event.

The engine may generate artificial events that contain information derived from event streams. A typical ex-
ample for artificial eventsis the events posted for a statement to calculate univariate statistics on an event prop-
erty. The below example shows such a statement and queries the generated events for an average value.

/1 Derive univariate statistics on price for the |ast 100 nmarket data events

String stnmt = "select * from Market Dat aBean(synbol =" I BM). wi n: | engt h(100).stat: uni (price)";
EPSt at enent priceStatsView = epService. get EPAdm ni strator().createEPL(stnt);

priceStatsVi ew. addLi st ener (testListener);

/'l Exanple |istener code
public class MyUpdat eLi stener inplenments UpdatelLi stener

{
public void update(Event Bean[] newData, EventBean[] ol dDat a)
{
/1 Interrogate events
System out. println("new average price=" + newbData[0].get("average");
}
}

Composite events are events that aggregate one or more other events. Composite events are typically created by
the engine for statements that join two event streams, and for event patterns in which the causal events are re-
tained and reported in a composite event. The example below shows such an event pattern.

/1 Look for a pattern where BEvent follows AEvent

String pattern = "a=AEvent -> b=BEvent";

EPSt at enent stnt = epService. get EPAdm ni strator().createPattern(pattern);
st nt . addLi st ener (t est Li st ener);

/1 Exanple |istener code
public class MyUpdateLi stener inplenents UpdateLi st ener

{
public voi d updat e(Event Bean[] newData, EventBean[] ol dDat a)
{
Systemout.println("a event=" + newData[0].get("a").getUnderlying());
Systemout.println("b event=" + newData[0].get("b").getUnderlying());
}
}

Note that the updat e method can receive multiple events at once as it accepts an array of Event Bean instances.
For example, atime batch window may post multiple events to listeners representing a batch of events received
during a given time period.

Pattern statements can also produce multiple events delivered to update listeners in one invocation. The pattern
statement below, for instance, delivers an event for each A event that was not followed by a B event with the
samei d property within 60 seconds of the A event. The engine may deliver all matching A events as an array
of eventsin asingle invocation of the updat e method of each listener to the statement:

© 2007 EsperTech Inc. - Esper2.0.0 107

APl Reference

every a=A -> (timer:interval (60 sec) and not B(id=a.id))

9.6. Engine Threading and Concurrency

Esper is designed from the ground up to operate as a component to multi-threaded, highly-concurrent applica-
tions that require efficient use of Java VM resources. In addition, multi-threaded execution requires guarantees
in predictability of results and deterministic processing. This section discusses these concerns in detail.

In Esper, an engine instance is a unit of separation. Applications can obtain and discard (initialize) one or more
engine instances within the same Java VM and can provide the same or different engine configurations to each
instance. An engine instance efficiently shares resources between statements. For example, consider two state-
ments that declare the same data window. The engine matches up view declarations provided by each statement
and can thus provide a single data window representation shared between the two statements.

Applications can use Esper APIs to concurrently, by multiple threads of execution, perform such functions as
creating and managing statements, or sending events into an engine instance for processing. Applications can
use one or more thread pools or any set of same or different threads of execution with any of the public Esper
APIs. There are no restrictions towards threading other then those noted in specific sections of this document.

Applications using Esper retain full control over threading, allowing an engine to be easily embedded and used
as a component or library in your favorite Java container or process. It is up to the application code to use mul-
tiple threads for processing events by the engine, if so desired. All event processing takes places within your
application thread call stack. The exception is timer-based processing if your engine instance relies on the in-
ternal timer (default).

The fact that event processing takes places within an application thread call stack makes developing applica-
tions with Esper easier: Any common Java integrated development environment (IDE) can host an Esper en-
gine instance. This allows developers to easily set up test cases, debug through listener code and inspect input
or output events, or trace their cal stack.

To send events into an engine concurrently by multiple execution threads, typically applications use the Java
java.l ang. Thread Or j ava. | ang. Runnabl e classes or Java 5 concurrent utilities that include abstractions for
thread pools and blocking in-memory queues.

Each engine instance maintains a single timer thread (internal timer) providing for time or schedule-based pro-
cessing within the engine. The default resolution at which the internal timer operates is 100 milliseconds. The
internal timer thread can be disabled and applications can instead send externa time events to an engine in-
stance to perform timer or scheduled processing at the resolution required by an application.

Each engine instance performs minimal locking to enable high levels of concurrency. An engine instance locks
on a statement level to protect statement resources.

For an engine instance to produce predictable results from the viewpoint of listeners to statements, an engine
instance by default ensures that it dispatches statement result events to listeners in the order in which a state-
ment produced result events. Applications that require the highest possible concurrency and do not require pre-
dictable order of delivery of eventsto listeners, this feature can be turned off via configuration.

In multithreaded environments, when one or more statements make result events available viatheinsert into
clause to further statements, the engine preserves the order of events inserted into the generated insert-into
stream, allowing statements that consume other statement's events to behave deterministic. This feature can
also be turned off via configuration.

We generally recommended that listener implementations do not block. By implementing listener code as non-

© 2007 EsperTech Inc. - Esper2.0.0 108

APl Reference

blocking code execution threads can often achieve higher levels of concurrency.

9.7. Time-Keeping Events

Special events are provided that can be used to control the time-keeping of an engine instance. There are two
models for an engine to keep track of time. Internal clocking is when the engine instance relies on the
java.util.concurrent. Schedul edThr eadPool Execut or class for time tick events. External clocking can be
used to supply time ticks to the engine. The latter is useful for testing time-based event sequences or for syn-
chronizing the engine with an external time source.

By default, the Esper engine uses internal time ticks. This behavior can be changed by sending a timer control
event to the engine as shown below.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRuntine runtime = epService. get EPRunti ne();

/1 switch to external clocking

runti me. sendEvent (new Ti nmer Cont r ol Event (Ti mer Contr ol Event. O ockType. CLOCK_EXTERNAL)) ;

/1 send a time tick
long tinelnMIlis = SystemcurrentTineMIlis(); // O get the tine somewhere el se
runti me. sendEvent (new Current Ti mreEvent (tinelnM I 1is));

We recommend that when disabling the internal timer, applications send an external timer event setting the start
time before creating statements, such that statement start time is well-defined. Also, note that the engine out-
puts awarning is duplicate external time events are received.

9.8. Time Resolution

The minimum resolution that all data windows, patterns and output rate limiting operate at is the millisecond.
Parameters to time window views, pattern operators or the out put clause that are less then 1 millisecond are
not allowed. As stated earlier, the default frequency at which the internal timer operatesis 100 milliseconds.

The internal timer thread uses the call System current TimeM I 1is() to obtain system time. Please see the
JRA issue ESPER-191 Support nano/microsecond resolution for more information on Java system time-call
performance, accuracy and drift. The internal timer is based on
java. util.concurrent. Schedul edThr eadPool Execut or rather then java. util. Ti ner as the former supports
high accuracy VM time.

Y our application can achieve a higher tick rate then 1 tick per millisecond by sending external timer events that
carry along-value which is not based on milliseconds since January 1, 1970, 00:00:00 GMT. In this case, your
time interval parameters need to take consideration of the changed use of enginetime.

Thus, if your external timer events send long values that represents microseconds (1E-6 sec), then your time
window interval must be 1000-times larger, i.e. "win:time(1000)" becomes a 1-second time window.

And therefore, if your external timer events send long values that represents nanoseconds (1E-9 sec), then your
time window interval must be 1000000-times larger, i.e. "win:time(1000000)" becomes a 1-second time win-
dow.

9.9. Statement Object Model

The statement object model is a set of classes that provide an object-oriented representation of an EPL or pat-

© 2007 EsperTech Inc. - Esper2.0.0 109

APl Reference

tern statement. The object model classes are found in package com espert ech. esper. client.soda. An in-
stance of EPSt at ement (bj ect Model represents a statement's object model.

The statement object model classes are a full and complete specification of a statement. All EPL and pattern
constructs including expressions and sub-queries are available via the statement object model.

In conjunction with the administrative API, the statement object model provides the means to build, change or
interrogate statements beyond the EPL or pattern syntax string representation. The object graph of the statement
object model is fully navigable for easy querying by code, and is also serializable allowing applications to per-
sist or transport statements in object form, when required.

The statement object model supports full round-trip from object model to EPL statement string and back to ob-
ject model: A statement object model can be rendered into an EPL string representation via the t oEPL method
0N EPSt at enent Qbj ect Model . Further, the administrative API allows to compile a statement string into an ob-
ject model representation viathe conpi | eEPL method on EPAdn ni strat or .

The creat e method on EPAdni ni strat or Creates and starts a statement as represented by an object model. In
order to abtain an object model from an existing statement, obtain the statement expression text of the state-
ment viathe get Text method on EPSt at ement and use the conpi | eEPL method to obtain the object model.

The following limitations apply:

« Statement object model classes are not safe for sharing between threads other then for read access.

« Between versions of Esper, the serialized form of the object model is subject to change. Esper makes no
guarantees that the serialized object model of one version will be fully compatible with the serialized object
model generated by another version of Esper. Please consider this issue when storing Esper object models
in persistent store.

9.9.1. Building an Object Model

A EPSt at enent bj ect Model consists of an object graph representing al possible clauses that can be part of an
EPL statement.

Among all clauses, the Sel ect d ause and Fr onCl ause oObjects are required clauses that must be present, in or-
der to define what to select and where to select from.

Table 9.3. Required Statement Object Model I nstances

Class Description

EPSatementObjectModel All statement clauses for a statement, such as the select-clause and the
from-clause, are specified within the object graph of an instance of this
class

SlectClause A list of the selection properties or expressions, or awildcard

FromClause A list of one or more streams; A stream can be a filter-based, a pattern-

based or a SQL-based stream; Views are added to streams to provide
data window or other projections

Part of the statement object model package are convenient builder classes that make it easy to build a new ob-
ject model or change an existing object model. The Sel ect O ause and Fr ond ause are such builder classes and
provide convenient cr eat e methods.

© 2007 EsperTech Inc. - Esper2.0.0 110

APl Reference

Within the from-clause we have a choice of different streamsto select on. The Fi | t er St r eamclass represents a
stream that isfilled by events of a certain type and that pass an optional filter expression.

We can use the classes introduced above to create a simple statement object model:

EPSt at enent Obj ect Model nodel = new EPSt at enent Obj ect Model () ;
nmodel . set Sel ect O ause(Sel ect Cl ause. createW | dcard());
nodel . set FronCl ause(FronCl ause. create(Fi |l ter Stream creat e("com chi pmaker. ReadyEvent")));

The model as aboveis equivaent to the EPL :

sel ect * from com chi pmaker. ReadyEvent

Last, the code snippet below creates a statement from the object model:

EPSt at enent stnt = epServi ce. get EPAdm ni strator().create(nodel);

Notes on usage:

« Variable names can simply be treated as property names

¢ When selecting from named windows, the name of the named window is the event type aliasfor usinFi | -
t er St r eaminstances or patterns

» To compile an arbitrary sub-expression text into an Expr essi on object representation, smply add the ex-
pression text to awher e clause, compile the EPL string into an object model via the conpi | eEPL 0N EPAd-
mi ni strat or, and obtain the compiled wher e from the EPSt at ement Obj ect Model Via the get Wier eCl ause
method.

Notes on usage:

* Variable names can simply be treated as property names

* When selecting from named windows, the name of the named window is the event type alias for usinFi I -
t er St r eaminstances or patterns

e To compile an arbitrary sub-expression text into an Expr essi on object representation, smply add the ex-
pression text to awher e clause, compile the EPL string into an object model via the conpi | eEPL method on
EPAdmi ni strat or, and obtain the compiled wher e clause expression object from the EPSt at enent Obj ect -
Model viathe get Wier ed ause method.

9.9.2. Building Expressions

The EPst at enent Obj ect Model includes an optional where-clause. The where-clause is a filter expression that
the engine applies to events in one or more streams. The key interface for all expressions is the Expr essi on in-
terface.

The Expr essi ons class provides a convenient way of obtaining Expr essi on instances for all possible expres-
sions. Please consult the JavaDoc for detailed method information. The next example discusses sample where-
clause expressions.

Use the Expr essi ons class as a service for creating expression instances, and add additional expressions viathe
add method that most expressions provide.

In the next example we add a simple where-clause to the EPL as shown earlier:

sel ect * from com chi pmaker. ReadyEvent where |ine=8

© 2007 EsperTech Inc. - Esper2.0.0 111

APl Reference

And the code to add a where-clause to the object model is below.

nodel . set Wher eCl ause(Expr essi ons. eq("line", 8));

The following example considers a more complex where-clause. Assume we need to build an expression using
logical-and and logical-or:

sel ect * from com chi pmaker. ReadyEvent
where (line=8) or (line=10 and age<5)

The code for building such a where-clause by means of the object model classesis:

nodel . set Wher eCl ause(Expr essi ons. or ()
. add(Expressions.eq("line", 8))
. add(Expr essi ons. and()
. add(Expressi ons. eq("line", 10))
.add(Expressions.|t("age", 5))
))s

9.9.3. Building a Pattern Statement

The Patt erns class is a factory for building pattern expressions. It provides convenient methods to create all
pattern expressions of the pattern language.

Patterns in EPL are seen as a stream of events that consist of patterns matches. The Pat t er nSt r eam class rep-
resents a stream of pattern matches and contains a pattern expression within.

For instance, consider the following pattern statement.

select * frompattern [every a=M/AEvent and not b=MyBEvent]

The next code snippet outlines how to use the statement object model and specificaly the Patt erns class to
create a statement object modd that is equivalent to the pattern statement above.

EPSt at enent Obj ect Model nodel = new EPSt at enent Obj ect Mbdel () ;

nodel . set Sel ect O ause(Sel ect C ause. createW | dcard());

PatternExpr pattern = Patterns. and()
.add(Patterns.everyFilter("MAEvent", "a"))
.add(Patterns.notFilter("MWBEvent", "b"));

nodel . set Fron ause(FronCl ause. creat e(PatternStream create(pattern)));

9.9.4. Building a Select Statement

In this section we build a complete exampl e statement and include all optional clausesin one EPL statement, to
demonstrate the object model API.

A sample statement:

insert into ReadyStreamAvg(line, avgAge)

sel ect |line, avg(age) as avgAge

from com chi prreker. ReadyEvent (line in (1, 8, 10)).win:tine(10) as RE
where RE. waverld != nul

group by Iline

havi ng avg(age) < 0

out put every 10.0 seconds

order by line

© 2007 EsperTech Inc. - Esper2.0.0 112

APl Reference

Finally, this code snippet builds the above statement from scratch:

EPSt at enent Obj ect Model npdel = new EPSt at enent Obj ect Model () ;
nmodel . setlnsertlnto(lnsertlntod ause. creat e("ReadyStreamAvg", "line", "avgAge"));
nodel . set Sel ect O ause(Sel ect Cl ause. creat e()
.add("line")
. add(Expr essi ons. avg("age"), "avgAge"));
Filter filter = Filter.create("com chi pnaker. ReadyEvent", Expressions.in("line", 1, 8, 10));
nodel . set Fromd ause(Fr onCl ause. cr eat e(
FilterStreamcreate(filter, "RE').addViem"win", "tinme", 10)));
nodel . set Wher eCl ause(Expr essi ons. i sNot Nul | (" RE. waver1d"));
nmodel . set G oupByd ause(G oupByd ause. create("line"));
nodel . set Havi ngQ ause(Expressi ons. | t (Expressi ons. avg("age"), Expressions.constant(0)));
nmodel . set Qut put Li m t C ause(Qut put Li m t Cl ause. create(10, QutputLimtUnit.SECONDS));
nodel . set Or der Byd ause(Or der Byd ause. create("line"));

9.9.5. Building a Create-Variable and On-Set Statement

This sample statement creates a variable:

create variable integer var_output_rate = 10

The code to build the above statement using the object model:

EPSt at enent Obj ect Model npdel = new EPSt at enent Obj ect Model () ;
nmodel . set Creat eVari abl e(Creat eVari abl eCl ause. create("i nteger", "var_output_rate", 10));
epServi ce. get EPAdni ni strator (). create(nodel);

A second statement sets the variable to anew value:

on NewVal ueEvent set var_output _rate = new rate

The code to build the above statement using the object model:

EPSt at enent Obj ect Model nodel = new EPSt at enent Obj ect Model () ;

nodel . set OnExpr (Ond ause. creat eOnSet ("var _out put _rate", Expressions.property("newrate")));
nodel . set FronCl ause(FronCl ause. create(Fi | ter Stream creat e(" Newval ueEvent")));

EPSt at enent stnt Set = epService. get EPAdni ni strator (). create(nodel);

9.9.6. Building Create-Window, On-Delete and On-Select Statements

This sample statement creates a named window:

create wi ndow OrdersTi neWndow. wi n:ti ne(30 sec) as sel ect synmbol as sym volume as vol, price from O

The is the code that builds the create-window statement as above:

EPSt at enent Obj ect Model nbdel = new EPSt at enent Obj ect Model () ;
nmodel . set Cr eat eW ndow(Cr eat eW ndowCl ause. creat e(" Order sTi meW ndow') . addVi ewm("wi n", "tine", 30));
nodel . set Sel ect Cl ause(Sel ect C ause. creat e()
.addWt hAl i as("synbol ", "syni)
.addW t hAl i as("vol ume", "vol ")
.add("price"));
nodel . set Fron ause(FronCl ause. create(Filter Stream create(" O der Event)));

A second statement del etes from the named window:

on NewOr der Event as nmyNewOr ders
del ete from Al | Or der sNanedW ndow as nmyNanedW ndow

© 2007 EsperTech Inc. - Esper2.0.0 113

APl Reference

wher e myNamedW ndow. synbol = myNewOr der s. symnbol

The object model is built by:

EPSt at enent Obj ect Model nodel = new EPSt at enent Obj ect Mbdel () ;

nodel . set OnExpr (OnC ause. creat eOnDel et e(" Al | Or der sNamedW ndow', " nyNanedW ndow'));

nodel . set Fron ause(FronC ause. create(Fi |l ter Stream creat e("NewOr der Event”, "nyNewOrders")));
nodel . set Wher eCl ause(Expr essi ons. eqPr opert y(" nyNamedW ndow. synmbol ", "nyNewOr ders. synbol ")) ;
EPSt at enent st nt OnDel ete = epServi ce. get EPAdmi ni strator (). create(nodel);

A third statement selects from the named window using the non-continuous on-demand selection via on-sel ect:

on QueryEvent (vol une>0) as query
sel ect count(*) from O dersNanedW ndow as w n
where w n.synbol = query. synbol

The on-select statement is built from scratch via the object model as follows:

EPSt at enent Obj ect Mbdel nodel = new EPSt at enent Obj ect Mbdel () ;

nodel . set OnExpr (Ond ause. cr eat eOnSel ect (" Or der sNanedW ndow', "win"));

nmodel . set Wher eCl ause(Expr essi ons. eqProperty("w n. synbol ", "query.synbol"));

nodel . set FronC ause(FronCl ause. create(Filter Stream creat e(" QueryEvent", "query",
Expressions. gt ("volunme", 0))));

nodel . set Sel ect Cl ause(Sel ect d ause. creat e() . add(Expr essi ons. count Star()));

EPSt at enent st nt OnSel ect = epServi ce. get EPAdm ni strator (). create(nodel);

9.10. Prepared Statement and Substitution Parameters

The pr epar e method that is part of the administrative APl pre-compiles an EPL statement and stores the pre-
compiled statement in an EPPr epar edSt at enent Object. This abject can then be used to efficiently start the
parameterized statement multiple times.

Substitution parameters are inserted into an EPL statement as a single question mark character ' 2 . The engine
assigns the first substitution parameter an index of 1 and subsequent parameters increment the index by one.

Substitution parameters can be inserted into any EPL construct that takes an expression. They are therefore val-
id in any clauses such as the select-clause, from-clause filters, where-clause, group-by-clause, having-clause or
order-by-clause. Substitution parameters cannot be used as parameters to views, pattern observers and guards.
They also cannot be used where a numeric constant is required rather then an expression.

All substitution parameters must be replaced by actual values before a statement with substitution parameters
can be started. Substitution parameters can be replaced with an actual value using the set Gbj ect method for
each index. Substitution parameters can be set to new values and new statements can be created from the same
EPPr epar edSt at ement 0bject more then once.

While the set bj ect method allows substitution parameters to assume any actual value including application
Java objects or enumeration values, the application must provide the correct type of substitution parameter that
matches the requirements of the expression the parameter residesin.

In the following example of setting parameters on a prepared statement and starting the prepared statement,
epSer vi ce represents an engine instance:

String stnmt = "select * from com chi pmaker. ReadyEvent (i ne=?)";

EPPr epar edSt at ement prepared = epServi ce. get EPAdmi ni strator (). prepareEPL(stnt);
prepared. set Cbj ect (1, 8);

EPSt at enent statement = epServi ce. get EPAdmi ni strator (). create(prepared);

© 2007 EsperTech Inc. - Esper2.0.0 114

Chapter 10. Configuration

Esper engine configuration is entirely optional. Esper has a very small number of configuration parameters that
can be used to simplify event pattern and EPL statements, and to tune the engine behavior to specific require-
ments. The Esper engine works out-of-the-box without configuration.

An application can supply configuration at the time of engine allocation using the Confi gurati on class, and
can also use XML filesto hold configuration. Configuration can be changed at runtime via the Conf i gur ati on-
Oper at i ons interface available from EPAdni ni st rat or viathe get Confi gur ati on method.

10.1. Programmatic Configuration

An instance of com espertech. esper.client. Configuration represents all configuration parameters. The
Confi guration isused to build an EPSer vi cePr ovi der , which provides the administrative and runtime inter-
faces for an Esper engine instance.

You may obtain a Confi gurati on instance by instantiating it directly and adding or setting values on it. The
Conf i gurati on instance is then passed to EPSer vi cePr ovi der Manager to obtain a configured Esper engine.

Configuration configuration = new Configuration();

configuration. addEvent TypeAlias("PriceLimt", PriceLimt.class.getNane());
configuration. addEvent TypeAl i as(" St ockTi ck", StockTi ck. cl ass. get Nanme());
configuration. addl nport ("org. nyconpany. mypackage. MyUtility");
configuration. addl nport ("org. myconpany. util.*");

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der ("sanpl e", configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine represented by an
EPSer vi cePr ovi der does not retain any association back to the Confi gurati on.

The confi gurationOperations interface provides runtime configuration options. Through this interface ap-
plications can, for example, add new event types or aiases at runtime and then create new statements that rely
on the additional configuration. The get Confi gur ati on method on EPAdni ni st rat or allows accessto Confi g-
urationQperations.

10.2. Configuration via XML File

An dternative approach to configuration is to specify a configurationin a XML file.

The default name for the XML configuration file is esper. cf g. xnl . Esper reads this file from the root of the
CLASSPATH as an application resource viathe conf i gur e method.

Configuration configuration = new Configuration();
configuration. configure();

The configuration class can read the XML configuration file from other sources as well. The configure
method acceptsURL, File and String filename parameters.

Configuration configuration = new Configuration();
configuration. configure("nyengi ne. esper.cfg.xm");

© 2007 EsperTech Inc. - Esper2.0.0 115

Configuration

10.3. XML Configuration File

Here is an example configuration file. The schema for the configuration file can be found in the et ¢ folder and
is named esper - confi guration-2-0. xsd. It is aso available online a ht -
tp: // ww. espert ech. conl schena/ esper/ esper - confi guration-2. 0. xsd S0 that IDE can fetch it automatic-
ally. The namespace used isht t p: / / www. espert ech. conl schena/ esper .

