Esper Reference Documentation

Version: 1.8.0

Table of Contents

(1=, =0 2SR Vi
1. TeChNOIOQY OVEN VIBWeeieiiis s s asn s anasasnsnnnsssnsnsnsnnnnnnnnnsnnnnns 1
1.1. Introduction to CEP and event Stream analYSiSccccvvviiieieeeeiiciiiieee e e e e 1

1.2. CEP and relational datalasescoooeooiiioiiiiiiiie e 1

1.3. The ESper enginefor CEPovviiiiie et r e e e e e e 1

1.4. Required 3rd Party LiDIarieSccueiiiiiiiieiii et 2

A Odo] a1 To U1 =1 o] o ISP 3
2.1. ProgrammatiC CONFIQUIBEIONeeiiiueeieeiiiiiieeaiieee ettt e et e e e s e e e e nees 3

2.2. Configuration VIa XML File ... 3

2.3. XML Configuration FilEcooeiiieeiee et e e e e e e e enneees 3

2.4, CONFIQUIALTON TTEIMS ...ttt e e s e s e e e e e e e e e nnes 4
2.4.1. Eventsrepresented by JAVA CIESSESccccvvviiiiiee et 4

2.4.1.1. Event type aliasto Java clasS MapPiNgceeeeeiiurreeiniiieieeeieeeessieeee e 4

2.4.1.2. Non-JavaBean and Legacy JavaEvent Classescccceeeeevie, 4

2.4.1.3. Specifying Event Properties for Java Classesccveveviiieeeeiiiieee e 5

2.4.1.4. Turning Off Code GENEIatioNccoiiiueeiiieieee e e e e e e 6

2.4.2. Events represented by java util.Mapccvvvveiiiee e 6

2.4.3. Events represented by org.W3C.dOM.NOGEeeviiiiiiiiiiiiiieee e 7

2.4.3.1. SCHEMARESOUICEvviieiiiiiieeiiiie ettt e e e e e nnnneeas 8

2.4.3.2. XPatN PrOPEITY ...eeeiiiieieeeeee ettt 8

2.4.4. Classand package imports ..., 8

2.4.5. Relational DataDase ACCESSuuvuiiiiieeeiiiiiiiier e e e e e s s et e e e e e e s s s st e e e e e e s s anntrraeeeaens 9

2.4.5.1. Connections obtained Via DataSOoUrCecoceeiviiiciuieieiieeeeieiiiieeeeee e e 9

2.4.5.2. Connections obtained via DriverManagerccoovveciviierieeee i ccciieeeeeae e 10

2.4.5.3. CONNECtiONS-1EVEl SEIIINGSeviiiiiiiieiiiie e 10

2.4.5.4. Connections lifeCyCle SEtINGS ...vvveiiie it 10

2.4.5.5. CAChE SELLINGSeeiiiiiiiie it 11

G N o B L < = TSR 12
3.1 API OVEIVIBIW .ottt e e e ettt e e e e e e e ettt et e aeeesassnbraeeeaaeeessanssbaneeaaaeenaans 12

R 01 = g = S 12

3.3. The AdMINIStrative INTEITACEeveiiiiiiie e 12
3.3.1. Creating SEALEMENTSo.veeeeeiiiiee ettt e e e s e e e s e e e e e s e e e e aa 12

3.3.2. AdUING LISLENENS ...t e e ettt et e e e e e e st e e e e e e e s s st bt r e e e e e e e e e e ennreees 13

333 USING ITEIBIOIS ...ttt e e et e e e e e e e nnrneeeeans 13

3.3.4. Managing StAtEMENESceeviiiiiiiiiieeeeeeee e et e e e e e e e e e e e e e e e ee e e e e e e ereeeeereeeeeees 14

3.3.5. Runtime Enging ConfigUIalionooccuiiiiieeee it e e e st e e e e eevvaeee e 14

3.4. The RUNEIME INEEITACEeeeiiiieeee et e e e e e eens 14

3.5, TIME-KEEPING EVENLSouviiiiiiiiie et e e e e e e e e e e s s et rreeeeaeas 14

3.6. Events Received from the ENQINEooviiiiiiieiiiiee et 15

4, Understanding the QULPUL MOElooiiiiiiiiece e e 17
g T 1 14 0o [(o SRR 17

A.2. INSEIT SEFEBIMeeeieiei ettt ettt ettt ettt e ettt ettt e e et et e e eeeeeeeeeeeeeeeeeees 17

4.3. INSert and REMOVE SITEAIMNccoiiiiiieiiiiiie et e sttt et e et e e s rbb e e e s nsbr e e e s snbe e e e s snbeeeeean 18