<?xm version="1.0" encodi ng="UTF-8""?>
<esper-configuration xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww. espertech. conl schena/ esper"
Xsi : schenalLocat i on="
http://ww. espertech. com scherma/ esper http://ww. espertech. com schenma/ esper/esper-configuration-2.0. x:
<event -type alias="StockTick" class="com espertech. esper. exanpl e. stockti cker. event. StockTi ck"/>
<event-type alias="PriceLinmt" class="com espertech. esper. exanpl e. stockticker.event.PriceLimt"/>
<aut o-i nport i nport-nanme="org. myconpany. nypackage. MyUtility"/>
<aut o-i nport inport-name="org. myconpany. util.*"/>
</ esper-confi guration>

The example above is only a subset of the configuration items available. The next chapters outline the available
configuration in greater detail.

10.4. Configuration Items

10.4.1. Events represented by Java Classes

Package of Java Event Classes

Viathis configuration an application can make the Java package or packages that contain an application's Java
event classes known to an engine. Thereby an application can simply refer to event types in statements by using
the simple class name of each Java class representing an event type.

For example, consider an order-taking application that places all event classes in package
com nyconpany. or der . event . One Java class representing an event is the class o der Event . The application
can simply issue a statement as follows to select O der Event events:

sel ect * from O der Event

The XML configuration for defining the Java packages that contain Java event classesis:

<event -t ype- aut o-al i as package- nane="com myconpany. or der. event "/ >

The same configuration but using the Conf i gur ati on class:

Configuration config = new Configuration();

confi g. addEvent TypeAut oAl i as("com myconpany. or der. event");

[l ... or ...

confi g. addEvent TypeAut oAl i as(My Event . get Package() . get Nane());

Event type alias to Java class mapping

This configuration item can be used to alow event pattern statements and EPL statements to use an event type
alias rather then the fully qualified Java class name. Note that Java Interface classes and abstract classes are
also supported as event types via the fully qualified Java class name, and an event type alias can also be defined

© 2007 EsperTech Inc. - Esper2.0.0 116

Configuration

for such classes.

The example pattern statement below first shows a pattern that uses the alias St ockTi ck. The second pattern
statement is equivalent but specifies the fully-qualified Java class name.

every StockTick(symbol ="1BM)"
every com espertech. esper. exanpl e. st ockti cker. event. St ockTi ck(synbol =" | BM)

The event type aias can be listed in the XML configuration file as shown below. The Confi gurati on API can
also be used to programatically specify an event type alias, as shown in an earlier code snippet.

<event-type alias="StockTi ck" class="com espertech. esper. exanpl e. stockticker.event. St ockTi ck"

Non-JavaBean and Legacy Java Event Classes

Esper can process Java classes that provide event properties through other means then through JavaBean-style
getter methods. It is not necessary that the method and member variable names in your Java class adhere to the
JavaBean convention - any public methods and public member variables can be exposed as event properties via
the below configuration.

A Java class can optionally be configured with an accessor style attribute. This attribute instructs the engine
how it should expose methods and fields for use as event properties in statements.

Table 10.1. Accessor Styles

Style Name Description

j avabean As the default setting, the engine exposes an event property
for each public method following the JavaBean getter-method
conventions

public The engine exposes an event property for each public method

and public member variable of the given class

explicit The engine exposes an event property only for the explicitly
configured public methods and public member variables

Using the publ i ¢ setting for the accessor - st yl e attribute instructs the engine to expose an event property for
each public method and public member variable of a Java class. The engine assigns event property names of the
same name as the name of the method or member variable in the Java class.

For example, assuming the class MyLegacyEvent exposes a method named r eadval ue and a member variable
named nyFi el d, we can then use properties as shown.

sel ect readVal ue, nyField from M/LegacyEvent

Using theexpl i ci t setting for the accessor - st yl e attribute requires that event properties are declared via con-
figuration. Thisis outlined in the next chapter.

When configuring an engine instance from a XML configuration file, the XML snippet below demonstrates the
use of the | egacy- t ype element and the accessor - st yl e attribute.

<event-type alias="M/VLegacyEvent" class="com myconpany. nmypackage. \yLegacyEvent Cl ass" >

© 2007 EsperTech Inc. - Esper2.0.0 117

/>

Configuration

<l egacy-type accessor-style="public"/>
</ event-type>

When configuring an engine instance via Configuration API, the sample code below shows how to set the ac-
cessor style.

Configuration configuration = new Configuration();

Confi gurati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypelLegacy();

| egacyDef . set Accessor St yl e(Confi gurati onEvent TypeLegacy. Accessor Styl e. PUBLI C) ;

confi g. addEvent TypeAl i as(" MyLegacyEvent", MyLegacyEvent Cl ass. cl ass. get Nane(), | egacyDef);

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der ("sanpl e", configuration);

Specifying Event Properties for Java Classes

Sometimes it may be convenient to use event property names in pattern and EPL statements that are backed up
by a given public method or member variable (field) in a Java class. And it can be useful to declare multiple
event properties that each map to the same method or member variable.

We can configure properties of events via met hod- property and fi el d- property elements, as the next ex-
ample shows.

<event -type alias="StockTick" class="com espertech. esper. exanpl e. stockti cker. event. St ockTi ckEvent">
<l egacy-type accessor-styl e="javabean" code-generati on="enabl ed">
<met hod- property nane="price" accessor-nethod="getCurrentPrice" />
<fiel d-property nanme="vol une" accessor-fiel d="vol uneFi el d" />
</l egacy-type>
</ event-type>

The XML configuration snippet above declared an event property named pri ce backed by a getter-method
named get Current Pri ce, and a second event property named vol une that is backed by a public member vari-
able named vol uneFi el d. Thus the price and volume properties can be used in a statement:

sel ect avg(price * volunme) from StockTick

Aswith all configuration options, the API can also be used:

Configuration configuration = new Configuration();

Configurati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypelLegacy();

| egacyDef . addMet hodProperty("price", "getCurrentPrice");

| egacyDef . addFi el dProperty("vol ume", "vol unmeField");

config. addEvent TypeAl i as(" St ockTi ck", StockTi ckEvent. cl ass. get Name(), |egacyDef);

Turning off Code Generation

Esper employes the caLl B library for very fast read access to event property values. For certain legacy Java
classes it may be desirable to disable the use of thislibrary and instead use Java reflection to obtain event prop-
erty values from event objects.

In the XML configuration, the optional code- generati on attribute in the | egacy-t ype section can be set to
di sabl ed as shown next.

<event-type alias="MVLegacyEvent" cl ass="com myconpany. package. MyLegacyEvent Cl ass" >
<| egacy-type accessor-styl e="javabean" code-generati on="di sabl ed" />
</ event-type>

The sample below shows how to configure this option viathe API.

© 2007 EsperTech Inc. - Esper2.0.0 118

Configuration

Configuration configuration = new Configuration();

Conf i gur ati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypeLegacy();

| egacyDef . set CodeGener ati on(Confi gurati onEvent TypeLegacy. CodeCener ati on. DI SABLED) ;

confi g. addEvent TypeAl i as(" MyLegacyEvent", MyLegacyEvent Cl ass. cl ass. get Name(), | egacyDef);

Case Sensitivity and Property Names

By default the engine resolves Java event properties case sensitive. That is, property names in statements must
match JavaBean-convention property names in name and case. This option controls case sensitivity per Java
class.

In the configuration XML, the optional property-resol ution-styl e attribute in the | egacy-t ype element can
be set to any of these values:

Table 10.2. Property Resolution Case Sensitivity Styles

Style Name Description

case_sensitive (default) As the default setting, the engine matches property names for
the exact name and case only.

case_insensitive Properties are matched if the names are identical. A case in-
sensitive search is used and will choose the first property that
matches the name exactly or the first property that matches
case insensitively should no match be found.

di stinct_case_insensitive Properties are matched if the names are identical. A case in-
sensitive search is used and will choose the first property that
matches the name exactly case insensitively. If more than one
'name' can be mapped to the property an exception is thrown.

The sample below shows this option in XML configuration, however the setting can also be changed via API:

<event-type alias="M/VLegacyEvent" cl ass="com myconpany. package. MyLegacyEvent Cl ass" >
<l egacy-type property-resol ution-styl e="case_i nsensitive"/>
</ event-type>

10.4.2. Events represented by java. util. Map

The engine can processj ava. uti | . Map eventsviathe sendEvent (Map map, String event TypeAl i as) method
on the EPruntinme interface. Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property namesin pattern or EPL statements. Val-
ues can be of any type. JavaBean-style objects as values in a Map can be processed by the engine, and strongly-
typed nested maps are also supported. Please see the Chapter 2, Event Representations section for details on
how to use Map events with the engine.

Via configuration we provide an event type alias name for Map events for use in statements, and the event prop-
erty names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event named My MapEvent .

<event-type alias="MWMapEvent">
<java-util - map>
<map- property name="carld" class="int"/>
<map- property name="car Type" cl ass="string"/>

© 2007 EsperTech Inc. - Esper2.0.0 119

Configuration

<map- property name="assenbly" class="com myconpany. Assenbl y"/>
</java-util-map>
</ event-type>

This configuration defines the car 1 d property of MyMapEvent events to be of typei nt, and the car Type prop-
erty to be of type java.util.String. The assenbly property of the Map event will contain instances of
com nyconpany. Assenbl y for the engine to query.

Thevalid list of values for the type definition viathecl ass attributeis:

® stringOrjava.lang. String

e char Orjava.l ang. Character

* byteOrjava.lang.Byte

* short Orjava.l ang. Short

® int Orjava.lang.|nteger

* J|ongoOfrjava.lang. Long

e float Orjava.l ang. Fl oat

* doubl e Orjava. | ang. Doubl e

* bool ean Orj ava. | ang. Bool ean

* Any fully-qualified Java class name that can be resolved by the engineviad ass. f or Nane

You can aso use the configuration API to configure Map event types, as the short code snippet below demon-
strates:

Properties properties = new Properties();
properties.put(“carld", "int");

properties. put ("carType", "string");

properties. put ("assenbly", Assenbly.class.getNane());

Configuration configuration = new Configuration();
configuration. addEvent TypeAl i as(" MyMapEvent", properties);

For strongly-typed nested maps (maps-within-maps), the configuration APl method addNest abl eEvent -
TypeAl i as must be used to define the nested types. The XML configuration does not provide the capability to
configure nested maps.

Finally, here is a sample EPL statement that uses the configured MyMapEvent map event. This statement uses
the chassi sTag and nunPart s properties of Assenbl y objects in each map.

sel ect car Type, assenbly. chassisTag, count(assenbly.nunParts) from MyMapEvent.w n:tinme(60 sec)

10.4.3. Events represented by or g. wdc. dom Node

Viathis configuration item the Esper engine can natively process or g. wdc. dom Node instances, i.e. XML docu-
ment object model (DOM) nodes. Please see the Chapter 2, Event Representations section for details on how to
use Node events with the engine.

Esper alows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property hame by which their result values will be available for use in expressions.

For XML documents that follow a XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wdc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying

© 2007 EsperTech Inc. - Esper2.0.0 120

Configuration

JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.

In the simplest form, the Esper engine only requires a configuration entry containing the root el ement name and
the event type alias in order to process or g. wdc. dom Node events:

<event-type al i as="M/XM.NodeEvent ">
<xml - dom r oot - el ement - name="nyevent" />
</ event-type>

You can aso use the configuration API to configure XML event types, as the short example below demon-
strates. In fact, all configuration options available through XML configuration can also be provided via setter
methods on the Conf i gur at i onEvent TypeXM.DOMclass.

Configuration configuration = new Configuration();

Confi gurati onEvent TypeXM_.DOM desc = new Confi gurati onEvent TypeXM.DOV) ;

desc. set Root El enent Nanme(" myevent");

desc. addXPat hProperty("nanmel", "/elenent/ @ttribute", XPathConstants. STRI NG ;
desc. addXPat hProperty("nanme2", "/el enent/subel enent", XPat hConstants. NUMBER);
configuration. addEvent TypeAl i as(" MyXM_NodeEvent", desc);

The next example presents configuration options in a sample configuration entry.

<event -type al i as="Aut ol dRFI DEvent ">
<xm - dom r oot - el enent - nanme="Sensor" schema-resour ce="dat a/ Aut ol dPmi Cor e. xsd"
def aul t - nanespace="ur n: aut oi d: speci fi cati on: i nterchange: PM.Cor e: xm : schema: 1" >
<nanespace-prefix prefix="pnl core"
nanmespace="ur n: aut oi d: speci fi cati on: i nt erchange: PM.Cor e: xm : schenma: 1"/ >
<xpat h- property property-nanme="count Tags"
xpat h="count (/ pnl cor e: Sensor/ pm cor e: Cbservati on/ pnl core: Tag)" type="nunber"/>
</ xm - don®
</ event-type>

This example configures an event property named count Tags Whose value is computed by an XPath expres-
sion. The namespace prefixes and default namespace are for use with XPath expressions and must also be made
known to the engine in order for the engine to compile XPath expressions. Viathe schema- r esour ce attribute
we instruct the engine to load a schemafile.

Hereis an example EPL statement using the configured event type named Aut ol dRFI DEvent .

sel ect I D, countTags from Aut ol dRFI DEvent.w n:ti me(30 sec)

Schema Resource

The schema-resour ce atribute takes a schema resource URL or classpath-relative filename. The engine at-
tempts to resolve the schema resource as an URL. If the schema resource name is nhot a valid URL, the engine
attempts to resolve the resource from classpath via the d assLoader . get Resour ce method using the thread
context class loader. If the name could not be resolved, the engine uses the Configuration class classloader.

By configuring a schemafile for the engine to load, the engine performs these additional services:

e Vadlidates the event properties in a statement, ensuring the event property name matches an attribute or ele-
ment in the XML

« Determines the type of the event property allowing event properties to be used in type-sensitive expressions
such as expressions involving arithmetic (Note: XPath properties are also typed)

» Matches event property names to either element names or attributes

If no schema resource is specified, none of the event properties specified in statements are validated at state-
ment creation time and their type defaultstoj ava. | ang. St ri ng. Also, attributes are not supported if no schema

© 2007 EsperTech Inc. - Esper2.0.0 121

Configuration

resource is specified and must thus be declared via X Path expression.

XPath Property

The xpat h- property element adds event properties to the event type that are computed via an XPath expres-
sion. In order for the XPath expression to compile, be sure to specify the def aul t - nanespace attribute and use
the nanmespace- pr ef i x to declare namespace prefixes.

XPath expression properties are strongly typed. The t ype attribute allows the following values. These values
correspond to those declared by j avax. xmi . xpat h. XPat hConst ant s.

* number (Note: resolvesto adoubl e)
e string
* boolean

Absolute or Deep Property Resolution

This setting indicates that when properties are compiled to XPath expressions that the compilation should gen-
erate an absolute X Path expression or a deep (find element) X Path expression.

For example, consider the following statement against an event type that is represented by a XML DOM docu-
ment, assuming the event type GetQuote has been configured with the engine asa XML DOM event type:

sel ect request, request.synbol from Get Quote

By default, the engine compiles the "request” property name to an XPath expression "/GetQuote/request”. It
compiles the nested property named "request.symbol” to an XPath expression "/GetQuote/request/symbol”,
wherein the root element node is " GetQuote".

By setting absolute property resolution to false, the engine compiles the "request” property name to an XPath
expression "//request”. It compiles the nested property named "request.symbol” to an XPath expression "/
/request/symbol”. This enables these elements to be located anywhere in the XML document.

The setting is availablein XML viathe attributer esol ve- properti es- absol ut e.
The configuration API provides the above settings as shown here in a sample code:

Confi gurati onEvent TypeXM_.DOM desc = new Confi gurati onEvent TypeXM.DOV) ;
desc. set Root El enent Name(" Get Quot e") ;

desc. set Def aul t Nanespace("http://services. sanpl es/ xsd");

desc. set Root El enent Nanmespace("http://services. sanpl es/ xsd");

desc. addNanespacePrefix("md", "http://services. sanpl es/ xsd");

desc. set Resol veProperti esAbsol ute(fal se);

configuration. addEvent TypeAl i as(" Get Quote", desc);

10.4.4. Class and package imports

Esper alows invocations of static Java library functions in expressions, as outlined in Section 7.1, “Single-row
Function Reference’. This configuration item can be set to allow a partia rather than a fully qualified class
name in such invocations. The imports work in the same way as in Javafiles, so both packages and classes can
be imported.

sel ect Math. max(priceOne, PriceTwo)
/1 via configuration equivalent to
sel ect java.l ang. Mat h. max(pri ceOne, priceTwo)

© 2007 EsperTech Inc. - Esper2.0.0 122

Configuration

Esper auto-imports the following Java library packages if no other configuration is supplied. This list is re-
placed with any configuration specified in a configuration file or through the API.

e javalang.*
e javamath.*
e javatext.*
e javadutil.*

InaXML configuration file the auto-import configuration may look as below:

<aut o-i nport inport-nanme="com myconpany. nypackage.*"/>
<aut o-i nmport i nport-name="com myconpany. nyapp. MyUtilityC ass"/>

Hereis an example of providing importsviathe API:

Configuration config = new Configuration();
confi g. addl nport ("com myconpany. nypackage.*"); // package i nport
confi g. addl nport (" com nyconpany. nypackage. MyLi b") ; /1 class inmport

10.4.5. Cache Settings for Method Invocations

Method invocations are allowed in the f romclause in EPL, such that your application may join event streamsto
the data returned by a web service, or to data read from a distributed cache or object-oriented database, or ob-
tain data by other means. A local cache may be placed in front of such method invocations through the config-
uration settings described herein.

The LRU cache is described in detail in Section 10.4.7.5.1, “LRU Cache’. The expiry-time cache documenta-
tion can be found in Section 10.4.7.5.2, “ Expiry-time Cache”

The next XML snippet is a sample cache configuration that applies to methods provided by the classes 'My-
FromClauseL ookupLib' and 'MyFromClauseWebServicelLib'. The XML and API configuration understand both
the fully-qualified Java class name, as well as the simple class name:

<nmet hod-r ef erence cl ass-nane="com myconpany. MyFronmC auselLookuplLi b" >
<expiry-tine-cache nmax-age-seconds="10" purge-interval -seconds="10" ref-type="weak"/>
</ met hod- r ef er ence>
<net hod-r ef erence cl ass- nane="MWFronCl auseWebSer vi ceLi b" >
<l ru-cache size="1000"/>
</ met hod- r ef er ence>

10.4.6. Variables

Variables can be created dynamically in EPL viathe create variabl e syntax but can also be configured at
runtime and at configuration time.

A variable is declared by specifying a variable name, the variable type and an optional initialization value. The
initialization value can be of the same or compatible type as the variable type, or can also be a String value that,
when parsed, is compatible to the type declared for the variable.

Ina XML configuration file the variable configuration may look as below. The Confi gurati on APl can aso be
used to configure variables.

<vari abl e nane="var _t hreshol d" type="long" initialization-value="100"/>
<vari abl e nane="var _key" type="string"/>

© 2007 EsperTech Inc. - Esper2.0.0 123

Configuration

10.4.7. Relational Database Access

Esper has the capahility to join event streams against historical data sources, such as arelational database. This
section describes the configuration entries that the engine requires to access data stored in your database. Please
see Section 4.14, “ Joining Relational Datavia SQL” for information on the use of EPL queries that include his-
torical data sources.

EPL queries that poll data from arelational database specify the name of the database as part of the EPL state-
ment. The engine uses the configuration information described here to resolve the database name in the state-
ment to database settings. The required and optional database settings are summarized below.

e Database connections can be obtained via JDBC javax.xnl.DataSource or daternatively via
java. sql . Dri ver Manager . Either one of these methods to obtain new database connections is a required
configuration.

e Optionally, JDBC connection-level settings such as auto-commit, transaction isolation level, read-only and
the catalog name can be defined.

« Optionaly, a connection lifecycle can be set to indicate to the engine whether the engine must retain con-
nections or must obtain a new connection for each lookup.

« Optionaly, define a cache poalicy to alow the engine to retrieve data from a query cache, reducing the num-
ber of query executions.

Some of the settings can have important performance implications that need to be carefully considered in rela-
tionship to your database software, JDBC driver and runtime environment. This section attempts to outline such
implications where appropriate.

The sample XML configuration file in the "etc" folder can be used as a template for configuring database set-
tings. All settings are also available by means of the configuration API through the classes Conf i gur at i on and
Confi gur ati onDBRef .

Connections obtained via DataSource

The snippet of XML below configures a database named nydbl to obtain connections via a
j avax. sql . Dat aSour ce. The dat asour ce- connect i on €lement instructs the engine to obtain new connections
to the database nydb1 by performing alookup viaj avax. nani ng. I ni ti al Cont ext for the given object lookup
name. Optional environment properties for the i ni ti al Cont ext are also shown in the example.

<dat abase-ref erence nanme="nydbl">
<dat asour ce- connecti on cont ext -1 ookup- nane="j ava: conp/ env/ j dbc/ nydb" >
<env- property name="java. nam ng.factory.initial" value ="com nycl ass. Ct xFactory"/>
<env- property nane="java. nam ng. provi der.url" value ="iiop://local host: 1050"/ >
</ dat asour ce- connect i on>
</ dat abase-ref erence>

To help you better understand how the engine uses this information to obtain connections, we have included the
logic below.

if (envProperties.size() > 0) {

initial Context = new Initial Context(envProperties);
}
el se {

initial Context = new Initial Context();
}
Dat aSour ce dat aSour ce
Connection connection

(Dat aSource) initial Context.|ookup(lookupNane);
dat aSour ce. get Connecti on();

Connections obtained via DriverManager

© 2007 EsperTech Inc. - Esper2.0.0 124

Configuration

The next snippet of XML configures a database named nydb2 to obtain connections via
java.sql . Driver Manager. The dri ver manager - connect i on element instructs the engine to obtain new con-
nections to the database mydb2 by means of d ass. f or Name and Dri ver Manager . get Connect i on using the class
name, URL and optional username, password and connection arguments.

<dat abase-ref erence nane="nydb2">
<dri ver manager - connecti on cl ass- nane="mny. sql . Dri ver"
url ="j dbc: nysql : //1 ocal host/t est 2user =r oot &np; passwor d=nmypasswor d"
user ="nyuser" passwor d="nypasswor d" >
<connection-arg nanme="user" val ue ="nyuser"/>
<connecti on-arg nane="password" val ue ="nypassword"/>
<connection-arg nane="sonearg" val ue ="soneargval ue"/>
</ dri ver manager - connecti on>
</ dat abase-ref erence>

The username and password are shown in multiple places in the XML only as an example. Please check with
your database software on the required information in URL and connection arguments.

Connections-level settings

Additional connection-level settings can optionally be provided to the engine which the engine will apply to
new connections. When the engine obtains a new connection, it applies only those settings to the connection
that are explicitly configured. The engine leaves al other connection settings at default values.

The below XML is a sample of all available configuration settings. Please refer to the Java APl JavaDocs for
j ava. sql . Connecti on for more information to each option or check the documentation of your JDBC driver
and database software.

<dat abase-ref erence nanme="nydb2">
configure data source or driver nmanager settings...
<connection-settings auto-comit="true" catal og="mnycatal og"
read-onl y="true" transaction-isolation="1" />
</ dat abase-ref erence>

The r ead- onl y setting can be used to indicate to your database engine that SQL statements are read-only. The
transaction-isol ati on and aut o- cormi t help you database software perform the right level of locking and
lock release. Consider setting these values to reduce transactional overhead in your database queries.

Connections lifecycle settings

By default the engine retains a separate database connection for each started EPL statement. However, it iS pos-
sible to override this behavior and require the engine to obtain a new database connection for each lookup, and
to close that database connection after the lookup is completed. This often makes sense when you have a large
number of EPL statements and require pooling of connections via a connection pool. If your runtime environ-
ment includes an application server, the connection pool may be exposed as a Dat aSour ce.

The XML for this option is below. The connection lifecycle allows the following values: pool ed andr et ai n.

<dat abase-ref erence nane="nydb2">
configure data source or driver nanager settings..
<connection-lifecycle val ue="pool ed"/>

</ dat abase-ref erence>

Cache settings

Cache settings can dramatically reduce the number of database queries that the engine executes for EPL state-
ments. If no cache setting is specified, the engine does not cache query results and executes a separate database

© 2007 EsperTech Inc. - Esper2.0.0 125

Configuration

query for every event.

Caches store the results of database queries and make these results available to subsequent queries using the ex-
act same query parameters as the query for which the result was stored. If your query returns one or more rows,
the cache keep the result rows of the query keyed to the parameters of the query. If your query returns no rows,
the cache also keeps the empty result. Query results are held by a cache until the cache entry is evicted. The
strategies available for evicting cached query results are listed next.

LRU Cache

The least-recently-used (LRU) cache is configured by a maximum size. The cache discards the least recently
used query results first once the cache reaches the maximum size.

The XML configuration entry for a LRU cache is as below. This entry configures an LRU cache holding up to
1000 query results.

<dat abase-ref erence nane="nydb" >
. configure data source or driver nmanager settings...
<l ru-cache si ze="1000"/>
</ dat abase-ref erence>

Expiry-time Cache

The expiry time cache is configured by a maximum age in seconds, a purge interval and an optional reference
type. The cache discards (on the get operation) any query results that are older then the maximum age so that
stale data is not used. If the cache is not empty, then every purge interval number of seconds the engine purges
any expired entries from the cache.

The XML configuration entry for an expiry-time cache is as follows. The example configures an expiry time
cache in which prior query results are valid for 60 seconds and which the engine inspects every 2 minutesto re-
move query results older then 60 seconds.

<dat abase-ref erence nane="nydb" >
. configure data source or driver manager settings...
<expiry-tinme-cache max-age-seconds="60" purge-interval -seconds="120" />
</ dat abase-r ef erence>

By default, the expiry-time cache is backed by aj ava. uti| . weakHashvap and thus relies on weak references.
That means that cached SQL results can be freed during garbage collection.

Via XML or using the configuration API the type of reference can be configured to not allow entries to be
garbage collected, by setting ther ef - t ype property to har d:

<dat abase-ref erence name="nydb" >
. configure data source or driver manager settings...
<expiry-ti me-cache max-age-seconds="60" purge-interval-seconds="120" ref-type="hard"/>
</ dat abase-r ef erence>

The last setting for the cache reference typeissof t : This strategy allows the garbage collection of cache entries
only when all other weak references have been collected.

Column Change Case

This setting instructs the engine to convert to lower- or uppercase any output column names returned by your
database system. When using Oracle relational database software, for example, column names can be changed
to lowercase viarthis setting.

© 2007 EsperTech Inc. - Esper2.0.0 126

Configuration

A sample XML configuration entry for this setting is:

<col um- change- case val ue="1| ower case"/ >

SQL Types Mapping

By providing a mapping of SQL types (j ava. sql . Types) to Java built-in types your code can avoid using
sometimes awkward default database types and can easily change the way Esper returns Java types for columns
returned by a SQL query.

The mapping maps a constant as defined by j ava. sqgl . Types to a Java built-in type of any of the following
Javatype names: String, BigDecimal, Bool ean, Byte, Short, Int, Long, Float, Double, ByteArray,
Sql Date, Sql Time, Sql Ti mest anp. The Javatype names are not case-sensitive.

A sample XML configuration entry for this setting is shown next. The sample maps Types. NUVERI C (of value
2) to the Javai nt type.

<sqgl -types- mappi ng sql -type="2" java-type="int" />

Metadata Origin

This setting controls how the engine retrieves SQL statement metadata from JDBC prepared statements.

Table 10.3. Syntax and results of aggregate functions
Option Description

default
By default, the engine detects the driver name and queries prepared statement metadata

if the driver is not an Oracle database driver. For Oracle drivers, the engine uses lexical
analysis of the SQL statement to construct a sample SQL statement and then fires that
statement to retrieve statement metadata.

metadata
The engine always queries prepared statement metadata regardless of the database

driver used.

sample
The engine always uses lexical analysis of the SQL statement to construct a sample

SQL statement, and then fires that statement to retrieve statement metadata.

10.4.8. Engine Settings related to Concurrency and Threading

Preserving the order of events delivered to listeners

In multithreaded environments, this setting controls whether dispatches of statement result events to listeners
preserve the ordering in which a statement processes events. By default the engine guarantees that it delivers a
statement's result events to statement listeners in the order in which the result is generated. This behavior can be
turned off via configuration as below.

The next code snippet shows how to control this feature:

Configuration config = new Configuration();

© 2007 EsperTech Inc. - Esper2.0.0 127

Configuration

confi g. get Engi neDef aul t s() . get Thr eadi ng() . set Li st ener Di spat chPreserveO der (fal se);
engi ne = EPServi ceProvi der Manager . get Def aul t Provi der (confi g);

And the XML configuration file can also control this feature by adding the following elements:

<engi ne-settings>
<def aul t s>
<t hr eadi ng>
<listener-di spatch preserve-order="true" timeout-nsec="1000" | ocking="spin"/>
</t hreadi ng>
</ def aul t s>
</ engi ne-settings>

As discussed, by default the engine can temporarily block another processing thread when delivering result
eventsto listenersin order to preserve the order in which results are delivered to a given statement. The maxim-
um time the engine blocks a thread can also be configured, and by default is set to 1 second.

As such delivery locks are typicaly held for a very short amount of time, the default blocking technique em-
ploys a spin lock (There are two techniques for implementing blocking; having the operating system suspend
the thread until it is awakened later or using spin locks). While spin locks are CPU-intensive and appear ineffi-
cient, aspin lock can be more efficient than suspending the thread and subsequently waking it up, especialy if
the lock in question is held for a very short time. That is because there is significant overhead to suspending
and rescheduling athread.

The locking technique can be changed to use a blocking strategy that suspends the thread, by means of setting
the locking property to 'suspend'.

Preserving the order of events for insert-into streams

In multithreaded environments, this setting controls whether statements producing events for other statements
via insert-into preserve the order of delivery within the producing and consuming statements, allowing state-
ments that consume other statement's events to behave deterministic in multithreaded applications, if the con-
suming statement requires such determinism. By default, the engine makes this guarantee (the setting is on).

Take, for example, an application where a single statement (S1) inserts events into a stream that another state-
ment (S2) further evaluates. A multithreaded application may have multiple threads processing events into
statement S1. As statement S1 produces events for consumption by statement S2, such results may need to be
delivered in the exact order produced as the consuming statement may rely on the order received. For example,
if the first statement counts the number of events, the second statement may employ a pattern that inspects
counts and thus expect the counts posted by statement S1 to continuously increase by 1 even though multiple
threads process events.

The engine may need to block a thread such that order of delivery is maintained, and statements that require or-
der (such as pattern detection, previous and prior functions) receive a deterministic order of events. The settings
available control the blocking technique and parameters. As described in the section immediately prior, the de-
fault blocking technique employs spin locks per statement inserting events for consumption, as the locks in
questions are typically held a very short time. The 'suspend’ blocking technique can be configured and a
timeout value can aso defined.

The XML configuration file may change settings via the following elements:

<engi ne- settings>
<def aul t s>
<t hr eadi ng>
<insert-into-di spatch preserve-order="true" tinmeout-nmsec="100" | ocki ng="spin"/>
</t hr eadi ng>
</ def aul t s>

© 2007 EsperTech Inc. - Esper2.0.0 128

Configuration

</ engi ne-settings>

Internal Timer Settings

This option can be used to disable the internal timer thread and such have the application supply external time
events, aswell asto set atimer resolution.

The next code snippet shows how to disable the internal timer thread via the configuration API:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Threadi ng() . set| nternal Ti mer Enabl ed(f al se);

This snippet of XML configuration leaves the internal timer enabled (the default) and sets a resolution of 200
milliseconds (the default is 100 milliseconds):

<engi ne- settings>
<def aul t s>
<t hr eadi ng>
<internal -ti ner enabl ed="true" nsec-resol uti on="200"/>
</t hr eadi ng>
</ def aul t s>
</ engi ne-settings>

We recommend that when disabling the internal timer, applications send an external timer event setting the start
time before creating statements, such that statement start time is well-defined.

10.4.9. Engine Settings related to Event Metadata

Java Class Property Names and Case Sensitivity

As discussed in Section 10.4.1.6, “Case Sensitivity and Property Names’ this setting controls case sensitivity
for Java event class properties of all Java classes as a default, rather then at aclasslevel.

The next code snippet shows how to control this feature viathe API:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Event Met a() . set Cl assPropertyResol utionStyl e(
Conf i guration. PropertyResol uti onStyl e. CASE_| NSENSI TI VE)

10.4.10. Engine Settings related to View Resources

Sharing View Resources between Statements

The engine by default attempts to optimize resource usage and thus re-uses or shares views between statements
that declare same views. However, in multi-threaded environments, this can lead to reduced concurrency as
locking for shared view resources must take place. Via this setting this behavior can be turned off for higher
concurrency in multi-threaded processing.

The next code snippet outlines the API to turn off view resource sharing between statements:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Vi ewResour ces() . set ShareVi ews(f al se);

© 2007 EsperTech Inc. - Esper2.0.0 129

Configuration

10.4.11. Engine Settings related to Logging

Execution Path Debug Logging

By default, the engine does not produce debug output for the event processing execution paths even when
Log4j or Logger configurations have been set to output debug level logs. To enable debug level logging, set
this option in the configuration aswell asin your Log4j configuration file.

The API to use to enable debug logging is shown here:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Loggi ng() . set Enabl eExecut i onDebug(true);

Note: thisis a configuration option that applies to all engine instances of a given Java module or VM.

10.4.12. Engine Settings related to Variables

Variable Version Release Interval

This setting controls the length of time that the engine retains variable versions for use by statements that use
variables and that execute, within the same statement for the same event, longer then the time interval. By de-
fault, the engine retains 15 seconds of variable versions.

For statements that use variables and that execute (in response to a single timer or other event) longer then the
time period, the engine returns the current variable version at the time the statement executes, thereby softening
the guarantee of consistency of variable values within the long-running statement. Please see Section 4.17.3,
“Using Variables’” for more information.

The XML configuration for this setting is shown below:

<engi ne-settings>
<def aul t s>
<vari abl es>
<nsec-version-rel ease val ue="15000"/>
</vari abl es>
</ def aul t s>
</ engi ne-settings>

10.4.13. Engine Settings related to Stream Selection

Default Statement Stream Selection

Statements can produce both insert stream (new data) and remove stream (old data) results. Remember that in-
sert stream refers to arriving events and new aggregation values, while remove stream refers to events leaving
data windows and prior aggregation values. By default, the engine delivers only the insert stream to listeners
and observers of a statement.

There are keywords in the sel ect clause that instruct the engine to not generate insert stream and/or remove
stream results if your application does not need either one of the streams. These keywords are the i st ream
rstreamand thei r st r eamkeywords.

By default, the engine only generates insert stream results equivalent to using the optional i st reamkeyword in
the sel ect clause. If you application requires insert and remove stream results for many statements, your ap-

© 2007 EsperTech Inc. - Esper2.0.0 130

Configuration

plication can add the i r st r eamkeyword to the sel ect clause of each statement, or you can set a new default
stream selector viathis setting.

The XML configuration for this setting is shown below:

<engi ne- settings>
<def aul t s>
<stream sel ecti on>
<stream sel ector val ue="irstrean />
</ stream sel ecti on>
</ def aul t s>
</ engi ne-setti ngs>

The equivalent code snippet using the configuration API is here:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get St reanBel ecti on()
. set Def aul t St reantel ect or (St r eantSel ect or . RSTREAM | STREAM BOTH) ;

© 2007 EsperTech Inc. - Esper2.0.0 131

Chapter 11. Extension and Plug-in

11.1. Overview

Esper can currently be extended by these means.

« User-defined functions - these can be used anywhere where expressions are allowed, please see Section 7.3,
“User-Defined Functions’
e Custom-developed Plug-in Views

11.2. Custom View Implementation

Views in Esper are used to derive information from an event stream, and to represent data windows onto an
event stream. This chapter describes how to plug-in a new, custom view.

The following steps are required to develop and use a custom view with Esper.

1. Implement aview factory class. View factories are classes that accept and check view parameters and in-
stantiate the appropriate view class.

2. Implement a view class. A view class commonly represents a data window or derives new information
from a stream.

3. Configure the view factory class supplying a view namespace and name in the engine configuration file.

The example view factory and view class that are used in this chapter can be found in the test source folder in
the package com espertech. esper.regression.client by the name MTrendSpotterVi ewFactory and
MyTrendSpot t er Vi ew.

Views can make use of the following engine services available via st at enent Ser vi ceCont ext :

e Theschedul i ngServi ce interface allows views to schedul e timer callbacks to aview

e The Event Adapt er Ser vi ce interface allows views to create new event types and event instances of a given
type.

* The statenent St opSer vi ce interface allows view to register a callback that the engine invokes to indicate
that the view's statement has been stopped

Note that custom views may use engine services and APIs that can be subject to change between major re-
leases. The engine services discussed above and view APIs are considered part of the engine internal public
API and are stable. Any changes to such APIs are disclosed through the release change logs and history. Please
also consider contributing your custom view to the Esper project team by submitting the view code through the
mailing list or viaa JRA issue.

11.2.1. Implementing a View Factory

A view factory classis responsible for the following functions:

e Accept zero, one or more view parameters. Validate and parse the parameters as required.

» Validate that the parameterized view is compatible with its parent view. For example, validate that field
names are valid in the event type of the parent view.

* Instantiate the actual view class.

» Provide information about the event type of events posted by the view.

© 2007 EsperTech Inc. - Esper2.0.0 132

Extension and Plug-in

View factory classes simply subclass com espert ech. esper. vi ew. Vi ewFact or ySupport :

public class MyTrendSpotterVi ewFact ory extends Vi ewractorySupport {

Your view factory class must implement the set Vi ewPar anet er s method to accept and parse view parameters.
The next code snippet shows an implementation of this method. The code obtains a single field name parameter
from the parameter list passed to the method:

public class MyTrendSpotterVi ewFactory extends Vi ewFactorySupport {
private String fiel dName;
private Event Type event Type;

public void setVi ewPar anet er s(Vi ewFact or yCont ext vi ewFact or yCont ext ,
Li st <Cbj ect > vi ewPar aneters) throws Vi ewParanet er Excepti on
{

String errorMessage = "' Trend spotter' viewrequire a single field name as a paraneter";
if (viewParaneters.size() !'=1) {
t hrow new Vi ewPar anmet er Except i on(error Message) ;

}

if (!'(viewParaneters.get(0) instanceof String)) {
t hr ow new Vi ewPar anmet er Except i on(error Message) ;

}

fieldNanme = (String) viewParaneters.get(0);

After the engine supplied view parameters to the factory, the engine will ask the view to attach to its parent
view and validate any field name parameters against the parent view's event type. If the view will be generating
events of a different type then the events generated by the parent view, then the view factory can create the new
event type in this method:

public void attach(Event Type parent Event Type,
St at enent Ser vi ceCont ext st at ement Ser vi ceCont ext,
Vi ewFact ory opti onal Parent Factory,
Li st <Vi ewFact ory> parent Vi ewFact ori es)
throws Vi ewAttachException {
String result = PropertyCheckHel per.checkNuneri c(parent Event Type, fiel dNane);
if (result !'=null) {
t hrow new Vi ewAt t achException(result);
}

/'l create new event type

Map<String, C ass> event TypeMap = new HashMap<String, Cass>();

event TypeMap. put (PROPERTY_NAME, Long. cl ass);

event Type = st at enent Ser vi ceCont ext . get Event Adapt er Ser vi ce() .
creat eAnonynmousMapType(event TypeMap) ;

Finally, the engine asks the view factory to create a view instance:

public View nakeVi ew(St at enent Servi ceCont ext statemnment Servi ceCont ext) {
return new MyTrendSpotter Vi ew(st at enent Servi ceCont ext, fiel dNange);

}

11.2.2. Implementing a View

A view classisresponsible for:

* Theset Parent method informsthe view of the parent view's event type

© 2007 EsperTech Inc. - Esper2.0.0 133

Extension and Plug-in

e Theupdat e method receivesinsert streams and remove stream events from its parent view

* Theiterator method supplies an (optional) iterator to allow an application to pull or request results from
an EPSt at enent

e Thecl onevi ew method must make a configured copy of the view to enable the view to work in a grouping
context together with a st d: gr oupby parent view

View classes simply subclass com espert ech. esper. vi ew. Vi ewSupport :

public class MyTrendSpotterVi ew extends Vi ewSupport { ...

The view class must implement the set Par ent (Vi ewabl e par ent) method. Thisis an opportunity for the view
to initialize and obtain a fast event property getter for later use to obtain event property values. The next code
snippet shows an implementation of this method:

public void setParent (Vi ewabl e parent) {
super . set Parent (parent);
if (parent !'=null) {
fieldGetter = parent.get Event Type().getGetter(fi el dNane);

}
}

Y our updat e method will be processing incoming (insert stream) and outgoing (remove stream) events, as well
as providing incoming and outgoing events to child views. The convention required of your update method im-
plementation is that the view releases any insert stream events which the view generates as semantically-equal
remove stream events at a later time. A sample updat e method implementation that computes a number of
eventsin an upward trend is shown below:

public final void update(EventBean[] newbData, EventBean[] ol dData) {
Event Bean ol dDat aPost = popul at eMap(trendcount);

/1 add data points
if (newbata != null) {
for (int i =0; i < newData.length; i++) {
doubl e dataPoint = ((Nunber) fieldGetter.get(newbDatal[i])).doubl eVal ue();

if (lastDataPoint == null) {
trendcount = 1L;

else if (lastDataPoint < dataPoint) {
trendcount ++;

el se if (IastDataPoint > dataPoint) {
trendcount = OL;

}
| ast Dat aPoi nt = dat aPoi nt ;

}
}

if (this.hasViews()) {

Event Bean newDat aPost = popul at eMap(trendcount);

updat eChi | dren(new Event Bean[] {newDataPost}, new EventBean[] {ol dDataPost});
}

This updat e method must adhere to the following view conventions, to prevent memory leaks and to enable
correct behavior within the engine:

* Viewsmust post aremove stream in the form of old data to child views. The remove stream must consist of
the same event reference(s) posted as insert stream (new data).

The engine can provide a callback to the view indicating when a statement using the view is stopped. The call-
back is available to the view via the com espertech. esper. vi ew. St at ement St opCal | back interface. Your

© 2007 EsperTech Inc. - Esper2.0.0 134

Extension and Plug-in

view code must subscribe to the stop callback in order for the engine to invoke the callback:

st at enent Cont ext . get St at enent St opSer vi ce() . addSubscri ber (thi s);

Please refer to the sample views for a code sample on how to implement i t er at or and cl oneVi ew methods.

11.2.3. Configuring View Namespace and Name

The view factory class name as well as the view namespace and name for the new view must be added to the
engine configuration via the configuration API or using the XML configuration file. The configuration shown
below is XML however the same options are available through the configuration API:

<esper -configuration
<pl ugi n-vi ew nanespace="cust onf’ nanme="trendspotter"
factory-cl ass="com espertech. esper.regressi on.vi ew. MyTrendSpot t er Vi ewFact ory" />
</ esper-configuration>

The new view is now ready to use in a statement:

select * from StockTi ck.customtrendspotter(price)

Note that the view must implement the copyVi ew method to enable the view to work in a grouping context as
shown in the next statement:

sel ect * from StockTi ck. std: groupby(synbol).customtrendspotter(price)

11.3. Custom Aggregation Functions

Aggregation functions aggregate event property values or expression results obtained from one or more
streams. Examples for built-in aggregation functions are count (*), sun(price * vol une) Or avg(disti nct
vol une) .

The optional keyword di sti nct ensures that only distinct (unique) values are aggregated and duplicate values
areignored by the aggregation function. Custom plug-in aggregation functions do not need to implement the lo-
gicto handledi sti nct values. Thisis because when the engine encounters the di st i nct keyword, it eliminates
any non-distinct values before passing the value for aggregation to the custom aggregation function.

The following steps are required to develop and use a custom aggregation function with Esper.

1. Implement an aggregation function class.
2. Register the aggregation function class with the engine by supplying a function name, via the engine con-
figuration file or the configuration API.

The code for the example aggregation function as shown in this chapter can be found in the test source folder in
the package com espertech. esper.regression.client by the name M/Concat Aggr egati onFunction. The
sample function simply concatenates string-type values.

11.3.1. Implementing an Aggregation Function

An aggregation function class is responsible for the following functions:

e Implement aval i dat e method that validates the value type of the data points that the function must pro-
cess.

© 2007 EsperTech Inc. - Esper2.0.0 135

Extension and Plug-in

* Implement aget Val ueType method that returns the type of the aggregation value generated by the function.
For example, the built-in count aggregation function returns Long. cl ass asit generates| ong -typed values.

« Implement an ent er method that the engine invokes to add a data point into the aggregation, when an event
enters a data window

« Implement al eave method that the engine invokes to remove a data point from the aggregation, when an
event leaves a data window

e Implement aget Val ue method that returns the current value of the aggregation.

Aggregation function classes simply subclass com espert ech. esper . epl . agg. Aggr egat i onSupport :

public class MyConcat Aggr egati onFuncti on extends Aggregati onSupport { ...

The engine generally constructs one instance of the aggregation function class for each time the function islis-
ted in a statement, however the engine may decide to reduce the number of aggregation class instances if it
finds equivalent aggregations. The constructor initializes the aggregation function:

public class MyConcat Aggr egati onFuncti on extends Aggregati onSupport {
private final static char DELIMTER = ' '
private StringBuil der buil der;
private String delimter;

publ i ¢ MyConcat Aggr egati onFuncti on()
{

super () ;
bui l der = new StringBuil der();
delimter = ""

}

An aggregation function must provide an implementation of the val i dat e method that is passed the result type
of the expression within the aggregation function. Since the example concatenation function requires string
types, it implements atype check:

public void validate(C ass chil dNodeType) {
if (chil dNodeType != String.class) {
throw new ||| egal Argunent Excepti on(" Concat aggregation requires a String paraneter");
}

}

The ent er method adds a datapoint to the current aggregation value. The example ent er method shown below
adds a delimiter and the string value to a string buffer:

public void enter(oject value) {
if (value '= null) {
bui | der. append(delimter);
bui | der. append(val ue.toString());
delimter = String.val ued (DELIM TER);
}
}

Converdy, the | eave method removes a datapoint from the current aggregation value. The example | eave
method removes from the string buffer:

public void | eave(bject value) {
if (value !'= null) {
bui |l der. del ete(0, value.toString().length() + 1);
}
}

In order for the engine to validate the type returned by the aggregation function against the types expected by

© 2007 EsperTech Inc. - Esper2.0.0 136

Extension and Plug-in

enclosing expressions, the get Val ueType must return the result type of any values produced by the aggregation
function:

public C ass getVal ueType() {
return String.class;

}

Finally, the engine obtains the current aggregation value by means of the get val ue method:

public Object getValue() {
return builder.toString();

}

11.3.2. Configuring Aggregation Function Name

The aggregation function class name as well as the function name for the new aggregation function must be ad-
ded to the engine configuration via the configuration APl or using the XML configuration file. The configura-
tion shown below is XML however the same options are available through the configuration API:

<esper-configuration
<pl ugi n- aggr egat i on-functi on name="concat"
function-cl ass="com espertech. esper.regression.client. MConcat Aggr egati onFunction" />
</ esper-confi guration>

The new aggregation function is now ready to usein a statement:

sel ect concat (synbol) from StockTi ck.w n: | ength(3)

11.4. Custom Pattern Guard

Pattern guards are pattern objects that control the lifecycle of the guarded sub-expression, and can filter the
events fired by the subexpression.

The following steps are required to devel op and use a custom guard object with Esper.

1. Implement aguard factory class, responsible for creating guard object instances.

2. Implement aguard class.

3. Register the guard factory class with the engine by supplying a namespace and name, via the engine con-
figuration file or the configuration API.