4.4, Filters and WREIE-CIAUSESoooeiiiiiiiiiii ettt e e e e e e eeeeeeeas 19

SN AN o (o =0T 1 Lo N SRR 21

T I T 0= AV T e o1 RS 22
4.6.1. TIMEWINUOW ...itiiiieiiiiiee st ee ettt e ettt e e st e e e et e e e s snteee e e snneeeeeannbeeeesnnrneeeeans 22

B W g T= T = = (o o OSSR 23

Esper 1.8.0

Esper - Java Event Stream Processor

4.7. EventBean QUENY RESUILScoiuiiiiiiiiiie ettt e e 24
5. EVENt REDIESENTALIONS ..veiiiiie ettt e ettt e e e e e e e e e e e e s e et e e e e e e e s s eesatbaereeeaeeesantranneeeeas 26
5.1. Event Underlying JAVa OBJECESocuviiiiiiiiiie ettt 26
5.2 EVENE PrOPErties ..o, 26
5.3. Plain Java ODJECT EVENTScooiiiiiiieiie ettt e e eeean 27
5.3.1. Java Object EVENt PrOPEITIESeiiiieeeiiiiiiieiee et e e e e e e e e e emenaeeeeeens 27

5.4. JaVAULI.MBD EVENLSooeeiiii ettt ettt e e e e e e s s st e e e e e e e s e e ntbaareeaaaeeaans 28
5.5. 0rg.w3c.dom.NOdE XML EVENLScc.uviiiiiiiiiiee ittt 29
6. EQL REFEIEONCE ... 31
200 I T | g1 oo o o o SRS 31
6.2, EQL SYNLBX ...veiieeiiieieeeiiiiie e e ettt e e e ettt e e e sttt e e e e st ee e e st eeeaanseeeeeaanteeeeeasneeeeeannaeaeeannreeeeeans 31
6.2.1. SPeCifying TIME PEMOUSceviiiiiiie e 32

6.3. Choosing Event Properties And Events: the Select Clauseoooieciiiiiiieee e 32
6.3.1. Choosing all event properties: SElECt*vvvieeeie i 32
6.3.2. Cho0oSiNg SPECITIC BVENE PIrOPEITIESceeiiiiiieeiiiie et 33
T I o (== [0 TP 33
6.3.4. Renaming eVent ProPEITIEScciiuurieiiiieiee et e sttt e et e s e e e e 33
6.3.5. Selecting istream and rstream eVENtS ..o 33

6.4. Specifying Event Streams : the From ClaUSEcccoiiiiiiiieiieiie s e e 34
6.4.1. Filter-based event SEreamsSooiiii i 34
6.4.1.1. SPeCifying an eVENTLYPEccvviiieiiee e 35

6.4.1.2. SPeCifying fIlter CrIteriaooeiiiiiei i 35

6.4.1.3. FIltEriNGg RANGESvvveiiiieei ittt e e e e et rre e e e e e e e e ns 36

6.4.1.4. Filtering SEtS Of VAIUESovviiiiiiiiii it 36

6.4.1.5. FIlter LIMITAHIONSooiiiieiiiiiiiiiie ettt et e e e e s eeeaaeeeea 36

6.4.2. Pattern-based event SIIEAIMSccueiiiiiiiiiee e 36
6.4.3. SPECITYING VIBWS ..ottt et e s e e e e e e 37

6.5. Specifying Search Conditions: the Where ClalSecccvvveeiiie i i 37
6.6. Aggregates and grouping: the Group-by Clause and the Having Clausecccccccevveeennns 38
6.6.1. Using aggregate fFUNCLIONSoeiiiiiiiiiiiiiieiee et et 38
6.6.2. Organizing statement results into groups. the Group-by clauseccccceviieeeennee. 40
6.6.3. Selecting groups of events. the Having clausecccooo, 41
6.6.4. How the stream filter, Where, Group By and Having clausesinteract 42

6.7. Stabilizing and Limiting Output: the OULPUL ClaUSEccooiiiiieiiiiiee e 42
6.7.1. OULPUL ClaUSE OPLIONSccoiiiiiiiei e e e s e e e e e e e e e e e e e s e e e e e e e s e e atbreeeeeeas 42
6.7.2. Group By, Having and Output clause interactioncccveeviiieeeiniiieee e 43