The code for the example guard object as shown in this chapter can be found in the test source folder in the
package com espertech. esper.regression.client by the name M/Count ToPatternGuardFactory. The
sample guard discussed here counts the number of events occurring up to a maximum number of events, and
end the sub-expression when that maximum is reached.

11.4.1. Implementing a Guard Factory

A guard factory classisresponsible for the following functions:

* Implement aset Guar dPar anet er s method that validates guard parameters.
* Implement anakeGuar d method that constructs a new guard instance.

Guard factory classes subclass com esper t ech. esper . pat t er n. guar d. Guar dFact or ySupport :

© 2007 EsperTech Inc. - Esper2.0.0 137

Extension and Plug-in

public class MyCount ToPatternGuardFactory extends GuardFactorySupport { ...

The engine constructs one instance of the guard factory class for each time the guard is listed in a statement.

The guard factory class implements the set Guar dPar anet er s method that is passed the parameters to the guard
as supplied by the statement. It verifies the guard parameters, similar to the code snippet shown next. Our ex-
ample counter guard takes a single numeric parameter:

public void set GuardParanet er s(Li st <Cbj ect > guardPar anet ers) throws CuardParanet er Excepti on {
if (guardParaneters.size() '= 1) {
t hrow new Guar dPar anet er Excepti on(" Count-to guard takes a single integer paraneter");
}
i f (!(guardParaneters.get(0) instanceof Integer)) ({
t hrow new Cuar dPar amet er Excepti on(" Count-to guard takes a single integer paraneter");

}
nunCount To = (I nteger) guardParaneters. get(0);

}

The makeGuar d method is called by the engine to create a new guard instance. The example makeGuar d method
shown below passes the maximum count of events to the guard instance. It also passes a Qui t abl e implementa-
tion to the guard instance. The guard uses Qui t abl e to indicate that the sub-expression contained within must
stop (quit) listening for events.

publ i c Guard nakeGuard(PatternContext context, Quitable quitable,
bj ect stateNodeld, Object guardState) {
return new MyCount ToPatt er nGuar d(nunCount To, quitabl e);

11.4.2. Implementing a Guard Class

A guard class has the following responsibilities:

* Providesast art Guar d method that initalizes the guard.

* Provides a st opGuar d method that stops the guard, called by the engine when the whole pattern is stopped,
or the sub-expression containing the guard is stopped.

* Provides an i nspect method that the pattern engine invokes to determine if the guard lets matching events
pass for further evaluation by the containing expression.

Guard classes subclass com espert ech. esper. pattern. guar d. Guar dSuppor t as shown here:

public abstract class QuardSupport inplenments Guard { ...

The engine invokes the guard factory class to construct an instance of the guard class for each new sub-
expression instance within a statement.

A guard class must provide an implementation of the st art Guard method that the pattern engine invokes to
start a guard instance. In our example, the method resets the guard's counter to zero:

public void startCQuard() {
counter = 0;

}

The pattern engine invokes the i nspect method for each time the sub-expression indicates a new event result.
Our example guard needs to count the number of events matched, and quit if the maximum number is reached:

publ i c bool ean inspect (Mat chedEvent Map mat chEvent) {
count er ++;

© 2007 EsperTech Inc. - Esper2.0.0 138

Extension and Plug-in

if (counter > nunCountTo) {
qui t abl e. guardQui t () ;
return fal se;

}

return true;

}

The i nspect method returns true for events that pass the guard, and false for events that should not pass the
guard.

11.4.3. Configuring Guard Namespace and Name

The guard factory class name as well as the namespace and name for the new guard must be added to the en-
gine configuration via the configuration API or using the XML configuration file. The configuration shown be-
low is XML however the same options are avail able through the configuration API:

<esper-configuration
<pl ugi n- pattern-guard nanespace="nypl ugi n" nane="count _t 0"
factory-cl ass="com espertech. esper.regression.client. MCount ToPatternGuardFactory"/>
</ esper-confi guration>

The new guard is now ready to use in a statement. The next pattern statement detects the first 10 MyEvent
events:

select * frompattern [(every MyEvent) where mypl ugi n: count _t o(10)]

Note that the ever y keyword was placed within parentheses to ensure the guard controls the repeated matching
of events.

11.5. Custom Pattern Observer

Pattern observers are pattern objects that are executed as part of a pattern expression and can observe events or
test conditions. Examples for built-in observersaretimer: at andti mer: i nterval . Some suggested uses of ob-
server objects are:

* Implement custom scheduling logic using the engine's own scheduling and timer services
e Test conditions related to prior events matching an expression

The following steps are required to develop and use a custom observer object within pattern statements:

1. Implement an observer factory class, responsible for creating observer object instances.

2. Implement an observer class.

3. Register an observer factory class with the engine by supplying a namespace and name, via the engine
configuration file or the configuration API.

The code for the example observer object as shown in this chapter can be found in the test source folder in
package com espert ech. esper. regression. cli ent by the name M/Fi | eExi st sCbser ver . The sample observ-
er discussed here very smply checks if afile exists, using the filename supplied by the pattern statement, and
viathejava.io. Fil e class.

11.5.1. Implementing an Observer Factory

An observer factory classis responsible for the following functions:

© 2007 EsperTech Inc. - Esper2.0.0 139

Extension and Plug-in

* Implement aset Cbser ver Par anet er s method that validates observer parameters.
* Implement amakeCbser ver method that constructs a new observer instance.

Observer factory classes subclass com espert ech. esper. patt ern. observer. Cbser ver Fact or ySupport :

public class M/Fil eExi st sQbserver Factory extends Observer FactorySupport { ...

The engine constructs one instance of the observer factory class for each time the observer is listed in a state-
ment.

The observer factory class implements the set bser ver Par anet er s method that is passed the parameters to the
observer as supplied by the statement. It verifies the observer parameters, similar to the code snippet shown
next. Our example file-exists observer takes a single string parameter:

public void set Qbserver Paranet er s(Li st <Obj ect > observer Par anet er s)
t hrows QCbserver Par anet er Exception {
String message = "File exists observer takes a single string fil ename paraneter"”;
if (observerParaneters.size() !=1) {
t hrow new Cbser ver Par anet er Except i on(message) ;
}
i

f (!(observerParaneters.get(0) instanceof String)) {
t hrow new Cbser ver Par anet er Except i on(message) ;

}

filename = observerParaneters.get(0).toString();

The pattern engine calls the makeCbser ver method to create a new observer instance. The example nakeCb-
server method shown below passes parameters to the observer instance:

publ i c Event Cbserver nakeCbserver (PatternCont ext context,
Mat chedEvent Map begi nSt at e,
Obser ver Event Eval uat or observer Event Eval uat or,
(bj ect st at eNodel d,
hj ect observerState) {
return new MyFi | eExi st sCbserver (begi nState, observerEvent Eval uator, fil enane);

}

The tbser ver Event Eval uat or parameter allows an observer to indicate events, and to indicate change of truth
value to permanently false. Use this interface to indicate when your observer has received or witnessed an
event, or changed it's truth value to true or permanently false.

The Mat chedEvent Map parameter provides a Map of all matching events for the expression prior to the observ-
er's start. For example, consider a pattern as below:

a=MyEvent -> nypl ugi n: ny_observer(...)

The above pattern tagged the MyEvent instance with the tag "a'. The pattern engine starts an instance of
ny_observer when it receives the first MyEvent. The observer can query the vat chedEvent Map using "a' as a
key and obtain the tagged event.

11.5.2. Implementing an Observer Class

An observer class has the following responsibilities:

e Providesast art Gbser ve method that starts the observer.
e Provides a st optbser ve method that stops the observer, called by the engine when the whole pattern is
stopped, or the sub-expression containing the observer is stopped.

© 2007 EsperTech Inc. - Esper2.0.0 140

Extension and Plug-in

Observer classes subclass com espert ech. esper. pattern. observer. Cbser ver Support as shown here:

public class M/Fil eExi stsCbserver inplenments Event Coserver { ...

The engine invokes the observer factory class to construct an instance of the observer class for each new sub-
expression instance within a statement.

An observer class must provide an implementation of the st ar t Cbser ve method that the pattern engine invokes
to start an observer instance. In our example, the observer checks for the presence of a file and indicates the
truth value to the remainder of the expression:

public void startCbserve() {
File file = new File(filenane);
if (file.exists()) {
obser ver Event Eval uat or . obser ver Eval uat eTr ue(begi nSt at e) ;

}
el se {
obser ver Event Eval uat or. obser ver Eval uat eFal se();

}
}

Note the observer passes the Gbser ver Event Eval uat or an instance of Mat chedEvent Map. The observer can aso
create one or more new events and pass these events through the Map to the remaining expressions in the pat-
tern.

11.5.3. Configuring Observer Namespace and Name

The observer factory class name as well as the namespace and name for the new observer must be added to the
engine configuration via the configuration APl or using the XML configuration file. The configuration shown
below is XML however the same options are available through the configuration API:

<esper - configuration
<pl ugi n- pat t er n- observer namespace="nypl ugi n* nanme="fil e_exi sts"
factory-cl ass="com espertech. esper.regression.client. WFil eExi st sCbserver Factory" />
</ esper-confi guration>

The new observer is now ready to use in a statement. The next pattern statement checks every 10 seconds if the
given file exists, and indicates to the listener when the file is found.

select * frompattern [every tinmer:interval (10 sec) -> nyplugin:file_exists("myfile.txt")]

© 2007 EsperTech Inc. - Esper2.0.0 141

Chapter 12. Examples, Tutorials, Case Studies

12.1. Examples Overview

This chapter outlines the examples that come with Esper in the exanpl es/ src folder of the distribution. The
code for examples can be found in the com espert ech. esper . exanpl e packages.

In order to compile and run the sampl es please follow the below instructions:

1. MakesureJavalb or greater isinstaled and the JAVA_HOME environment variable is set.
2. Open aconsole window and change directory to exampleg/etc.

3. Run"setenv.bat" (Windows) or "setenv.sh" (Unix) to verify your environment settings.

4. Run"compile.bat" (Windows) or "compile.sh" (Unix) to compile the examples.

5. Now you are ready to run the examples. Some examples require mandatory parameters. Further informa-
tion to running each example can be found in the "examples/etc" folder in file "readme.txt".

6. Modify thelogger logging level in the "logdj.xml" configuration file changing DEBUG to INFO on a class
or package level to reduce the volume of text output.

JUnit tests exist for the example code. The JUnit test source code for the examples can be found in the ex-
anpl es/test folder. To build and run the example JUnit tests, use the Maven 2 goal test. The JUnit test
source code can aso be helpful in understanding the example and in the use of Esper APIs.

12.2. Market Data Feed Monitor

This example processes a raw market data feed. It reports throughput statistics and detects when the data rate of
afeed falls off unexpectedly. A rate fall-off may mean that the data is stale and we want to alert when thereis a
possible problem with the feed.

The classes for this example live in package com espertech. esper.exanpl e. mar ket dat af eed. Run
"run_mktdatafeed.bat" (Windows) or "run_mktdatafeed.sh" (Unix) in the exanpl es/ et ¢ folder to start the mar-
ket data feed simulator.

12.2.1. Input Events

The input stream consists of 1 event stream that contains 2 simulated market data feeds. Each individua event
in the stream indicates the feed that supplies the market data, the security symbol and some pricing information:

String synbol ;
FeedEnum f eed;
doubl e bi dPri ce;
doubl e askPri ce;

12.2.2. Computing Rates Per Feed

For the throughput statistics and to detect rapid fall-off we calculate a ticks per second rate for each market data

© 2007 EsperTech Inc. - Esper2.0.0 142

Examples, Tutorials, Case Studies

feed.

We can use an EPL statement that specifies a view onto the market data event stream that batches together 1
second of events. We specify the feed and a count of events per feed as output values. To make this data avail-
able for further processing, we insert output events into the TicksPerSecond event stream:

insert into TicksPerSecond
sel ect feed, count(*) as cnt

from Mar ket Dat aEvent . wi n: ti me_bat ch(1l second)
group by feed

12.2.3. Detecting a Fall-off

We define a rapid fall-off by alerting when the number of ticks per second for any second falls below 75% of
the average number of ticks per second over the last 10 seconds.

We can compute the average number of ticks per second over the last 10 seconds simply by using the TicksPer-
Second events computed by the prior statement and averaging the last 10 seconds. Next, we compare the cur-
rent rate with the moving average and filter out any rates that fall below 75% of the average:

sel ect feed, avg(cnt) as avgCnt, cnt as feedCnt
from Ti cksPer Second. wi n: ti me(10 seconds)
group by feed

havi ng cnt < avg(cnt) * 0.75

12.2.4. Event generator

The simulator generates market data events for 2 feeds, feed A and feed B. The first parameter to the simulator
is a number of threads. Each thread sends events for each feed in an endless loop. Note that as the Java VM
garbage collection kicks in, the example generates rate drop-offs during such pauses.

The second parameter is a rate drop probability parameter specifies the probability in percent that the simulator
drops the rate for a randomly chosen feed to 60% of the target rate for that second. Thus rate fall-off alerts can
be generated.

The third parameter defines the number of secondsto run the example.

12.3. IMS Server Shell and Client

12.3.1. Overview

The server shell is a Java Messaging Service (IMS) -based server that listens to messages on a JM S destination,
and sends the received eventsinto Esper. The example also demonstrates a Java Management Extension (JM X)
MBean that allows remote dynamic statement management. This server has been designed to run with either
Tibco (TM) Enterprise Messaging System (Tibco EMS), or with Apache ActiveMQ, controlled by a properties
file.

The server shell has been created as an aternative to the EsperlO Spring M STemplate adapter. The server
shell is a low-latency processor for byte messages. It employs JMS listeners to process message in multiple
threads, this model reduces thread context switching for many JMS providers. The server is configurable and
has been tested with two JM S providers. It consists of only 10 classes and is thus easy to understand.

© 2007 EsperTech Inc. - Esper2.0.0 143

Examples, Tutorials, Case Studies

The server shell sample comes with a client (server shell client) that sends events into the JIM S-based server,
and that also creates a statement on the server remotely through a IMX MBean proxy class.

The server shell classes for this example live in package com espert ech. esper. exanpl e. servershel | . Con-
figure the server to point to your JMS provider by changing the properties in the file server-
shel | _config. properties intheetc folder. Make sure your IMS provider (ActiveMQ or Tibco EMS) is run-
ning, then run "run_servershell.bat" (Windows) or "run_servershell.sh" (Unix) to start the IMS server.

Start the server shell process first before starting the client, since the client also demonstrates remote statement
management through IMX by attaching to the server process.

The client classes to the server shell can be found in package
com espert ech. esper. exanpl e. servershel | cl i ent. The client shares the same configuration file as the serv-
er shell. Run "run_servershellclient.bat" (Windows) or "run_servershellclient.sh” (Unix) to start the IM S produ-
cer client that includesa JMX client as well.

12.3.2. IMS Messages as Events

The server shell starts a configurable number of IMS MessagelLi st ener instances that listen to a given IMS
destination. The listeners expect a Byt esMessage that contain a String payload. The payload consists of an IP
address and a double-typed duration value separated by a comma.

Each listener extracts the payload of a message, constructs an event object and sends the event into the shared
Esper engine instance.

At startup time, the server creates asingle EPL statement with the Esper engine that prints out the average dura-
tion per IP address for the last 10 seconds of events, and that specifies an output rate of 2 seconds. By running
the server and then the client, you can see the output of the averages every 2 seconds.

The server shell client acts asaJM S producer that sends 1000 events with random | P addresses and durations.

12.3.3. IMX for Remote Dynamic Statement Management

The server shell is also a IMX server providing an RMI-based connector. The server shell exposes a IMX
MBean that alows remote statement management. The IMX MBean allows to create a statement remotely, and
to attach a serializable listener to the statement remotely, and to destroy a statement remotely.

The server shell client, upon startup, obtains a remote instance of the management MBean exposed by the serv-
er shell. It creates a statement through the MBean that filters out all durations greater then the value 9.9. After
sending 1000 events, the client then destroys the statement remotely on the server.

12.4. Transaction 3-Event Challenge

The classes for this example live in package com espertech. esper.exanple.transaction. Run
"run_txnsim.bat" (Windows) or "run_txnsim.sh” (Unix) to start the transaction simulator. Please see the readme
filein the same folder for build instructions and command line parameters.

12.4.1. The Events

The use case involves tracking three components of atransaction. It's important that we use at least three com-
ponents, since some engines have different performance or coding for only two events per transaction. Each

© 2007 EsperTech Inc. - Esper2.0.0 144

Examples, Tutorials, Case Studies

component comes to the engine as an event with the following fields:

e Transaction ID
e Time stamp

In addition, we have the following extrafields:

Inevent A:

¢ Customer ID

In event C:

e Supplier ID (the ID of the supplier that the order was filled through)

12.4.2. Combined event

We need to take in events A, B and C and produce a single, combined event with the following fields:

e Transaction ID

e Customer ID

e Time stamp from event A
e Time stamp from event B
¢ Time stamp from event C

What we're doing here is matching the transaction IDs on each event, to form an aggregate event. If all these
events were in a relational database, this could be done as a simple SQL join... except that with 10,000 events
per second, you will need some serious database hardware to do it.

12.4.3. Real time summary data

Further, we need to produce the following:

* MinMax,Average total latency from the events (difference in time between A and C) over the past 30
minutes.

* MinMax,Average latency grouped by (@) customer ID and (b) supplier ID. In other words, metrics on the
the latency of the orders coming from each customer and going to each supplier.

* Min,Max,Average latency between events A/B (time stamp of B minus A) and B/C (time stamp of C minus
B).

12.4.4. Find problems

We need to detect a transaction that did not make it through all three events. In other words, a transaction with
events A or B, but not C. Note that, in this case, what we care about is event C. The lack of events A or B could
indicate a failure in the event transport and should be ignored. Although the lack of an event C could also be a
transport failure, it merits looking into.

12.4.5. Event generator

To make testing easier, standard and to demonstrate how the example works, the example is including an event
generator. The generator generates events for a given number of transactions, using the following rules:

© 2007 EsperTech Inc. - Esper2.0.0 145

Examples, Tutorials, Case Studies

¢ Onein 5,000 transactions will skip event A

* Onein 1,000 transactions will skip event B

¢ Onein 10,000 transactions will skip event C.

e Transaction identifiers are randomly generated

e Customer and supplier identifiers are randomly chosen from two lists

* The time stamp on each event is based on the system time. Between events A and B as well as B and C,
between 0 and 999 is added to the time. So, we have an expected time difference of around 500 milli-
seconds between each event

» Eventsare randomly shuffled as described below

To make things harder, we don‘t want transaction events coming in order. This code ensures that they come
completely out of order. To do this, we fill in a bucket with events and, when the bucket is full, we shuffle it.
The buckets are sized so that some transactions events will be split between buckets. So, you have afairly ran-
domized flow of events, representing the worst case from a big, distributed infrastructure.

The generator lets you change the size of the bucket (small, medium, large, larger, largerer). The larger the
bucket size, the more events potentially come in between two eventsin a given transaction and so, the more the
performance characteristics like buffers, hashes/indexes and other structures are put to the test as the bucket
Size increases.

12.5. J2EE Self-Service Terminal Management

The example is about a J2EE-based self-service terminal managing system in an airport that gets alot of events
from connected terminals. The event rate is around 500 events per second. Some events indicate abnormal situ-
ations such as 'paper low' or ‘terminal out of order'. Other events observe activity as customers use aterminal to
check in and print boarding tickets.

12.5.1. Events

Each self-service terminal can publish any of the 6 events below.

¢ Checkin - Indicates a customer started a check-in dialog

e Cancelled - Indicates a customer cancelled a check-in dialog

e Completed - Indicates a customer completed a check-in dialog

e OutOfOrder - Indicates the terminal detected a hardware problem

e LowPaper - Indicates the terminal islow on paper

e Status- Indicates terminal status, published every 1 minute regardless of activity as aterminal heartbeat

All events provide information about the terminal that published the event, and a timestamp. The terminal in-
formation is held in a property hamed "term" and provides aterminal id. Since all events carry similar informa-
tion, we model each event as a subtype to a base class BaseTerminal Event, which will provide the terminal in-
formation that all events share. This enables usto treat al termina events polymorphically, that is we can treat
derived event typesjust like their parent event types. This helps simplify our queries.

All terminals publish Status events every 1 minute. In normal cases, the Status events indicate that aterminal is
alive and online. The absence of status events may indicate that a terminal went offline for some reason and
that may need to be investigated.

12.5.2. Detecting Customer Check-in Issues

A customer may be in the middle of a check-in when the terminal detects a hardware problem or when the net-

© 2007 EsperTech Inc. - Esper2.0.0 146

Examples, Tutorials, Case Studies

work goes down. In that situation we want to alert ateam member to help the customer. When the terminal de-
tects a problem, it issues an OutOfOrder event. A pattern can find situations where the terminal indicates out-
of-order and the customer isin the middle of the check-in process:

select * frompattern [every a=Checkin ->
(QutaOFOder(termid=a.termid) and not
(Cancelled(termid=a.termid) or Conpleted(termid=a.termid)))]

12.5.3. Absence of Status Events

Since Status events arrive in regular intervals of 60 seconds, we can make us of temporal pattern matching us-
ing timer to find events that didn't arrive. We can use the every operator and timer:interval () to repeat an action
every 60 seconds. Then we combine this with a not operator to check for absence of Status events. A 65 second
interval during which we look for Status events allows 5 seconds to account for a possible delay in transmission
or processing:

select "terminal 1 is offline' frompattern
[every tiner:interval (60 sec) -> (tinmer:interval (65 sec) and not Status(termid = 'T1'"))]
output first every 5 mnutes

12.5.4. Activity Summary Data

By presenting statistical information about terminal activity to our staff in real-time we enable them to monitor
the system and spot problems. The next example query simply gives us a count per event type every 1 minute.
We could further use this data, available through the CountPerType event stream, to join and compare against a
recorded usage pattern, or to just summarize activity in real-time.

insert into CountPerType
sel ect type, count(*) as count PerType
from BaseTer mi nal Event. wi n: ti ne(10 m nutes)

group by type
output all every 1 mnutes

12.5.5. Sample Application for J2EE Application Server

The example code in the distribution package implements a message-driven enterprise java bean (MDB EJB).
We used an MDB as a convenient place for processing incoming events viaa JM S message queue or topic. The
example uses 2 JIM S queues. One queue to receive events published by terminals, and a second queue to indic-
ate situations detected via EPL statement and listener back to areceiving process.

This example has been packaged for deployment into a JBoss Java application server (see ht-
tp://lwww.jboss.org) with default deployment configuration. JBoss is an open-source application server avail-
able under LGPL license. Of course the choice of application server does not indicate a requirement or prefer-
ence for the use of Esper in a J2EE container. Other quality J2EE application servers are available and perhaps
more suitable to run this example or asimilar application.

The complete example code can be found in the "examples/terminalsvc" folder of the distribution. The Java
package name is com.espertech.esper.example.terminal svc.

Running the Example

The pre-build EAR file contains the MDB for deployment to a JBoss application server with default deploy-
ment options. The JBoss default configuration provides 2 queues that this example utilizes: queue/A and queue/

© 2007 EsperTech Inc. - Esper2.0.0 147

Examples, Tutorials, Case Studies

B. The queue/B is used to send events into the MDB, while queue/A is used to indicate back the any data re-
ceived by listenersto EPL statements.

The application can be deployed by copying the ear file in the "examples/terminal svc/terminalsvc-ear” folder to
your JBoss deployment directory located under the JBoss home directory under "server/default/deploy”.

The example contains an event simulator and an event receiver that can be invoked from the command line. See
the folder "examples/terminalsvc/etc” folder readme file and start scripts for Windows and Unix, and the docu-
mentation set for further information on the simulator.

Building the Example

This example requires Maven 2 to build. To build the example, change directory to the folder "examples/ter-
minalsvc" and type "mvn package'. The instructions have been tested with JBoss AS 4.0.4.GA and Maven
2.0.4.

The Maven build packages the EAR file for deployment to a JBoss application server with default deployment
options.

Running the Event Simulator and Receiver

The example also contains an event simulator that generates meaningful events. The simulator can be run from
the directory "examples/terminalsvc/etc” via the command "run_terminalsvc_sender.bat" (Windows) and
"run_terminalsvc_sender.sh" (Linux). The event simulator generates a batch of at least 200 events every 1
second. Randomly, with a chance of 1 in 10 for each batch of events, the smulator generates either an OutO-
fOrder or aLowPaper event for arandom terminal. Each batch the simulator generates 100 random terminal ids
and generates a Checkin event for each. It then generates either a Cancelled or a Completed event for each.
With achance of 1in 1000, it generates an OutOfOrder event instead of the Cancelled or Completed event for a
terminal.

The event receiver listens to the MDB-outcoming queue for alerts and prints these out to console. The receiver
can be run from the directory "examplesterminalsvc/etc” via the command "run_terminalsvc_receiver.bat"
(Windows) and "run_terminalsvc_receiver.sh" (Linux).

12.6. Assets Moving Across Zones - An RFID Example

This example out of the RFID domain processes location report events. Each location report event indicates an
asset id and the current zone of the asset. The exampl e solves the problem that when a given set of assetsis not
moving together from zone to zone, then an alert must be fired.

Each asset group is tracked by 2 statements. The two statements to track a single asset group consisting of as-
setsidentified by asset ids{1, 2, 3} areasfollows:

insert into CountZone_ Gl

select 1 as groupld, zone, count(*) as cnt

from Locati onReport (assetld in 1, 2, 3).std:unique(assetld)
group by zone

sel ect Part.zone frompattern [

every Part=Count Zone_Gl(cnt in (1,2)) ->
(timer:interval (10 sec) and not CountZone_Gl(zone=Part.zone, cnt in (0,3)))]

The classes for this example can be found in package com espert ech. esper . exanpl e. rfi d.

© 2007 EsperTech Inc. - Esper2.0.0 148

Examples, Tutorials, Case Studies

This example provides a Swing-based GUI that can be run from the command line. The GUI alows drag-
and-drop of three RFID tags that form one asset group from zone to zone. Each time you move an asset across
the screen the example sends an event into the engine indicating the asset id and current zone. The example de-
tects if within 10 seconds the three assets do not join each other within the same zone, but stay split across
zones. Run "run_rfid_swing.bat" (Windows) or "run_rfid_swing.sh" (Unix) to start the example's Swing GUI.

The example also provides a simulator that can be run from the command line. The simulator generates a num-
ber of asset groups as specified by a command line argument and starts a number of threads as specified by a
command line argument to send location report events into the engine. Run "run_rfid_sim.bat" (Windows) or
"run_rfid_sim.sh” (Unix) to start the RFID location report event simulator. Please see the readme file in the
same folder for build instructions and command line parameters.

12.7. AutolD RFID Reader generating XML documents

In this example an array of RFID readers sense RFID tags as pallets are coming within the range of one of the
readers. A reader generates XML documents with observation information such as reader sensor 1D, observa-
tion time and tags observed. A statement computes the total number of tags per reader sensor ID within the last
60 seconds.

This example demonstrates how XML documents unmarshalled to or g. wdc. dom Node DOM document nodes
can natively be processed by the engine without requiring Java object event representations. The example uses
an XPath expression for an event property counting the number of tags observed by a sensor. The XML docu-
ments follow the AutolD (ht t p: / / www. aut oi d. or g/) organization standard.

The classes for this example can be found in package com espert ech. esper . exanpl e. aut oi d. AS events are
XML documents with no Java object representation, the example does not have event classes.

A simulator that can be run from the command line is also available for this example. The simulator generates a
number of XML documents as specified by a command line argument and prints out the totals per sensor. Run
"run_autoid.bat" (Windows) or "run_autoid.sh" (Unix) to start the autoid simulator. Please see the readme file
in the same folder for build instructions and command line parameters.

The code snippet below shows the simple statement to compute the total number of tags per sensor. The state-
ment is created by classcom espert ech. esper. exanpl e. aut oi d. RFl DTagsPer Sensor St nt .

sel ect I D as sensorld, sun{countTags) as numflagsPer Sensor
f rom Aut ol dRFI DExanpl e. wi n: ti ne(60 seconds)

where Qbservation[0]. Conmand = ' READ PALLET_TAGS ONLY'
group by ID

12.8. StockTicker

The StockTicker example comes from the stock trading domain. The example creates event patterns to filter
stock tick events based on price and symbol. When a stock tick event is encountered that falls outside the lower
or upper price limit, the example simply displays that stock tick event. The price range itself is dynamically cre-
ated and changed. Thisis accomplished by an event patterns that searches for another event class, the price lim-
it event.

The classes com espert ech. esper. exanpl e. st ockti cker. event. StockTi ck and PriceLinmit represent our
events. The event patterns are created by the class
com espertech. esper. exanpl e. st ockti cker. nonitor. St ockTi cker Moni tor.

© 2007 EsperTech Inc. - Esper2.0.0 149

Examples, Tutorials, Case Studies

Summary:

¢ Good example to learn the APl and get started with event patterns

* Dynamically creates and removes event patterns based on price limit events received

« Simple, highly-performant filter expressions for event properties in the stock tick event such as symbol and
price

12.9. MatchMaker

In the MatchMaker example every mobile user hasan X and Y location, a set of properties (gender, hair color,
age range) and a set of preferences (one for each property) to match. The task of the event patterns created by
this example is to detect mobile users that are within proximity given a certain range, and for which the proper-
ties match preferences.

The event class representing mobile users is
com espert ech. esper. exanpl e. mat chnaker . event . Mobi | eUser Bean. The
com espert ech. esper. exanpl e. mat chnaker . moni t or . Mat chMaki ngMoni t or class contains the patterns for de-
tecing matches.

Summary:

» Dynamically creates and removes event patterns based on mobile user events received
» Usesrange matching for X and Y properties of mabile user events

12.10. QualityOfService

This example develops some code for measuring quality-of-service levels such as for a service-level agreement
(SLA). A SLA isacontract between 2 parties that defines service constraints such as maximum latency for ser-
vice operations or error rates.

The example measures and monitors operation latency and error counts per customer and operation. When one
of our operations oversteps these constraints, we want to be alerted right away. Additionally, we would like to
have some monitoring in place that checks the health of our service and provides some information on how the
operations are used.

Some of the constraints we need to check are:

e That the latency (time to finish) of some of the operationsis always less then X seconds.
» That the latency average is alwayslessthen Y seconds over Z operation invocations.

The com espertech. esper. exanpl e. qos_sl a. event s. Oper at i onMeasur ement event class with its latency and
status properties is the main event used for the SLA analysis. The other event Lat encyLinmit Serves to set
latency limits on the fly.

The com espertech. esper. exanpl e. qos_sl a. noni t or . Aver ageLat encyMoni t or creates an EPL statement
that computes latency statistics per customer and operation for the last 100 events. The DynaLat ency Spi keMon-
i tor uses an event pattern to listen to spikes in latency with dynamically set limits. The Err or Rat eMoni t or
uses the timer * at* operator in an event pattern that wakes up periodically and polls the error rate within the
last 10 minutes. The Ser vi ceHeal t hvoni t or Simply alerts when 3 errors occur, and the Spi keAndEr r or Moni t or
alerts when afixed latency is overstepped or an error statusis reported.

Summary:

© 2007 EsperTech Inc. - Esper2.0.0 150

Examples, Tutorials, Case Studies

» This example combines event patterns with EPL statements for event stream analysis.

» Showstheuseof thetimer ' at' operator and followed-by operator - > in event patterns

* Outlines basic EPL statements

e Shows how to pull data out of EPL statements rather then subscribing to events a statement publishes

12.11. LinearRoad

The Linear Road example is a very incomplete implementation of the Stream Data Management Benchmark [3]
by Standford University.

Linear Road simulates a toll system for the motor vehicle expressways of a large metropolitan area. The main
event in this example is a car location report which the class
com espert ech. esper. exanpl e. | i near r oad. Car LocEvent represents. Currently the event stream joins are
performed by JUnit test classes in the exanpl es/ t est folder. See the
com espertech. esper. exanpl e. | i nearroad. Test Acci dentNoti fy and the Test Car Segnent Count classes.
Please consider this awork in progress.

Summary:

« Shows more complex joins between event streams.

12.12. StockTick RSI

The RSl gives you the trend for a stock and for more complete explanation, you can visit the link: ht-
tp:/lwww.stockcharts.com/education/IndicatorAnaysigindic_RSI.html.

After a definite number of stock events, or accumulation period, the first RSl is computed. Then for each sub-
sequent stock event, the RSI calculations use the previous period’s Average Gain and Loss to determine the
“smoothed RSI”.

Summary:

» Uses a simple event pattern with a filter which feeds a listener that computes the RSI, which publishes
events containing the computed RSI.

© 2007 EsperTech Inc. - Esper2.0.0 151

Chapter 13. Performance

Esper has been highly optimized to handle very high throughput streams with very little latency between event
receipt and output result posting. It is also possible to use Esper on a soft-real-time or hard-real-time JVM to
maximize predictability even further.

This section describes performance best practices and explains how to assess Esper performance by using our
provided performance kit.

13.1. Performance Results

For a complete understanding of those results, consult the next sections.

Esper exceeds over 500 000 event/s on a dual CPU 2GHz |Intel based hardware,

with engine | atency bel ow 3 m croseconds average (bel ow 10us with nore than

99% predi ctability) on a VWAP benchmark with 1000 statenents registered in the system
- this tops at 70 Mit/s at 85% CPU usage.

Esper al so denonstrates linear scalability from 100 000 to 500 000 event/s on this
hardware, with consistent results accross different statenents.

O her tests denonstrate equival ent perfornmance results
(straight through processing, match all, match none, no statenent registered,
VWAP with time based wi ndow or | ength based wi ndows).

Tests on a | aptop denonstrated about 5x tinme |ess performance - that is
bet ween 70 000 event/s and 200 000 event/s - which still gives roomfor easy
testing on small configuration.

13.2. Performance Tips

13.2.1. Understand how to tune your Java virtual machine

Esper runs on a VM and you heed to be familiar with VM tuning. Key parameters to consider include minim-
um and maximum heap memory and nursery heap sizes. Statements with time-based or length-based data win-
dows can consume large amounts of memory astheir size or length can be large.

For time-based data windows, one needs to be aware that the memory consumed depends on the actual event
stream input throughput. Event pattern instances also consume memory, especially when using the "every"
keyword in patterns to repeat pattern sub-expressions - which again will depend on the actual event stream in-
put throughput.

13.2.2. Compare Esper to other solutions

If you compare Esper performance to the performance of another solution, you need to ensure that your state-
ments have truly equivalent semantics. The is because between different vendors the event processing language
can be seem fairly similar whoever may, for all similarities, produce different results.

For example some vendor solution mandates the use of "bounded streams'. The next statement shows one
vendor's event processing syntax:

/1 OQther (nanme onmitted) vendor solution statenent:

© 2007 EsperTech Inc. - Esper2.0.0 152

Performance

select * from (select * from Market where ticker = 'GOOG) retain 1 event
/1 The above is NOT an Esper statenment

The semantically equivalent statement in Esper is:

/| Esper statenent with the sane senantics:
select * from MarketData(ticker="$").w n:length(1)

Asan example, aNOT semantically equivalent statement in Esper is:

/| Esper statement that DOES ***NOT*** HAVE the same semantics
/1 No |l ength wi ndow was used
sel ect * from Market Data(ticker="$")

13.2.3. Select the underlying event rather than individual fields

By selecting the underlying event in the select-clause we can reduce load on the engine, since the engine does
not need to generate a new output event for each input event.

For example, the following statement returns the underlying event to update listeners:

/1 Better performance
sel ect * from RFI DEvent

In comparison, the next statement selects individual properties. This statement requires the engine to generate
an output event that contains exactly the required properties:

/'l Less good performance

sel ect assetld, zone, xlocation, ylocation from RFI DEvent

13.2.4. Prefer stream-level filtering over post-data-window filtering

Esper stream-level filtering is very well optimized, while filtering via the where-clause post any data windows
is not optimized. In very simple statements that don't have data windows this distinction can make a perform-
ance difference.

Consider the example below, which performs stream-level filtering:

/1 Better performance : streamlevel filtering
select * from Market Data(ticker ="' GOOG)

The example below is the equivalent (same semantics) statement and performs post-data-window filtering
without a data window. The engine does not optimize statements that filter in the where-clause for the reason
that data window views are generally present.

/'l Less good performance : post-data-w ndow filtering
sel ect * from Market where ticker = ' GOOG

Thus this optimization technique applies to statements without any data window.

When a data window is used, the semantics change. Let's look at an example to better understand the differ-
ence: In the next statement only GOOG market events enter the length window:

sel ect avg(price) from MarketData(ticker = 'GOOG). w n: | engt h(100)

© 2007 EsperTech Inc. - Esper2.0.0 153

Performance

The above statement computes the average price of GOOG market data events for the last 100 GOOG market
data events.

Compare the filter position to a filter in the where clause. The following statement is NOT equivalent as all
events enter the data window (not just GOOG events):

sel ect avg(price) from Market.w n:|ength(100) where ticker = 'GOOG

The statement above computes the average price of all market data events for the last 100 market data events,
and outputs results only for GOOG.

13.2.5. Reduce the use of arithmetic in expressions

Esper does not yet attempt to pre-evaluate arithmetic expressions that produce constant results.
Therefore, afilter expression as below is optimized:

/'l Better performance : no arithnetic
sel ect * from Market Dat a(pri ce>40)

While the engine cannot currently optimize this expression:
/'l Less good performance : with arithnetic

sel ect * from Market Dat a(pri ce+10>50)

13.2.6. Consider using EventPropertyGetter for fast access to event proper-
ties

The EventPropertyGetter interface is useful for obtaining an event property value without property name table
lookup given an EventBean instance that is of the same event type that the property getter was obtained from.

When compiling a statement, the EPStatement instance lets us know the EventType via the getEventType()
method. From the EventType we can obtain EventPropertyGetter instances for named event properties.

To demonstrate, consider the following simple statement:

sel ect synmbol, avg(price) from Market group by synbol

After compiling the statement, obtain the EventType and pass the type to the listener:

EPSt at enent stnt = epService. get EPAdm ni strator().createEPL(stnt Text);
MyCet t er Updat eLi stener |istener = new MyGetterUpdat eLi st ener (stnt.get Event Type());

The listener can use the type to obtain fast getters for property values of events for the same type:

public class MyCetterUpdateListener inplenents Statenment AwareUpdat eLi stener {
private final EventPropertyGetter synbol Getter;
private final EventPropertyGetter avgPriceGetter;

public M/GetterUpdatelListener(Event Type event Type) {

synbol Getter = event Type. get Getter ("synbol");
avgPriceCetter = eventType.getGetter("avg(price)");

Last, the update method can invoke the getters to obtain event property values:

© 2007 EsperTech Inc. - Esper2.0.0 154

Performance

public void updat e(Event Bean[] eventBeans, EventBean[] ol dBeans, EPStatenent epStatenent,

String synmbol = (String) synmbol Getter.get(eventBeans[O0]);
| ong vol une = (Long) vol unmeCetter.get(eventBeans[O0]);
/1 some nore |ogic here

13.2.7. Consider casting the underlying event

When an application requires the value of most or all event properties, it can often be best to simply select the
underlying event viawildcard and cast the received events.

Let'slook at the sample statement:

sel ect * from Market Dat a(synbol regexp 'Efa-z]"')

An update listener to the statement may want to cast the received events to the expected underlying event class:

public void update(Event Bean[] event Beans, EventBean[] eventBeans) {
Mar ket Data nd = (Market Data) event Beans[0] . get Underlying();
/1l some nore |ogic here

13.2.8. Turn off logging

Since Esper 1.10, even if you don't have a log4j configuration file in place, Esper will make sure to minimize
execution path logging overhead. For prior versions, and to reduce logging overhead overall, we recommend
the "WARN?" log level or the "INFO" log level.

Please see the log4j configuration file in "etc/infoonly_logdj.xml" for example log4j settings.

13.2.9. Disable view sharing

By default, Esper compares streams and views in use with existing statement's streams and views, and then re-
uses views to efficiently share resources between statements. The benefit is reduced resources usage, however
the potential cost is that in multithreaded applications a shared view may mean excessive locking of multiple
processing threads.

Consider disabling view sharing for better threading performance if your application overall uses fewer state-
ments and statements have very similar streams, filters and views.

View sharing can be disabled via XML configuration or API, and the next code snippet shows how, using the
API:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Vi ewResour ces() . set ShareVi ews(fal se);

13.2.10. Disable delivery order guarantees

If your application is not a multithreaded application, or you application is not sensitive to the order of delivery
of result events to your application listeners, then consider disabling the delivery order guarantees the engine
makes towards ordered delivery of resultsto listeners:

Configuration config = new Configuration();

© 2007 EsperTech Inc. - Esper2.0.0 155

EPSer vi

Performance

confi g. get Engi neDef aul t s() . get Threadi ng() . set Li st ener Di spat chPreserveOrder (fal se);

If your application is not a multithreaded application, or your application usesthei nsert into clause to make
results of one statement available for further consuming statements but does not require ordered delivery of res-
ults from producing statements to consuming statements, you may disable delivery order guarantees between
Statements:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Threadi ng() . setlnsertl ntoDi spat chPreserveO der(false);

13.2.11. Performance, JVM, OS and hardware

Performance will also depend on your VM (Sun HotSpot, BEA JRockit, IBM J9), your operating system and
your hardware. A VM performance index such as specJBB at spec.org [http://www.spec.org] can be used. For
memory intensive statement, you may want to consider 64bit architecture that can address more than 2GB or
3GB of memory, athough a 64bit VM usually comes with a slow performance penalty due to more complex
pointer address management.

The choice of VM, OS and hardware depends on a number of factors and therefore a definite suggestion is
hard to make. The choice depends on the number of statements, and number of threads. A larger number of
threads would benefit of more CPU and cores. If you have very low latency requirements, you should consider
getting more GHz per core, and possibly soft real-time JVM to enforce GC determinism at the VM level, or
even consider dedicated hardware such as Azul. If your statements utilize large data windows, more RAM and
heap space will be utilized hence you should clearly plan and account for that and possibly consider 64bit archi-
tectures or consider EsperHA [http://www.espertech.com/products/].

The number and type of statementsis a factor that cannot be generically accounted for. The benchmark kit can
help test out some requirements and establish baselines, and for more complex use cases a simulation or proof
of concept would certainly works best. EsperTech’ experts [http://www.espertech.com/support/services.php]
can be available to help write interfaces in a consulting relationship.

13.3. Using the performance kit

13.3.1. How to use the performance kit

The benchmark application is basically an Esper event server build with Esper that listens to remote clients
over TCP. Remote clients send MarketData(ticker, price, volume) streams to the event server. The Esper event
server is started with 1000 statements of one single kind (unless otherwise written), with one statement per tick-
er symbol, unless the statement kind does not depend on the symbol. The statement prototype is provided along
the results with a'$' instead of the actua ticker symbol value. The Esper event server is entirely multithreaded
and can leverage the full power of 32bit or 64bit underlying hardware multi-processor multi-core architecture.

The kit also prints out when starting up the event size and the theoretical maximal throughput you can get on a
100 Mbit/s and 1 Ghit/s network. Keep in mind a 100 Mbit/s network will be overloaded at about 400 000
event/s when using our kit despite the small size of events.

Results are posted on our Wiki page at http://docs.codehaus.org/display/ESPER/Esper+performance. Reported
results do not represent best ever obtained results. Reported results may help you better compare Esper to other
solutions (for latency, throughput and CPU utilization) and also assess your target hardware and JVMs.

The Esper event server, client and statement prototypes are provided in the source repository esper/

© 2007 EsperTech Inc. - Esper2.0.0 156

http://www.spec.org
http://www.espertech.com/products/
http://www.espertech.com/support/services.php
http://docs.codehaus.org/display/ESPER/Esper+performance

Performance

t runk/ exanpl es/ benchmar k/ . Refer to http://xircles.codehaus.org/projects/esper/repo for source access.

A built is provided for convenience (without sources) as an attachment to the Wiki page at ht-
tp://docs.codehaus.org/pages/viewpageattachments.action?pagel d=8356191. It contains Ant script to start cli-
ent, server in simulation mode and server. For real measurement we advise to start from a shell script (because
Ant is pipelining stdout/stderr when you invoke a VM from Ant - which is costly). Sample scripts are provided
for you to edit and customize.

If you use the kit you should:

1. Choose the statement you want to benchmark, add it to et c/ st at ement s. properti es under your own
KEY and use the - node KEY when you start the Esper event server.

2. Prepare your runServer.sh/runServer.cmd and runClient.sh/runclient.cmd scripts. You'll need to drop re-
quired jar librariesin1i b/ , make sure the classpath is configured in those script to include bui | d and et ¢
. The required libraries are Esper (any compatible version, we have tested started with Esper 1.7.0) and its
dependencies asin the sample below (with Esper 2.0) :

cl asspath on Uni x/Li nux (on one single |ine)

etc:build:lib/esper-2.0.0.jar:|ib/commons-1ogging-1.1.1.jar:|ib/cglib-nodep-2.1_3.jar
clib/antlr-runtine-3.0.1.jar:lib/log4j-1.2.14.ar

@em classpath on Wndows (on one single |ine)

etc; build;lib\esper-2.0.0.jar;!|ib\comons-1ogging-1.1.1.jar;lib\cglib-nodep-2.1_3.jar
slib\antlr-runtine-3.0.1.jar;lib\log4j-1.2.14.ar
Notethat . /et c and ./ bui | d have to be in the classpath. At that stage you should also start to set min and

max VM heap. A good start is1GB asin - Xmslg - Xmx1g

3. Write the statement you want to benchmark given that client will send a stream MarketData(String ticker,
int volume, double price), add it to et ¢/ st at enent s. proper ti es under your own KEY and use the - node
KEY when you start the Esper event server. Use' $' in the statement to create a prototype. For every sym-
bol, a statement will get registered with al * $' replaced by the actual symbol value (f.e.' GooG)

4. Ensure client and server are using the same - Desper . benchmar k. synbol =1000 value. This sets the number
of symbol to use (thus may set the number of statement if you are using a statement prototype, and gov-
erns how MarketData event are represented over the network. Basically all events will have the same size
over the network to ensure predictability and will be ranging between soaa and s999A if you use 1000 as a
value here (prefix with S and padded with A up to a fixed length string. Volume and price attributes will
be randomized.

5. Establish a performance baseline in simulation mode (without clients). Use the -rate 1x5000 option to
simulate one client (one thread) sending 5000 evt/s. Y ou can ramp up both the number of client simulated
thread and their emission rate to maximize CPU utilization. The right number should mimic the client
emission rate you will usein the client/server benchmark and should thus be consistent with what your cli-
ent machine and network will be able to send. On small hardware, having a lot of thread with slow rate
will not help getting high throughput in this simulation mode.

6. Do performance runs with client/server mode. Remove the - rat e NxmMoption from the runServer script or
Ant task. Start the server with - hel p to display the possible server options (listen port, statistics, fan out
options etc). On the remote machine, start one or more client. Use - hel p to display the possible client op-
tions (remote port, host, emission rate). The client will output the actual number of event it is sending to
the server. If the server gets overloaded (or if you turned on - queue options on the server) the client will
likely not be able to reach itstarget rate.

Usually you will get better performance by using server side - queue -1 option so as to have each client
connection handled by a single thread pipeline. If you change to O or more, there will be intermediate

© 2007 EsperTech Inc. - Esper2.0.0 157

http://xircles.codehaus.org/projects/esper/repo
http://docs.codehaus.org/pages/viewpageattachments.action?pageId=8356191
http://docs.codehaus.org/pages/viewpageattachments.action?pageId=8356191

Performance

structures to pass the event stream in an asynchronous fashion. This will increase context switching, al-
though if you are using many clients, or are using the - sl eep xxx (XXX in milliseconds) to simulate a
listener delay you may get better performance.

The most important server side option is-stat xxx (XXX in seconds) to print out throughput and latency
statistics aggregated over the last xxx seconds (and reset every time). It will produce both internal Esper
latency (in nanosecond) and also end to end latency (in millisecond, including network time). If you are
measuring end to end latency you should make sure your server and client machine(s) are having the same
time with f.e. ntpd with a good enough precision. The stat format islike:

---Stats - engine (unit: ns)
Avg: 2528 #4101107
0 < 5000: 97.01% 97.01% #3978672
5000 < 10000: 2.60% 99.62% #106669
10000 < 15000: 0.35% 99.97% #14337
15000 < 20000: 0.02% 99.99% #971
20000 < 25000: 0.00% 99.99% #177
25000 < 50000: 0. 00% 100. 00% #89
50000 < 100000: 0. 00% 100. 00% #41
100000 < 500000: 0. 00% 100. 00% #120
500000 < 1000000: 0. 00% 100. 00% #2
1000000 < 2500000: 0. 00% 100. 00% #7
2500000 < 5000000: 0. 00% 100. 00% #5
5000000 < nor e: 0. 00% 100. 00% #18
---Stats - endToEnd (unit: ns)
Avg: -2704829444341073400 #4101609
0 < 1. 75.01% 75.01% #3076609
1< 5: 0.00% 75.01% #0
5 < 10: 0.00% 75.01% #0
10 < 50: 0.00% 75.01% #0
50 < 100: 0.00% 75.01% #0
100 < 250: 0.00% 75.01% #0
250 < 500: 0.00% 75.01% #0
500 < 1000: 0.00% 75.01% #0
1000 < nore: 24.99% 100. 00% #1025000

Thr oughput 412503 (active 0 pending 0 cnx 4)

This one reads as;

"Throughput is 412 503 event/s with 4 client connected. No -queue options
was used thus no event is pending at the time the statistics are printed.
Esper | atency average is at 2528 ns (that is 2.5 us) for 4 101 107 events
(whi ch neans we have 10 seconds stats here). Less than 10us | atency
was achi eved for 106 669 events that is 99.62% Latency between 5us
and 10us was achi eved for those 2.60% of all the events in the interval."

"End to end latency was ... in this case likely due to client clock difference
we ended up with unusable end to end statistics."

Consider the second output paragraph on end-to-end latency:

---Stats - endToEnd (unit: ns)
Avg: 15 #863396
0 < 1: 0.75% 0. 75% #6434
1< 5: 0.99% 1.74% #8552
5 < 10: 2.12% 3. 85% #18269
10 < 50: 91.27% 95.13% #788062
50 < 100: 0.10% 95.22% #827
100 < 250: 4.36% 99.58% #37634
250 < 500: 0. 42% 100. 00% #3618
500 < 1000: 0. 00% 100. 00% #0
1000 < nor e: 0. 00% 100. 00% #0
Thiswould read:

© 2007 EsperTech Inc. - Esper2.0.0

Performance

"End to end | atency average is at 15 mlliseconds for the 863 396 events
considered for this statistic report. 95.13%ie 788 062 events were handl ed
(end to end) bel ow 50ms, and 91.27% were handl ed between 10ns and 50ns."

13.3.2. How we use the performance kit

We use the performance kit to track performance progress across Esper versions, as well as to implement op-
timizations. Y ou can track our work on the Wiki at http://docs.codehaus.org/display/ESPER/Home

© 2007 EsperTech Inc. - Esper2.0.0 159

 http://docs.codehaus.org/display/ESPER/Home

Chapter 14. References

14.1. Reference List

» Luckham, David. 2002. The Power of Events. Addison-Wesley.

e The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide.

e Arasu, Arvind, et.al.. 2004. Linear Road: A Stream Data Management Benchmark, Stanford University ht-
tp://www.cs.brown.edu/research/aurora/Linear_Road Benchmark_Homepage.htm.

© 2007 EsperTech Inc. - Esper2.0.0 160

Appendix A. Output Reference and
Samples

This section specifies the output of a subset of EPL continuous queries, for two purposes: First, to help applica-
tion developers understand streaming engine output in response to incoming events and in response to time
passing. Second, to document and standardize output for EPL queries in atestable and trackable fashion.

The section focuses on a subset of features, namely the time window, aggregation, grouping, and output rate
limiting. The section does not currently provide examples for many of the other language features, thus there is
no example for other data windows (the time window is used here), joins, sub-selects or named windows etc.

Rather then just describe syntax and output, this section provides detailed examples for each of the types of
queries presented. The input for each type of query is always the same set of events, and the same timing. Each
event has three properties: symbol, volume and price. The property types are string, long and double, respect-
ively.

The chapters are organized by the type of query: The presence or absence of aggregation functions, as well as
the presence or absence of agroup by clause change statement output as described in Section 3.7.2, “ Output
for Aggregation and Group-By”.

Y ou will notice that some queries utilize the or der by clause for sorting output. The reason is that when mul-
tiple output rows are produced at once, the output can be easier to read if it is sorted.

With output rate limiting, the engine invokes your listener even if there are no results to indicate when the out-
put condition has been reached. Such isindicated as (enpty resul t) inthe output result columns.

The output columns show both insert and remove stream events. Insert stream events are delivered as an array
of Event Bean instances to listeners in the newbat a parameter, while remove stream events are delivered to the
ol dbat a parameter of listeners. Delivery to observers follows similar rules.

A.l. Introduction and Sample Data

For the purpose of illustration and documentation, the example data set demonstrates input and remove streams
based on a time window of a 5.5 second interval. The statement utilizing the time window could look as fol-
lows:

sel ect synbol, volune, price from MarketData.w n:tinme(5.5 sec)

We have picked a time window to demonstrate the output for events entering and leaving a data window with
an expiration policy. The time window provides a smple expiration policy based on time: if an event residesin
the time window more then 5.5 seconds, the engine expires the event from the time window.

The input events and their timing are below. The table should be read, starting from top, as "The time starts at
0.2 seconds. Event E1 arrives at 0.2 seconds with properties [S1, 100, 25]. At 0.8 second event E2 arrives with
properties [S2, 5000, 9.0]" and so on.

Ti me Synbol Vol une Price
0.2
S1 100 25.0 Event El1 arrives

© 2007 EsperTech Inc. - Esper2.0.0 161

Output Reference and Samples

0.8
S2 5000 9.0 Event E2 arrives
1.0
1.2
1.5
S1 150 24.0 Event E3 arrives
S3 10000 1.0 Event E4 arrives
2.
2.1
S1 155 26.0 Event E5 arrives
2.2
2.5
3.0
3.2
3.5
S3 11000 2.0 Event E6 arrives
4.0
4.2
4.3
S1 150 22.0 Event E7 arrives
4.9
S3 11500 3.0 Event E8 arrives
5.0
5.2
57 Event E1 | eaves the time w ndow
5.9
S3 10500 1.0 Event E9 arrives

Event E2 | eaves the tinme w ndow
Event E3 and E4 | eave the tine w ndow

e e ep
NOWN O

The event data set assumes a time window of 5.5 seconds. Thus at time 5.7 seconds the first arriving event (E1)
leaves the time window.

The data set as above shows times between 0.2 seconds and 7.2 seconds. Only a couple of time points have
been picked for the table to keep the set of time points constant between statements, and thus make the test data
and output easier to understand.

A.2. Output for Un-aggregated and Un-grouped Queries

This chapter provides sample output for queries that do not have aggregation functions and do not have agr oup
by clause.

A.2.1. No Output Rate Limiting

Without an out put clause, the engine dispatches to listeners as soon as events arrive, or as soon as time passes
such that events leave data windows.

The statement for this sample reads:

sel ect irstream synbol, volunme, price from MarketData.win:tine(5.5 sec)

The output is asfollows:

I nput Cut put
I nsert Stream Renmove Stream
Ti me Synbol Vol une Price
0.2

© 2007 EsperTech Inc. - Esper2.0.0 162

Output Reference and Samples

| BM
0.8
VBFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0
5.2
5.7
5.9
YAH
6.0
6.2
6.3
7.0
7.2

100

5000

150

10000

155

11000

150

11500

10500

25.0

9.0

26.0

2.0

22.0

3.0

1.0

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

E1l

E3

E4

ES

E6

E7

E8

E1l

E9

E3

arrives
[1BM 100, 25.0]

arrives
[MSFT, 5000, 9.0]

arrives

[1BM 150, 24.0]
arrives

[YAH, 10000, 1.0]

arrives
[IBM 155, 26.0]

arrives
[YAH, 11000, 2.0]

arrives
[1BM 150, 22.0]

arrives
[YAH, 11500, 3.0]

| eaves the tinme w ndow
[1BM 100, 25.0]

arrives
[YAH, 10500, 1.0]

| eaves the tine w ndow
[MSFT, 5000, 9.0]
and E4 | eave the tine w ndow
[1BM 150, 24.0]
[YAH, 10000, 1.0]

A.2.2. Output Rate Limiting - Default

With an out put clause, the engine dispatches to listeners when the output condition occurs. Here, the output
condition is a 1-second timeinterval. The engine thus outputs every 1 second, starting from the first event, even
if there are no new events or no expiring events to output.

The default (no keyword) and the ALL keyword result in the same output.

The statement for this sample reads:

sel ect irstream synbol
out put every 1 seconds

The output is asfollows:

vol une, price from MarketData.w n:tinme(5.5 sec)

Cut put
I nsert Stream Renmove Stream

© 2007 EsperTech Inc. - Esper2.0.0

163

Output Reference and Samples

Ti me Symbol Vol une Price

0.2
| BM 100 25.0 Event E1 arrives
0.8
MSFT 5000 9.0 Event E2 arrives
1.0
1.2
[1BM 100, 25.0]
[MSFT, 5000, 9.0]
1.5
| BM 150 24.0 Event E3 arrives
YAH 10000 1.0 Event E4 arrives
2.0
2.1
| BM 155 26.0 Event E5 arrives
2.2
[1BM 150, 24.0]
[YAH, 10000, 1.0]
[1BM 155, 26.0]
2.5
3.0
3.2
(enpty result) (enpty result)
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[YAH, 11000, 2.0]
4.3
| BM 150 22.0 Event E7 arrives
4.9
YAH 11500 3.0 Event E8 arrives
5.0
52
[1BM 150, 22.0]
[YAH, 11500, 3.0]
57 Event E1 | eaves the tinme w ndow
5.9
YAH 10500 1.0 Event E9 arrives
6.0
6.2
[YAH, 10500, 1.0] [1BM 100, 25.0]
6.3 Event E2 | eaves the time w ndow
7.0 Event E3 and E4 | eave the tinme w ndow
7.2

[MSFT, 5000, 9.0]
[1BM 150, 24.0]
[YAH, 10000, 1.0]

A.2.3. Output Rate Limiting - Last

Using the LAST keyword in the out put clause, the engine dispatches to listeners only the last event of each in-
sert and remove stream.

The statement for this sample reads:

sel ect irstream synbol, volunme, price from MarketData.win:tine(5.5 sec)
out put |ast every 1 seconds

The output is asfollows:

| nput Cut put
I nsert Stream Renmove Stream
Ti me Symbol Vol une Price
0.2

© 2007 EsperTech Inc. - Esper2.0.0 164

Output Reference and Samples

| BM
0.8
MBFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0
5.2
5.7
5.9
YAH
6.0
6.2
6.3
7.0
7.2

A.2.4. Output Rate Limiting - First

100

5000

150
10000

155

11000

150

11500

10500

25.0

9.0

2.0

22.0

3.0

1.0

Event

Event

Event
Event

Event

Event

Event

Event

Event

Event

Event
Event

E1l

E3
E4

ES

E6

E7

E8

E1l

E9

E3

arrives
arrives
[MSFT, 5000, 9.0]
arrives
arrives
arrives
[I1BM 155, 26.0]
(enpty result) (enpty result)
arrives
[YAH, 11000, 2.0]
arrives
arrives
[YAH, 11500, 3.0]
| eaves the tine w ndow

arrives

[YAH, 10500, 1.0] [IBM 100, 25.0]
| eaves the tine w ndow
and E4 | eave the tinme w ndow

[YAH, 10000, 1.0]

Using the FI RST keyword in the out put clause, the engine dispatches to listeners only the first event of each in-
sert or remove stream, and does not output further events until the output condition is reached.

The statement for this sample reads:

sel ect irstream synbol

The output is asfollows:

vol ume, price from MarketData.wi n:time(5.5 sec)
output first every 1 seconds

Cut put
I nsert Stream Renmove Stream

Ti me Synbo
0.2
| BM
0.8
VSFT
1.0
1.2
1.5
| BM

Vol une

100

5000

150

Price

25.0

9.0

24.0

Event El1 arrives

[1BM 100, 25.0]

Event E2 arrives

Event E3 arrives

© 2007 EsperTech Inc. - Esper2.0.0

165

Output Reference and Samples

[1BM 150, 24.0]

YAH 10000 1.0 Event E4 arrives
2.
2.1
| BM 155 26.0 Event E5 arrives
2.2
2.5
3.0
3.2
(enpty result) (enpty result)
3.5
YAH 11000 2.0 Event E6 arrives
[YAH, 11000, 2.0]
4.0
4.2
4.3
| BM 150 22.0 Event E7 arrives
[IBM 150, 22.0]
4.9
YAH 11500 3.0 Event E8 arrives
5.0
5.2
57 Event E1 | eaves the tinme w ndow
[1BM 100, 25.0]
5.9
YAH 10500 1.0 Event E9 arrives
6.0
6.2
6.3 Event E2 | eaves the time w ndow
[MSFT, 5000, 9.0]
7.0 Event E3 and E4 | eave the tine w ndow
7.2

A.2.5. Output Rate Limiting - Snapshot

Using the sNnapsHor keyword in the out put clause, the engine posts data window contents when the output con-
dition is reached.

The statement for this sample reads:

sel ect irstream synbol, volune, price from MarketData.w n:tine(5.5 sec)
out put snapshot every 1 seconds

The output is as follows:

I nput Qut put
I nsert Stream Renmove Stream

Ti me Synbol Vol une Price

0.2
| BM 100 25.0 Event El1 arrives
0.8
VSFT 5000 9.0 Event E2 arrives
1.0
1.2
[1BM 100, 25.0]
[MSFT, 5000, 9.0]
1.5
| BM 150 24.0 Event E3 arrives
YAH 10000 1.0 Event E4 arrives
2.0
2.1
| BM 155 26.0 Event E5 arrives
2.2

[1BM 100, 25.0]
[MSFT, 5000, 9.0]

© 2007 EsperTech Inc. - Esper2.0.0 166

Output Reference and Samples

[1BM 150, 24.0]
[YAH, 10000, 1.0]
[1BM 155, 26.0]
2.5
3.0
3.2
[1BM 100, 25.0]
[MSFT, 5000, 9.0]
[1BM 150, 24.0]
[YAH, 10000, 1.0]
[1BM 155, 26.0]
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[1BM 100, 25.0]
[MSFT, 5000, 9.0]
[1BM 150, 24.0]
[YAH, 10000, 1.0]
[IBM 155, 26.0]
[YAH, 11000, 2.0]
4.3
| BM 150 22.0 Event E7 arrives
4.9
YAH 11500 3.0 Event E8 arrives
5.0
52
[IBM 100, 25.0]
[MSFT, 5000, 9.0]
[IBM 150, 24.0]
[YAH, 10000, 1.0]
[1BM 155, 26.0]
[YAH, 11000, 2.0]
[1BM 150, 22.0]
[YAH, 11500, 3.0]
5.7 Event E1 | eaves the tine w ndow
5.9
YAH 10500 1.0 Event E9 arrives
6.0
6.2
[MSFT, 5000, 9.0]
[1BM 150, 24.0]
[YAH, 10000, 1.0]
[1BM 155, 26.0]
[YAH, 11000, 2.0]
[1BM 150, 22.0]
[YAH, 11500, 3.0]
[YAH, 10500, 1.0]
6.3 Event E2 | eaves the tinme w ndow
7.0 Event E3 and E4 | eave the tine w ndow
7.2

A.3. Output for Fully-aggregated and Un-grouped Queries

[1BM
[YAH,
[1BM
[YAH,
[YAH,

155, 26. 0]
11000, 2.0]
150, 22.0]
11500, 3.0]
10500, 1.0]

This chapter provides sample output for queries that have aggregation functions, and that do not have a gr oup
by clause, and in which all event properties are under aggregation.

A.3.1. No Output Rate Limiting

The statement for this sample reads:

© 2007 EsperTech Inc. - Esper2.0.0

167

Output Reference and Samples

select irstream sum(price) from MarketData.win:time(5.5 sec)

The output is asfollows:

I nput Cut put
I nsert Stream Renmove Stream

Ti me Synbol Vol une Price

0.2
| BM 100 25.0 Event El1 arrives
[25.0] [null]
0.8
MSFT 5000 9.0 Event E2 arrives
[34.0] [25. 0]
1.0
1.2
1.5
| BM 150 24.0 Event E3 arrives
[58. 0] [34.0]
YAH 10000 1.0 Event E4 arrives
[59. 0] [58. 0]
2.0
2.1
| BM 155 26.0 Event E5 arrives
[85. 0] [59. 0]
2.2
2.5
3.0
3.2
3.5
YAH 11000 2.0 Event E6 arrives
[87.0] [85. 0]
4.0
4.2
4.3
| BM 150 22.0 Event E7 arrives
[109. 0] [87.0]
4.9
YAH 11500 3.0 Event E8 arrives
[112. 0] [109. 0]
5.0
52
5.7 Event El1 | eaves the tinme w ndow
[87.0] [112. 0]
5.9
YAH 10500 1.0 Event E9 arrives
[88. 0] [87.0]
6.0
6.2
6.3 Event E2 | eaves the time w ndow
[79.0] [88. 0]
7.0 Event E3 and E4 | eave the tine w ndow
[54. 0] [79.0]
7.2

A.3.2. Output Rate Limiting - Default

Output occurs when the output condition is reached after each 1-second time interval. For each event arriving,
the new aggregation value is output as part of the insert stream. As part of the remove stream, the prior aggreg-
ation value is output. This is useful for getting a delta-change for each event or group. If there is a havi ng
clause, the filter expression applies to each row.

Here also the default (no keyword) and the ALL keyword result in the same output.

The statement for this sample reads:

© 2007 EsperTech Inc. - Esper2.0.0 168

Output Reference and Samples

sel ect

i rstream sum(price) from MarketData.w n:tine(5.5 sec)
out put every 1 seconds

The output is as follows:

Ti me Synbol

0.

0.

1

b
]

A.3.3. Output Rate Limiting - Last

2

N O©

N O Ol

N O

N ©

N O W

| BM

VSFT

| BM
YAH

| BM

YAH

| BM

YAH

YAH

Vol une

100

5000

150
10000

155

11000

150

11500

10500

2.

22.

3.

1

0

0

0

0

Event

Event

Event
Event

Event

Event

Event

Event

Event

Event

Event
Event

E3
E4

ES

E6

E7

E8

El

E9

E3

arrives

arrives

arrives
arrives

arrives

arrives

arrives

arrives

arrives

I nsert Stream

[58.

[85.

[85.

[109. 0]
[112. 0]
| eaves the tine w ndow

[87.
[88.
| eaves the tine w ndow

5.0]

0]

0]

0]

. 0]

0]
0]

Renove Stream

[null]
[25. 0]

[34.0]
[58. 0]
[59. 0]

[85. 0]

[85. 0]

[87.0]
[109. 0]

[112. 0]
[87.0]

and E4 | eave the tinme w ndow

[79.
[54.

0]
0]

[88.0]
[79.0]

With the LAST keyword, the insert stream carries one event that holds the last aggregation value, and the re-
move stream carries the prior aggregation value.

The statement for this sample reads:

sel ect
out put

i rstream sum(price) from MarketData.w n:tine(5.5 sec)
| ast every 1 seconds

© 2007 EsperTech Inc. - Esper2.0.0

169

Output Reference and Samples

The output is as follows:

Ti me Synbo
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0
5.2
5.7
5.9
YAH
6.0
6.2
6.3
7.0
7.2

A.3.4. Output Rate Limiting - First

The statement for this sample reads:

sel ect

Vol une

100

5000

150
10000

155

11000

150

11500

10500

26.

2.

22.

3.

1

o o

0

0

0

0

0

Event

Event

Event
Event

Event

Event

Event

Event

Event

Event

Event
Event

E3
E4

ES

E6

E7

E8

El

E9

E3

Cut put

I nsert Stream Renove Stream
arrives
arrives

[34. 0] [null]
arrives
arrives
arrives

[85. 0] [34.0]

[85. 0] [85. 0]
arrives

[87.0] [85.0]
arrives
arrives

[112.0] [87.0]
| eaves the tine w ndow
arrives

[88.0] [112. 0]
| eaves the tine w ndow

and E4 | eave the tinme wi ndow

[54. 0] [88. 0]

irstream sun(price) from MarketData.w n:time(5.5 sec)
output first every 1 seconds

The output is asfollows:

Cut put
I nsert Stream Renmove Stream

Price

Ti me Synbo
0.2
| BM
0.8
MSFT

Vol une

100

5000

25.

9.

0

0

Event E1 arrives

[25.0] [nul]

Event E2 arrives

© 2007 EsperTech Inc. - Esper2.0.0

170

Output Reference and Samples

=
aNn o

D

el WM

wWN O

OGO
~N N O

NOON = O

(&)]

wWN O

N O©

| BM

YAH

| BM

YAH

| BM

YAH

YAH

150

10000

155

11000

150

11500

10500

24.0

1.0

26.0

2.0

22.0

3.0

1.0

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

E3

E4

ES

E6

E7

E8

E1l

E9

E3

arrives

arrives

arrives

arrives

arrives

arrives

[58. 0]

[85. 0]

[87.0]

[109. 0]

| eaves the tine w ndow

arrives

[87.0]

| eaves the tine w ndow

[79. 0]

[34. 0]

[85. 0]

[85. 0]

[87.0]

[112.0]

[88. 0]

and E4 | eave the tine w ndow

A.3.5. Output Rate Limiting - Snapshot

The statement for this sample reads:

sel ect
out put snapshot every 1 seconds

i rstream sum(price) from MarketData.w n:tine(5.5 sec)

The output is asfollows:

Ti me Synbo
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0

Vol une

100

5000

150
10000

155

Event

Event

Event
Event

Event

E3
E4

ES

arrives

arrives

arrives
arrives

arrives

Qut put

I nsert Stream

[34.0]

[85.0]

Renmove Stream

© 2007 EsperTech Inc. - Esper2.0.0

171

Output Reference and Samples

3.2
[85. 0]
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[87.0]
4.3
| BM 150 22.0 Event E7 arrives
4.9
YAH 11500 3.0 Event E8 arrives
5.0
52
[112. 0]
5.7 Event E1 | eaves the tine w ndow
5.9
YAH 10500 1.0 Event E9 arrives
6.0
6.2
[88. 0]
6.3 Event E2 | eaves the tinme w ndow
7.0 Event E3 and E4 | eave the tine w ndow
7.2

[54. 0]

A.4. Output for Aggregated and Un-grouped Queries

This chapter provides sample output for queries that have aggregation functions, and that do not have a gr oup
by clause, and in which there are event properties that are not under aggregation.

A.4.1. No Output Rate Limiting

The statement for this sample reads:

sel ect irstream synbol, sun(price) from MarketData.wi n:time(5.5 sec)

The output is as follows:

I nput CQut put
I nsert Stream Renove Stream

Ti me Synbol Vol une Price

0.2
| BM 100 25.0 Event E1 arrives
[1BM 25.0]
0.8
MSFT 5000 9.0 Event E2 arrives
[MSFT, 34.0]
1.0
1.2
1.5
| BM 150 24.0 Event E3 arrives
[1BM 58. 0]
YAH 10000 1.0 Event E4 arrives
[YAH, 59. 0]
2.0
2.1
| BM 155 26.0 Event E5 arrives
[1BM 85. 0]
2.2
2.5
3.0
3.2

© 2007 EsperTech Inc. - Esper2.0.0 172

Output Reference and Samples

ol
wN o

& Gu G

~N N O

©» @ @
WN O

YAH

| BM

YAH

YAH

11000 2.0

150 22.0
11500 3.0
10500 1.0

Event

Event

Event

Event

Event

Event

Event

E6

E7

E8

El

E9

E3

arrives

arrives

arrives

[YAH, 87.0]

[IBM 109. 0]

[YAH, 112.0]

| eaves the tine w ndow

[1BM 87.0]
arrives
[YAH, 88. 0]
| eaves the tinme w ndow
[MSFT, 79. 0]
and E4 | eave the tine w ndow
[1BM 54.0]
[YAH, 54.0]

A.4.2. Output Rate Limiting - Default

The statement for this sample reads:

sel ect

i rstream synbol

out put every 1 seconds

The output is asfollows:

Ti me Synbol
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2

Vol une Price

100 25.0
5000 9.0
150 24.0
10000 1.0
155 26.0
11000 2.0

Event

Event

Event
Event

Event

E3
E4

ES

arrives

arrives

arrives
arrives

arrives

Event E6 arrives

sunm(price) from MarketData.win:time(5.5 sec)

CQut put
I nsert Stream Renove Stream

[1BM 25.0]
[MSFT, 34.0]

[1BM 58.0]
[YAH, 59.0]
[1BM 85.0]

(enpty result) (enpty result)

[YAH, 87.0]

© 2007 EsperTech Inc. - Esper2.0.0

173

Output Reference and Samples

| BM 150 22.0

YAH 11500 3.0

YAH 10500 1.0

e &
N O

N er
N O W

A.4.3. Output Rate Limiting - Last

The statement for this sample reads:

sel ect
out put

i rstream synbol
| ast every 1 seconds

The output is as follows:

| nput
Ti me Synbol Vol une Price
0.2
| BM 100 25.0
0.8
MSFT 5000 9.0
1.0
1.2
1.5
| BM 150 24.0
YAH 10000 1.0
2.0
2.1
| BM 155 26.0
2.2
2.5
3.0
3.2
3.5
YAH 11000 2.0
4.0
4.2
4.3
| BM 150 22.0
4.9
YAH 11500 3.0
5.0
5.2
5.7
5.9

Event

Event

Event

Event

Event
Event

Event

Event

Event
Event

Event

Event

Event

Event

Event

E7

E8

E1l

E9

E3

E3
E4

ES

E6

E7

E8

E1l

arrives
arrives
[1BM 109. 0]
[YAH, 112.0]
| eaves the tinme w ndow
arrives
[YAH, 88. 0]

| eaves the tinme w ndow
and E4 | eave the tine w ndow

[1BM 87.0]

[MSFT, 79.0]
[1BM 54.0]
[YAH, 54.0]

sun(price) from MarketData.win:tine(5.5 sec)

CQut put
I nsert Stream Renove Stream

arrives
arrives
[MSFT, 34.0]
arrives
arrives
arrives
[1BM 85.0]
(enpty result) (enpty result)
arrives
[YAH, 87.0]
arrives
arrives
[YAH, 112.0]

| eaves the tinme w ndow

© 2007 EsperTech Inc. - Esper2.0.0

174

Output Reference and Samples

o
N O©

N ep
N O W

A.4.4. Output Rate Limiting - First

The statement for this sample reads:

sel ect symbol

YAH

10500

1

0

Event E9 arrives

[YAH, 88.0] [1BM 87.0]

Event E2 | eaves the tine w ndow
Event E3 and E4 | eave the tine w ndow

[YAH, 54.0]

sun(price) from MarketData.win:tine(5.5 sec)
output first every 1 seconds

The output is as follows:

CQut put
Insert Stream Renove Stream

Ti me Synbol
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0
5.2
5.7
5.9
YAH
6.0
6.2
6.3
7.0
7.2

Vol une

100

5000

150

10000

155

11000

150

11500

10500

26.

2.

22.

3.

1

0

0

0

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

E1l

E3

E4

ES

E6

E7

E8

El

E9

E3

arrives

[1BM 25. 0]
arrives
arrives

[1BM 58.0]
arrives
arrives

(enpty result) (enpty result)
arrives

[YAH, 87.0]
arrives

[1BM 109. 0]
arrives
| eaves the tine w ndow

[1BM 87.0]

arrives

| eaves the tinme w ndow
[MSFT, 79.0]
and E4 | eave the tinme w ndow

© 2007 EsperTech Inc. - Esper2.0.0

175

Output Reference and Samples

A.4.5. Output Rate Limiting - Snapshot

The statement for this sample reads:

sel ect

i rstream synbol, sun(price) from MarketData.w n:time(5.5 sec)
out put snapshot every 1 seconds

The output is asfollows:

Ti me Synbol Vol une Price

0.

0.

1.

@ es

2

N O©

= O

N OO,

N O©

N O

| BM 100 25.0

VBFT 5000 9.0
| BM 150 24.0
YAH 10000 1.0
| BM 155 26.0
YAH 11000 2.0
| BM 150 22.0
YAH 11500 3.0
YAH 10500 1.0

Event

Event

Event
Event

Event

E3
E4

ES

arrives

arrives

arrives
arrives

arrives

Event E6 arrives

Event E7 arrives

Event E8 arrives

Event E1 | eaves the tine w ndow

Event E9 arrives

I nsert Stream

[1BM
[MBFT,

[1BM
[MSFT,
[1BM
[YAH,
[1BM

[1BM
[MSFT,
[1BM
[YAH,
[1BM

[1BM
[MBFT,
[1BM
[YAH,
[1BM
[YAH,

[1BM
[MSFT,
[1BM
[YAH,
[1BM
[YAH,
[1BM
[YAH,

34. 0]
34. 0]

85. 0]
85. 0]
85. 0]
85. 0]
85. 0]

85. 0]
85. 0]
85. 0]
85. 0]
85. 0]

87. 0]
87. 0]
87. 0]
87. 0]
87. 0]
87. 0]

112. 0]
112. 0]
112. 0]
112. 0]
112. 0]
112. 0]
112. 0]
112. 0]

Renmove Stream

© 2007 EsperTech Inc. - Esper2.0.0

176

Output Reference and Samples

NN en
N O W

A.5. Output for Fully-aggregated and Grouped Queries

[MSFT, 88.0]
[1BM 88.0]
[YAH, 88.0]
[1BM 88.0]
[YAH, 88.0]
[1BM 88.0]
[YAH, 88.0]
[YAH, 88.0]

Event E2 | eaves the tinme w ndow
Event E3 and E4 | eave the tinme w ndow

[1BM 54.0]
[YAH, 54.0]
[1BM 54.0]
[YAH, 54.0]
[YAH, 54.0]

This chapter provides sample output for queries that have aggregation functions, and that have a group by

clause, and in which all event properties are under aggregation or appear in the gr oup by clause.

A.5.1. No Output Rate Limiting

The statement for this sample reads:

sel ect irstream synbol,

group by synbol
order by synbol

The output is asfollows:

sun(price) from MarketData.win:tine(5.5 sec)

Ti me Synbol
0.2
| BM
0.8
VSFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM

DOOPN
aNno N

=
N O

YAH

Vol une

100

5000

150

10000

155

11000

24.

1.

26.

2.

0

0

0

0

Event

Event

Event

Event

Event

Event

E3

E4

ES

E6

arrives

arrives

arrives

arrives

arrives

arrives

CQut put
I nsert Stream

[IBM 25.0]

[MSFT, 9.0]

[1BM 49.0]

[YAH, 1.0]

[I1BM 75.0]

[YAH, 3.0]

[1BM

[MSFT,

[1BM

[YAH,

[1BM

[YAH,

Renmove Stream

nul 1]

nul |]

25. 0]

nul 1]

49. 0]

1.0]

© 2007 EsperTech Inc. - Esper2.0.0

177

Output Reference and Samples

e»
wN o

S G S
~N N O

& &2

| BM

YAH

YAH

150 22.0
11500 3.0
10500 1.0

Event

Event

Event

Event

Event

Event

E7

E8

E1l

E9

E3

arrives

[1BM 97.0] [1BM 75.0]
arrives

[YAH, 6.0] [YAH, 3.0]
| eaves the tinme w ndow

[1BM 72.0] [1BM 97.0]
arrives

[YAH, 7.0] [YAH, 6.0]
| eaves the tine w ndow

[MSFT, nul] [MSFT, 9.0]
and E4 | eave the tine w ndow

[1BM 48.0] [1BM 72.0]

[YAH, 6. 0] [YAH, 7.0]

A.5.2. Output Rate Limiting - Default

The default (no keyword) and the ALL keyword do not result in the same output. The default generates an output
row per input event, while the ALL keyword generates arow for all groups.

The statement for this sample reads:

sel ect

i rstream synbol ,

group by synbol
out put every 1 seconds

The output is asfollows:

sun(price) from MarketData.win:tine(5.5 sec)

I nput Qut put
I nsert Stream Renove Stream
Ti me Synbol Vol une Price
0.2
| BM 100 25.0 Event E1 arrives
0.8
VMSFT 5000 9.0 Event E2 arrives
1.0
1.2
[1BM 25.0] [1BM null]
[MSFT, 9.0] [MSFT, null]
1.5
| BM 150 24.0 Event E3 arrives
YAH 10000 1.0 Event E4 arrives
2.0
2.1
| BM 155 26.0 Event E5 arrives
2.2
[1BM 49.0] [1BM 25.0]
[YAH, 1.0] [YAH, null]
[IBM 75.0] [1BM 49.0]
2.5
3.0
3.2
(enpty result) (enpty result)
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[YAH, 3.0] [YAH, 1.0]
© 2007 EsperTech Inc. - Esper2.0.0 178

Output Reference and Samples

4.3
| BM 150 22.0 Event E7 arrives
4.9
YAH 11500 3.0 Event E8 arrives
5.0
5.2
[1BM 97.0] [1BM 75.0]
[YAH, 6.0] [YAH, 3.0]
5.7 Event E1 | eaves the tine w ndow
5.9
YAH 10500 1.0 Event E9 arrives
6.0
6.2
[1BM 72.0] [1BM 97.0]
[YAH, 7.0] [YAH, 6.0]
6.3 Event E2 | eaves the tinme w ndow
7.0 Event E3 and E4 | eave the tinme w ndow
7.2
[MSFT, null] [MSFT, 9.0]
[YAH, 6. 0] [YAH, 7.0]
[1BM 48.0] [1BM 72.0]

A.5.3. Output Rate Limiting - All

The statement for this sample reads:

sel ect irstream synbol, sun{price) from MarketData.win:tine(5.5 sec)
group by synbol

output all every 1 seconds

order by synbol

The output is asfollows:

| nput Cut put
I nsert Stream Renmove Stream
Ti me Symbol Vol une Price
0.2
| BM 100 25.0 Event E1 arrives
0.8
MSFT 5000 9.0 Event E2 arrives
1.0
1.2
[1BM 25.0] [IBM null]
[MSFT, 9.0] [MSFT, null]
1.5
| BM 150 24.0 Event E3 arrives
YAH 10000 1.0 Event E4 arrives
2.0
2.1
| BM 155 26.0 Event E5 arrives
2.2
[1BM 75.0] [1BM 25.0]
[MSFT, 9.0] [MSFT, 9.0]
[YAH, 1.0] [YAH, null]
2.5
3.0
3.2
[1BM 75.0] [1BM 75.0]
[MSFT, 9.0] [MSFT, 9.0]
[YAH, 1.0] [YAH, 1.0]
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[1BM 75.0] [IBM 75.0]
[MSFT, 9.0] [MSFT, 9.0]

© 2007 EsperTech Inc. - Esper2.0.0

179

Output Reference and Samples

[YAH, 3.0] [YAH, 1.0]
4.3
| BM 150 22.0 Event E7 arrives
4.9
YAH 11500 3.0 Event E8 arrives
5.0
52
[1BM 97.0] [1BM 75.0]
[MBFT, 9.0] [MSFT, 9.0]
[YAH, 6.0] [YAH, 3.0]
5.7 Event El1 | eaves the tine w ndow
5.9
YAH 10500 1.0 Event E9 arrives
6.0
6.2
[IBM 72.0] [IBM 97.0]
[MSFT, 9.0] [MSFT, 9.0]
[YAH, 7.0] [YAH, 6. 0]
6.3 Event E2 | eaves the tine w ndow
7.0 Event E3 and E4 | eave the tine w ndow
7.2
[1BM 48.0] [IBM 72.0]
[MSFT, null] [MSFT, 9.0]
[YAH, 6. 0] [YAH, 7.0]

A.5.4. Output Rate Limiting - Last

The statement for this sample reads:

sel ect irstream synbol, sun(price) from MarketData.w n:time(5.5 sec)
group by synbol

output |ast every 1 seconds

order by synbol

The output is asfollows:

I nput Qut put
I nsert Stream Renove Stream

Ti me Synbol Vol une Price

0.2
| BM 100 25.0 Event El1 arrives
0.8
MSFT 5000 9.0 Event E2 arrives
1.0
1.2
[1BM 25.0] [1BM null]
[MSFT, 9.0] [MSFT, null]
1.5
| BM 150 24.0 Event E3 arrives
YAH 10000 1.0 Event E4 arrives
2.0
2.1
| BM 155 26.0 Event E5 arrives
2.2
[1BM 75.0] [1BM 25.0]
[YAH, 1.0] [YAH, null]
2.5
3.0
3.2
(enmpty result) (enpty result)
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[YAH, 3.0] [YAH, 1.0]
4.3

© 2007 EsperTech Inc. - Esper2.0.0

180

Output Reference and Samples

a1
N O©

N er
N O W

A.5.5. Output Rate Limiting - First

The statement for this sample reads:

sel ect

| BM

YAH

YAH

i rstream synbol ,

150

11500

10500

group by synbol
output first every 1 seconds

The output is as follows:

Vol une

100

5000

150

10000

155

11000

150

22.0 Event E7 arrives
3.0 Event E8 arrives
[1BM 97.0] [1BM 75.0]
[YAH, 6. 0] [YAH, 3. 0]
Event E1 | eaves the tinme w ndow
1.0 Event E9 arrives
[1BM 72.0] [1BM 97.0]
[YAH, 7.0] [YAH, 6. 0]
Event E2 | eaves the tinme w ndow
Event E3 and E4 | eave the tine w ndow
[I1BM 48.0] [IBM 72.0]
[MSFT, null] [MSFT, 9.0]
[YAH, 6. 0] [YAH, 7.0]
sun(price) from MarketData.win:tine(5.5 sec)
I nput Qut put
I nsert Stream Renove Stream
Price
25.0 Event El1 arrives
[1BM 25.0] [1BM null]
9.0 Event E2 arrives
24.0 Event E3 arrives
[1BM 49.0] [IBM 25.0]
1.0 Event E4 arrives
26.0 Event E5 arrives
(enpty result) (enpty result)
2.0 Event E6 arrives
[YAH, 3.0] [YAH, 1.0]
22.0 Event E7 arrives
[1BM 97.0] [1BM 75.0]
3.0 Event E8 arrives

Ti me Synbol
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0
5.2

11500

© 2007 EsperTech Inc. - Esper2.0.0

181

Output Reference and Samples

wnN O

N O

YAH 10500

1.0

Event E1 | eaves the tine w ndow

Event E9 arrives

Event E2 | eaves the tine w ndow

[1BM 72.0]

[MSFT, null]

[1BM 97.0]

[MSFT, 9.0]

Event E3 and E4 | eave the tine w ndow

A.5.6. Output Rate Limiting - Snapshot

The statement for this sample reads:

sel ect

i rstream symnbol

group by synbol

out put snapshot every 1 seconds

or der

by synmbo

The output is as follows:

sun(price) from MarketData.win:tine(5.5 sec)

Ti me Synbol Vol une
0.2
| BM 100
0.8
MSFT 5000
1.0
1.2
1.5
| BM 150
YAH 10000
2.0
2.1
| BM 155
2.2
2.5
3.0
3.2
3.5
YAH 11000
4.0
4.2
4.3
| BM 150
4.9
YAH 11500
5.0
5.2
57

2.0

22.0

3.0

Event

Event

Event
Event

Event

Event

Event

Event

Event

E3
E4

ES

E6

E7

E8

E1l

arrives

arrives

arrives
arrives

arrives

arrives

arrives

arrives

| eaves the tine w ndow

I nsert Stream

[IBM 25.0]
[MBFT, 9. 0]

[1BM 75.0]
[MSFT, 9.0]
[YAH, 1.0]

[1BM 75.0]
[MSFT, 9.0]
[YAH, 1.0]

[1BM 75.0]
[MSFT, 9.0]
[YAH, 3.0]

[IBM 97.0]
[MBFT, 9. 0]
[YAH, 6.0]

Renove Stream

© 2007 EsperTech Inc. - Esper2.0.0

182

Output Reference and Samples

R
N O W

A.6. Output for Aggregated and Grouped Queries

YAH

10500

1.0

Event E9 arrives

[1BM

72.0]

[MBFT, 9.0]

[YAH,

7.0]

Event E2 | eaves the time w ndow

Event E3 and E4 | eave the tine w ndow

[1BM 48.0]
[YAH, 6.0]

This chapter provides sample output for queries that have aggregation functions, and that have a group by
clause, and in which some event properties are not under aggregation.

A.6.1. No Output Rate Limiting

The statement for this sample reads:

sel ect

i rstream synbol

The output is as follows:

vol une,

sun(price) from MarketData.win:time(5.5 sec) group by synmbo

Ti me Synbo
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0

Vol une

100

5000

150

10000

155

11000

150

11500

24.0

26.0

22.0

Event

Event

Event

Event

Event

Event

Event

Event

E1l

E3

E4

ES

E6

E7

E8

arrives

arrives

arrives

arrives

arrives

arrives

arrives

arrives

Cut put
Renmove Stream

I nsert Stream

[1BM

100, 25.0]

[MSFT, 5000, 9.0]

[1BM

[YAH,

[1BM

[YAH,

[1BM

[YAH,

150, 49.0]

10000, 1.0]

155, 75.0]

11000, 3.0]

150, 97.0]

11500, 6. 0]

© 2007 EsperTech Inc. - Esper2.0.0

183

Output Reference and Samples

YAH

10500 1.0

Event

Event

Event

Event

El | eaves the tine w ndow
[IBM 100, 72.0]

E9 arrives
[YAH, 10500, 7.0]

E2 | eaves the tine w ndow

[MSFT, 5000, null]
E3 and E4 | eave the tine w ndow

[1BM 150, 48.0]

[YAH, 10000, 6. 0]

A.6.2. Output Rate Limiting - Default

The default (no keyword) and the ALL keyword do not result in the same output. The default generates an output
row per input event, while the ALL keyword generates arow for al groups based on the last new event for each

group.

The statement for this sample reads:

sel ect

i rstream synbol, vol une,
group by synbo
out put every 1 seconds

The output is as follows:

sum(price) from MarketData.w n:tine(5.5 sec)

CQut put
I nsert Stream Renove Stream

Ti me Synbol
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.0
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0
5.2

Vol une Price

100 25.0
5000 9.0
150 24.0
10000 1.0
155 26.0
11000 2.0
150 22.0
11500 3.0

Event

Event

Event
Event

Event

Event

Event

Event

E1l arrives
E2 arrives
[1BM 100, 25.0]
[MSFT, 5000, 9.0]
E3 arrives
E4 arrives
E5 arrives
[1BM 150, 49.0]

[YAH, 10000, 1.0]
[1BM 155, 75.0]

(enpty result) (enpty result)

E6 arrives

[YAH, 11000, 3.0]
E7 arrives

E8 arrives

© 2007 EsperTech Inc. - Esper2.0.0

184

Output Reference and Samples

[1BM 150, 97.0]
[YAH, 11500, 6.0]
El | eaves the tine w ndow

[YAH, 10500, 7.0] [IBM 100, 72.0]
E2 | eaves the tine w ndow
E3 and E4 | eave the time w ndow

5.7 Event
5.9
YAH 10500 1.0 Event E9 arrives
6.0
6.2
6.3 Event
7.0 Event
7.2

[MSFT, 5000, null]
[1BM 150, 48.0]
[YAH, 10000, 6. 0]

A.6.3. Output Rate Limiting - All

The statement for this sample reads:

sel ect irstream synbol, volume, sum(price) from MarketData.w n:time(5.5 sec)

group by synbol
output all every 1 seconds
order by synbol

The output is as follows:

I nput CQut put
I nsert Stream Renove Stream
Ti me Synbol Vol une Price
0.2
| BM 100 25.0 Event E1 arrives
0.8
VSFT 5000 9.0 Event E2 arrives
1.0
1.2
[1BM 100, 25.0]
[MSFT, 5000, 9.0]
1.5
| BM 150 24.0 Event E3 arrives
YAH 10000 1.0 Event E4 arrives
2.0
2.1
| BM 155 26.0 Event E5 arrives
2.2
[1BM 150, 49.0]
[1BM 155, 75.0]
[MSFT, 5000, 9.0]
[YAH, 10000, 1.0]
2.5
3.0
3.2
[1BM 155, 75.0]
[MSFT, 5000, 9.0]
[YAH, 10000, 1.0]
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[1BM 155, 75.0]
[MSFT, 5000, 9.0]
[YAH, 11000, 3.0]
4.3
| BM 150 22.0 Event E7 arrives
4.9
YAH 11500 3.0 Event E8 arrives
5.0

© 2007 EsperTech Inc. - Esper2.0.0

185

Output Reference and Samples

5.2
5.7 Event
5.9

YAH 10500 1.0 Event
6.0
6.2
6.3 Event
7.0 Event
7.2

[1BM 150, 97.0]

[MSFT, 5000, 9.0]

[YAH, 11500, 6.0]
El | eaves the tine w ndow

E9 arrives

[1BM 150, 72.0]
[MSFT, 5000, 9.0]
[YAH, 10500, 7.0]
E2 | eaves the tine w ndow
E3 and E4 | eave the time w ndow

[1BM 100, 72.0]

[1BM 150, 48.0]
[MSFT, 5000, nul]
[YAH, 10500, 6. 0]

[1BM 150, 48.0]
[MSFT, 5000, nul]
[YAH, 10000, 6. 0]

A.6.4. Output Rate Limiting - Last

The statement for this sample reads:

sel ect irstream synbol, vol une,
group by synbol
out put |ast every 1 seconds

order by synbol

The output is as follows:

| nput
Ti me Synbol Vol une Price
0.2
| BM 100 25.0 Event
0.8
MSFT 5000 9.0 Event
1.0
1.2
1.5
| BM 150 24.0 Event
YAH 10000 1.0 Event
2.0
2.1
| BM 155 26.0 Event
2.2
2.5
3.0
3.2
3.5
YAH 11000 2.0 Event
4.0
4.2
4.3
| BM 150 22.0 Event
4.9
YAH 11500 3.0 Event
5.0
5.2

sun(price) from MarketData.win:tine(5.5 sec)

CQut put
I nsert Stream Renove Stream

El arrives
E2 arrives
[IBM 100, 25.0]
[MSFT, 5000, 9.0]
E3 arrives
E4 arrives
E5 arrives

[1BM 155, 75.0]
[YAH, 10000, 1.0]

(enpty result) (enpty result)

E6 arrives

[YAH, 11000, 3.0]
E7 arrives

E8 arrives

[IBM 150, 97.0]

© 2007 EsperTech Inc. - Esper2.0.0

186

Output Reference and Samples

R
N O W

A.6.5. Output Rate Limiting - First

The statement for this sample reads:

sel ect

YAH

i rstream synbol

10500

group by synbo
output first every 1 seconds

The output is as follows:

1

vol une,

0

Event

Event

Event
Event

E1l

E9

E2
E3

[YAH, 11500, 6.0]
| eaves the tine w ndow

arrives

[YAH, 10500, 7.0] [IBM 100, 72.0]
| eaves the tine w ndow
and E4 | eave the tinme wi ndow

[1BM 150, 48.0]
[MSFT, 5000, null]
[YAH, 10000, 6. 0]

sun(price) from MarketData.win:tine(5.5 sec)

CQut put
I nsert Stream Renove Stream

Ti me Synbol
0.2
| BM
0.8
MSFT
1.0
1.2
1.5
| BM
YAH
2.
2.1
| BM
2.2
2.5
3.0
3.2
3.5
YAH
4.0
4.2
4.3
| BM
4.9
YAH
5.0
5.2
5.7
5.9
YAH
6.0
6.2
6.3

Vol une

100

5000

150

10000

155

11000

150

11500

10500

26.

2.

22.

3.

1

0

0

0

0

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

Event

E1l

E3

E4

ES

E6

E7

E8

E1l

E9

arrives

[IBM 100, 25.0]
arrives
arrives

[1BM 150, 49.0]
arrives
arrives

(enmpty result) (enpty result)
arrives

[YAH, 11000, 3.0]
arrives

[1BM 150, 97.0]
arrives
| eaves the tine w ndow

[1BM 100, 72.0]

arrives

| eaves the tine w ndow
[MSFT, 5000, null]

© 2007 EsperTech Inc. - Esper2.0.0

187

Output Reference and Samples

Event E3 and E4 | eave the tine w ndow

=
N O

A.6.6. Output Rate Limiting - Snapshot

The statement for this sample reads:

sel ect irstream synbol, volunme, sum(price) from MarketData.w n:tinme(5.5 sec)
group by synbol
out put snapshot every 1 seconds

The output is asfollows:

I nput Qut put
I nsert Stream Renmove Stream

Ti me Synbol Vol une Price

0.2
| BM 100 25.0 Event El1 arrives
0.8
VSFT 5000 9.0 Event E2 arrives
1.0
1.2
[1BM 100, 25.0]
[MSFT, 5000, 9.0]
1.5
| BM 150 24.0 Event E3 arrives
YAH 10000 1.0 Event E4 arrives
2.0
2.1
| BM 155 26.0 Event E5 arrives
2.2
[1BM 100, 75.0]
[MSFT, 5000, 9.0]
[1BM 150, 75.0]
[YAH, 10000, 1.0]
[1BM 155, 75.0]
2.5
3.0
3.2
[IBM 100, 75.0]
[MSFT, 5000, 9.0]
[1BM 150, 75.0]
[YAH, 10000, 1.0]
[1BM 155, 75.0]
3.5
YAH 11000 2.0 Event E6 arrives
4.0
4.2
[IBM 100, 75.0]
[MSFT, 5000, 9.0]
[1BM 150, 75.0]
[YAH, 10000, 3.0]
[IBM 155, 75.0]
[YAH, 11000, 3.0]
4.3
| BM 150 22.0 Event E7 arrives
4.9
YAH 11500 3.0 Event E8 arrives
5.0
52

[1BM 100, 97.0]
[MSFT, 5000, 9.0]
[1BM 150, 97.0]
[YAH, 10000, 6. 0]
[1BM 155, 97.0]
[YAH, 11000, 6. 0]

© 2007 EsperTech Inc. - Esper2.0.0 188

Output Reference and Samples

[1BM
[YAH,

150, 97.0]
11500, 6. 0]

5.7 Event E1 | eaves the tine w ndow

YAH 10500 1.0 Event E9 arrives

[MSFT, 5000, 9. 0]

[1BM
[YAH
[1BM
[YAH,
[1BM
[YAH,
[YAH,

NN
N O W

[1BM
[YAH,
[1BM
[YAH,
[YAH,

150, 72.0]
10000, 7. 0]
155, 72.0]
11000, 7.0]
150, 72.0]
11500, 7.0]
10500, 7.0]

Event E2 | eaves the tinme w ndow
Event E3 and E4 | eave the tinme w ndow

155, 48.0]
11000, 6. 0]
150, 48.0]

11500, 6. 0]
10500, 6. 0]

© 2007 EsperTech Inc. - Esper2.0.0

189

Index

Symbols
-> pattern operator, 70

A

aggregation functions
custom plug-in, 135
overview, 84

and pattern operator, 69

arithmetic operators, 74

array definition operator, 75

B

between operator, 76
binary operators, 75

C

case control flow function, 79
cast function, 79
coalesce function, 80
concatenation operators, 74
configuration
itemsto configure, 116
overview, 115
programmatic, 115
runtime, 105
viaXML, 115
Configuration class, 115
constants, 7
correlation view, 94
current_timestamp function, 80

D

data window views
custom plug-in view, 132
externally-timed window, 89
group-by window, 92
keep-all window, 91
last event window, 93
length batch window, 88
length window, 88
overview, 86
size window, 93
sorted window, 96
time batch window, 89
time length batch window, 89
time window, 88
time-accumulating window, 90
time-order window, 96

unique window, 91
derived-value views
correlation, 94
multi-dimensiona statistics, 95
overview, 87
regression, 94
univariate statistics, 93
weighted average, 95
dynamic event properties, 4

E

enumeration, 7
EPAdministrator interface, 98
EPL

from clause, 27

group by clause, 33

having clause, 34

insert into clause, 39

join, 41

join, unidirectional, 42

joining non-relational data via method invocation,

48
joining relational datavia SQL, 45
named window, 51

deleting from, 53

inserting into, 54

selecting from, 55

triggered playback using On Insert, 58
triggered select using On Select, 56

order by clause, 38
outer join, 41
outer join, unidirectional, 42
output limiting and stabilizing, 36
select clause, 24
subqueries, 43
variable, 58
where clause, 32
EPRuntime interface, 105
EPServiceProviderManager class, 98
EPStatement interface, 98
EPStatementObjectModel interface, 109
event
dynamic properties, 4
Javaobject, 5
Map representation, 7
properties, 3
underlying representation, 3
XML representation, 9
EventBean interface, 11, 20
every pattern operator, 66
exists function, 81
externally-timed window, 89

© 2007 EsperTech Inc. - Esper2.0.0

190

I ndex

F

followed-by pattern operator, 70
from clause, 27
functions

case control flow, 79

cast, 79

coalesce, 80

current_timestamp, 80

exists, 81

instance-of, 81

max, 82

min, 82

previous, 82

prior, 83

user-defined, 78, 84

G

group by clause, 33
group-by window, 92

H

having clause, 34

|

in set operator, 76
insert into clause, 39
insert stream, 11
instance-of function, 81
iterator, 104

J

join, 41
from clause, 27
non-relational data via method invocation, 48
relational datavia SQL, 45

K
keep-all window, 91

L

|ast event window, 93

length batch window, 88

length window, 88

like operator, 77

logical and comparison operators, 74

M

map event representation, 7

max function, 82

min function, 82

multi-dimensional statistics view, 95

N
named window, 51
deleting from, 53
inserting into, 54
selecting from, 55
triggered playback using On Insert, 58
triggered select using On Select, 56
not pattern operator, 69

O

on-delete, 53
on-insert, 58
on-select, 56
operators
arithmetic, 74
array definition, 75
between, 76
binary, 75
concatenation, 74
in, 76
like, 77
logical and comparison, 74
regexp, 77
or pattern operator, 69
order by clause, 38
ordering output, 38
outer join, 41
output limiting and stabilizing clause, 36
output ordering, 38

P

pattern
filter expressions, 64
operator precendences, 64
overview, 62

pattern guard, 70
custom plug-in, 137
timer-within, 71

pattern observer, 72
custom plug-in, 139
timer-at, 72
timer-interval, 72

pattern operator
and, 69
every, 66
followed-by, 70
not, 69
or, 69

previous function, 82

prior function, 83

pull API, 104

© 2007 EsperTech Inc. - Esper2.0.0

I ndex

R

regexp operator, 77
regression view, 94
relational databases, 45
remove stream, 12

S

safeiterator, 104

select clause, 24

size window, 93

sorted window, 96

SQL, 45

statement
receiving results, 99
subscriber object, 100

StatementAwareUpdateL istener interface, 103

static Java methods, 78

subqueries, 43

subscriber object, 100
multi-row, 102
row-by-row, 100

T
threading, 108
time

controlling, 109

resolution, 109
time batch window, 16, 89
time length batch window, 89
time window, 15, 88
time-accumulating window, 90
time-order window, 96
timer-at pattern observer, 72
timer-interval pattern observer, 72
timer-within pattern guard, 71

U
UDF

user-defined function, 84
unidirectional joins, 42
unique window, 91
univariate statistics view, 93
UnmatchedL istener interface, 106
UpdateL istener interface, 103, 107
user-defined function, 84
user-defined single-row function, 78

V
variable, 58
views
batch window processing, 17

correlation, 94

custom plug-in view, 132
externally-timed window, 89
group-by window, 92

keep-all window, 91

|ast event window, 93

length batch window, 88
length window, 88
multi-dimensional statistics, 95
overview, 86

regression, 94

size window, 93

sorted window, 96

time batch window, 89

time length batch window, 89
time window, 88
time-accumulating window, 90
time-order window, 96
unique window, 91
univariate statistics, 93
weighted average, 95

W
weighted average view, 95
where clause, 32

X
XML event representation, 9

© 2007 EsperTech Inc. - Esper2.0.0

192

	Esper - Event Stream and Complex Event Processing for Java
	Table of Contents
	Preface
	Chapter 1. Technology Overview
	1.1. Introduction to CEP and event stream analysis
	1.2. CEP and relational databases
	1.3. The Esper engine for CEP
	1.4. Required 3rd Party Libraries

	Chapter 2. Event Representations
	2.1. Event Underlying Java Objects
	2.2. Event Properties
	2.3. Dynamic Event Properties
	2.4. Plain-Old Java Object Events
	2.4.1. Java Object Event Properties

	2.5. java.util.Map Events
	2.5.1. Map-Within-Map Nested Events

	2.6. org.w3c.dom.Node XML Events

	Chapter 3. Processing Model
	3.1. Introduction
	3.2. Insert Stream
	3.3. Insert and Remove Stream
	3.4. Filters and Where-clauses
	3.5. Time Windows
	3.5.1. Time Window
	3.5.2. Time Batch

	3.6. Batch Windows
	3.7. Aggregation and Grouping
	3.7.1. Insert and Remove Stream
	3.7.2. Output for Aggregation and Group-By
	Un-aggregated and Un-grouped
	Fully Aggregated and Un-grouped
	Aggregated and Un-Grouped
	Fully Aggregated and Grouped
	Aggregated and Grouped

	3.8. EventBean Query Results

	Chapter 4. EPL Reference: Clauses
	4.1. EPL Introduction
	4.2. EPL Syntax
	4.2.1. Specifying Time Periods
	4.2.2. Using Comments

	4.3. Choosing Event Properties And Events: the Select Clause
	4.3.1. Choosing all event properties: select *
	4.3.2. Choosing specific event properties
	4.3.3. Expressions
	4.3.4. Renaming event properties
	4.3.5. Choosing event properties and events in a join
	4.3.6. Choosing event properties and events from a pattern
	4.3.7. Selecting insert and remove stream events

	4.4. Specifying Event Streams: the From Clause
	4.4.1. Filter-based Event Streams
	Specifying an event type
	Specifying filter criteria
	Filtering Ranges
	Filtering Sets of Values
	Filter Limitations

	4.4.2. Pattern-based Event Streams
	4.4.3. Specifying Views
	4.4.4. Using the Stream Name

	4.5. Specifying Search Conditions: the Where Clause
	4.6. Aggregates and grouping: the Group-by Clause and the Having Clause
	4.6.1. Using aggregate functions
	4.6.2. Organizing statement results into groups: the Group-by clause
	4.6.3. Selecting groups of events: the Having clause
	4.6.4. How the stream filter, Where, Group By and Having clauses interact
	4.6.5. Comparing the Group By clause and the std:groupby view

	4.7. Stabilizing and Limiting Output: the Output Clause
	4.7.1. Output Clause Options
	4.7.2. Aggregation, Group By, Having and Output clause interaction
	4.7.3. Runtime Considerations

	4.8. Sorting Output: the Order By Clause
	4.9. Merging Streams and Continuous Insertion: the Insert Into Clause
	Merging Streams By Event Type

	4.10. Joining Event Streams
	4.11. Outer Joins
	4.12. Unidirectional Joins and Outer Joins
	4.13. Subqueries
	4.13.1. The 'exists' keyword
	4.13.2. The 'in' keyword

	4.14. Joining Relational Data via SQL
	4.14.1. Joining SQL Query Results
	4.14.2. SQL Query and the EPL Where Clause
	4.14.3. Outer Joins With SQL Queries
	4.14.4. Using Patterns to Request (Poll) Data
	4.14.5. JDBC Implementation Overview
	4.14.6. Oracle Drivers and No-Metadata Workaround

	4.15. Joining Non-Relational Data via Method Invocation
	4.15.1. Joining Method Invocation Results
	4.15.2. Providing the Method
	4.15.3. Using a Map Return Type

	4.16. Creating and Using Named Windows
	4.16.1. Creating Named Windows: the Create Window clause
	4.16.2. Deleting From Named Windows: the On Delete clause
	Using Patterns in the On Delete Clause

	4.16.3. Inserting Into Named Windows
	4.16.4. Selecting From Named Windows
	4.16.5. Triggered Select on Named Windows: the On Select clause
	4.16.6. Triggered Playback from Named Windows: the On Insert clause

	4.17. Variables
	4.17.1. Creating Variables: the Create Variable clause
	4.17.2. Setting Variable Values: the On Set clause
	4.17.3. Using Variables

	Chapter 5. EPL Reference: Patterns
	5.1. Event Pattern Overview
	5.2. How to use Patterns
	5.2.1. Pattern Syntax
	5.2.2. Subscribing to Pattern Events
	5.2.3. Pulling Data from Patterns

	5.3. Operator Precedence
	5.4. Filter Expressions In Patterns
	5.5. Pattern Operators
	5.5.1. Every
	Every Operator Example
	Sensor Example

	5.5.2. And
	5.5.3. Or
	5.5.4. Not
	5.5.5. Followed-by

	5.6. Pattern Guards
	5.6.1. timer:within

	5.7. Pattern Observers
	5.7.1. timer:interval
	5.7.2. timer:at

	Chapter 6. EPL Reference: Operators
	6.1. Arithmetic Operators
	6.2. Logical And Comparsion Operators
	6.3. Concatenation Operators
	6.4. Binary Operators
	6.5. Array Definition Operator
	6.6. The 'in' Keyword
	6.7. The 'between' Keyword
	6.8. The 'like' Keyword
	6.9. The 'regexp' Keyword

	Chapter 7. EPL Reference: Functions
	7.1. Single-row Function Reference
	7.1.1. The Case Control Flow Function
	7.1.2. The Cast Function
	7.1.3. The Coalesce Function
	7.1.4. The Current_Timestamp Function
	7.1.5. The Exists Function
	7.1.6. The Instance-Of Function
	7.1.7. The Min and Max Functions
	7.1.8. The Previous Function
	Previous Event per Group
	Restrictions
	Comparison to the prior Function

	7.1.9. The Prior Function

	7.2. Aggregate Functions
	7.3. User-Defined Functions

	Chapter 8. EPL Reference: Views
	A Note on View Parameters
	8.1. Window views
	8.1.1. Length window (win:length)
	8.1.2. Length batch window (win:length_batch)
	8.1.3. Time window (win:time)
	8.1.4. Externally-timed window (win:ext_timed)
	8.1.5. Time batch window (win:time_batch)
	8.1.6. Time-Length combination batch window (win:time_length_batch)
	8.1.7. Time-Accumulating window (win:time_accum)
	8.1.8. Keep-All window (win:keepall)

	8.2. Standard view set
	8.2.1. Unique (std:unique)
	8.2.2. Group-By (std:groupby)
	8.2.3. Size (std:size)
	8.2.4. Last Event (std:lastevent)

	8.3. Statistics views
	8.3.1. Univariate statistics (stat:uni)
	8.3.2. Regression (stat:linest)
	8.3.3. Correlation (stat:correl)
	8.3.4. Weighted average (stat:weighted_avg)
	8.3.5. Multi-dimensional statistics (stat:cube)

	8.4. Extension View Set
	8.4.1. Sorted Window View (ext:sort)
	8.4.2. Time-Order View (ext:time_order)

	Chapter 9. API Reference
	9.1. API Overview
	9.2. Engine Instances
	9.3. The Administrative Interface
	9.3.1. Creating Statements
	9.3.2. Receiving Statement Results
	9.3.3. Setting a Subscriber Object
	Row-By-Row Delivery
	Wildcards
	Row Delivery as Map and Object Array
	Delivery of Remove Stream Events
	Delivery of Begin and End Indications

	Multi-Row Delivery
	Wildcards

	9.3.4. Adding Listeners
	9.3.5. Using Iterators
	9.3.6. Managing Statements
	9.3.7. Runtime Engine Configuration

	9.4. The Runtime Interface
	9.4.1. Receiving Unmatched Events
	9.4.2. Emit Facility for Publish-Subscribe

	9.5. Events Received from the Engine
	9.6. Engine Threading and Concurrency
	9.7. Time-Keeping Events
	9.8. Time Resolution
	9.9. Statement Object Model
	9.9.1. Building an Object Model
	9.9.2. Building Expressions
	9.9.3. Building a Pattern Statement
	9.9.4. Building a Select Statement
	9.9.5. Building a Create-Variable and On-Set Statement
	9.9.6. Building Create-Window, On-Delete and On-Select Statements

	9.10. Prepared Statement and Substitution Parameters

	Chapter 10. Configuration
	10.1. Programmatic Configuration
	10.2. Configuration via XML File
	10.3. XML Configuration File
	10.4. Configuration Items
	10.4.1. Events represented by Java Classes
	Package of Java Event Classes
	Event type alias to Java class mapping
	Non-JavaBean and Legacy Java Event Classes
	Specifying Event Properties for Java Classes
	Turning off Code Generation
	Case Sensitivity and Property Names

	10.4.2. Events represented by java.util.Map
	10.4.3. Events represented by org.w3c.dom.Node
	Schema Resource
	XPath Property
	Absolute or Deep Property Resolution

	10.4.4. Class and package imports
	10.4.5. Cache Settings for Method Invocations
	10.4.6. Variables
	10.4.7. Relational Database Access
	Connections obtained via DataSource
	Connections obtained via DriverManager
	Connections-level settings
	Connections lifecycle settings
	Cache settings
	LRU Cache
	Expiry-time Cache

	Column Change Case
	SQL Types Mapping
	Metadata Origin

	10.4.8. Engine Settings related to Concurrency and Threading
	Preserving the order of events delivered to listeners
	Preserving the order of events for insert-into streams
	Internal Timer Settings

	10.4.9. Engine Settings related to Event Metadata
	Java Class Property Names and Case Sensitivity

	10.4.10. Engine Settings related to View Resources
	Sharing View Resources between Statements

	10.4.11. Engine Settings related to Logging
	Execution Path Debug Logging

	10.4.12. Engine Settings related to Variables
	Variable Version Release Interval

	10.4.13. Engine Settings related to Stream Selection
	Default Statement Stream Selection

	Chapter 11. Extension and Plug-in
	11.1. Overview
	11.2. Custom View Implementation
	11.2.1. Implementing a View Factory
	11.2.2. Implementing a View
	11.2.3. Configuring View Namespace and Name

	11.3. Custom Aggregation Functions
	11.3.1. Implementing an Aggregation Function
	11.3.2. Configuring Aggregation Function Name

	11.4. Custom Pattern Guard
	11.4.1. Implementing a Guard Factory
	11.4.2. Implementing a Guard Class
	11.4.3. Configuring Guard Namespace and Name

	11.5. Custom Pattern Observer
	11.5.1. Implementing an Observer Factory
	11.5.2. Implementing an Observer Class
	11.5.3. Configuring Observer Namespace and Name

	Chapter 12. Examples, Tutorials, Case Studies
	12.1. Examples Overview
	12.2. Market Data Feed Monitor
	12.2.1. Input Events
	12.2.2. Computing Rates Per Feed
	12.2.3. Detecting a Fall-off
	12.2.4. Event generator

	12.3. JMS Server Shell and Client
	12.3.1. Overview
	12.3.2. JMS Messages as Events
	12.3.3. JMX for Remote Dynamic Statement Management

	12.4. Transaction 3-Event Challenge
	12.4.1. The Events
	12.4.2. Combined event
	12.4.3. Real time summary data
	12.4.4. Find problems
	12.4.5. Event generator

	12.5. J2EE Self-Service Terminal Management
	12.5.1. Events
	12.5.2. Detecting Customer Check-in Issues
	12.5.3. Absence of Status Events
	12.5.4. Activity Summary Data
	12.5.5. Sample Application for J2EE Application Server
	Running the Example
	Building the Example
	Running the Event Simulator and Receiver

	12.6. Assets Moving Across Zones - An RFID Example
	12.7. AutoID RFID Reader generating XML documents
	12.8. StockTicker
	12.9. MatchMaker
	12.10. QualityOfService
	12.11. LinearRoad
	12.12. StockTick RSI

	Chapter 13. Performance
	13.1. Performance Results
	13.2. Performance Tips
	13.2.1. Understand how to tune your Java virtual machine
	13.2.2. Compare Esper to other solutions
	13.2.3. Select the underlying event rather than individual fields
	13.2.4. Prefer stream-level filtering over post-data-window filtering
	13.2.5. Reduce the use of arithmetic in expressions
	13.2.6. Consider using EventPropertyGetter for fast access to event properties
	13.2.7. Consider casting the underlying event
	13.2.8. Turn off logging
	13.2.9. Disable view sharing
	13.2.10. Disable delivery order guarantees
	13.2.11. Performance, JVM, OS and hardware

	13.3. Using the performance kit
	13.3.1. How to use the performance kit
	13.3.2. How we use the performance kit

	Chapter 14. References
	14.1. Reference List

	Appendix A. Output Reference and Samples
	A.1. Introduction and Sample Data
	A.2. Output for Un-aggregated and Un-grouped Queries
	A.2.1. No Output Rate Limiting
	A.2.2. Output Rate Limiting - Default
	A.2.3. Output Rate Limiting - Last
	A.2.4. Output Rate Limiting - First
	A.2.5. Output Rate Limiting - Snapshot

	A.3. Output for Fully-aggregated and Un-grouped Queries
	A.3.1. No Output Rate Limiting
	A.3.2. Output Rate Limiting - Default
	A.3.3. Output Rate Limiting - Last
	A.3.4. Output Rate Limiting - First
	A.3.5. Output Rate Limiting - Snapshot

	A.4. Output for Aggregated and Un-grouped Queries
	A.4.1. No Output Rate Limiting
	A.4.2. Output Rate Limiting - Default
	A.4.3. Output Rate Limiting - Last
	A.4.4. Output Rate Limiting - First
	A.4.5. Output Rate Limiting - Snapshot

	A.5. Output for Fully-aggregated and Grouped Queries
	A.5.1. No Output Rate Limiting
	A.5.2. Output Rate Limiting - Default
	A.5.3. Output Rate Limiting - All
	A.5.4. Output Rate Limiting - Last
	A.5.5. Output Rate Limiting - First
	A.5.6. Output Rate Limiting - Snapshot

	A.6. Output for Aggregated and Grouped Queries
	A.6.1. No Output Rate Limiting
	A.6.2. Output Rate Limiting - Default
	A.6.3. Output Rate Limiting - All
	A.6.4. Output Rate Limiting - Last
	A.6.5. Output Rate Limiting - First
	A.6.6. Output Rate Limiting - Snapshot

	Index