6.8. Sorting Output: the Order By ClauSecoooeeiiiiiii e, 43
6.9. Merging Streams and Continuous Insertion: the Insert INto Clausecccceeevviiiviiierieeennnns 44
6.10. JoiNiNg EVENE SEFEAIMS ..o 45
I I O 1T 1 N o 1 3PSO UPRRTPTPRRN 45
6.12. SUDGUETTES ...ttt e e et e e e e e e e e e r e e e e nnbeeeeean 46
6.12.1. The'eXiStS KEYWOITccoiiiiiieii e 47
6.12.2. TNE'IN" KEYWOITcoiiieiieiiiiiie ettt s e e e e e 47
6.13. Joining Relational DataviaSQL ..., 47
6.13.1. Joining SQL QUENY RESUITScoiuiiiiiiiiiiee ittt 48
6.13.2. Outer JoinsWith SQL QUENESccooeieieeeeeeeeeee e, 49
6.13.3. Using Patterns to Request (POII) Dataceevveeiiiiiiiiiiieiee et 49
6.13.4. IDBC Implementation OVEIVIEWccueeeiiiiiiieeiiiiee et e s 49

6.14. Single-row FUNCLION REFEIENCEuviiiiiiiii i e e 50
6.14.1. The Min and MaX FUNCLIONScceeeiiiiiiiiiiire e e e ceciiieeee e e e e st e e e e e s s e nnenraeeeeeas 51
6.14.2. The CoaleSCe FUNCLION ...t e e e e e e eeeens 51
6.14.3. The Case Control FIOW FUNCLIONcccuviiiiiieee e 51

Esper 1.8.0

Esper - Java Event Stream Processor

6.14.4. The PrevioUS FUNCLION ..ottt e e a e e e e e e eeeeas 51
6.14.4.1. PreviouS EVENt PEF GIOUDvvvrreiieeeeiiiiiirieeeeeeeeesesintereeeeeeessssnsssaneeeaaessnns 52

6.14.4.2. RESIHCLIONSeeiiiieiiieee e s ettt e e e s st e e e e e e s s et e e e e e e e s e annsnraeereaaeesans 52

6.14.4.3. Comparisonto the prior FUNCLIONoooee 53

6.14.5. TRE PIION FUNCLION ..eeiiiiie ettt e e e e e e e e et raaeeaeas 53
6.15. OPEralor REFEIEINCEeeeiiie e ettt e ettt e e e e e e s et e e aaeeeeaansneeeeeeaaeeaans 53
6.15.1. ArithmatiC OPEIaLOrScccuviiieiiee e e i e cce e e e e e e e e e e e e s s r e e e e e s s e sntrraaeeaeas 53
6.15.2. Logical And CompParsion OPEFEIONSeeeeiiurreeeiiiieeeeaiieeeessireeessnneeeesanneeeesnees 54
6.15.3. CoNCAENatioN OPErAIOrSvviiiiiiieeeiiiiitiiee e e e e e e e eeitt e e e e e e e s s ssaabrrereeaeessaenrrraeeeeens 54
6.15.4. BiNAry OPEIEIOIScuveeeeiiiiiieeiatiee e e ettt e e st e e sttt e e st e e e s snbe e e e s anne e e e s annn e e e e enees 54
6.15.5. Array Definition OPEratorcoooeeeiiiii i 55
6.15.6. TNE TN KEYWOIT ..ottt e e 55
6.15.7. The 'Detween’ KEYWOIDueeiiiieeeiiie e e e e e e e eneeeeeeeeeas 56
6.15.8. THE TIKE KEYWOIcciiiiiiiiiiie et e e e s et rae e e as 56
6.15.9. The 'regexp’ KEYWOIToviiiiiiiiieeiie ettt 57
B.16. BUIIT-IN VIBWS ..ttt e e et e e e et e e e st e e e e snnaeeeeenntneeeeans 57
B.16.1. WINAOW VIBIWS . ..eeiiiiiiiie ettt e e s s sttt e e e e e e e et e e e e e e s s ssnnn e e e e e e e e s annssnaneeeens 57
6.16.1.1. Length window (win:length)coe 57

6.16.1.2. Length window batch (win:length_batch)ooocoviiiiiiie e, 58

6.16.1.3. TIMeWindow (WIN:tiME)ccccuriiiiiiiiie e 58

6.16.1.4. Externally-timed window (win:ext_timed)coccovieeiieei e, 58

6.16.1.5. Time window batch (win:time_batCh)cccoooiiiiiiiiiie 58

6.16.2. SEANAAIT VIEW SEL ...ttt e et e e e e e e e e e nees 59
6.16.2.1. UNiqUe (SLA:UNIQUE) ...eeeiiuiirieeiiiiiieeesitteee sttt e e 59

6.16.2.2. Group By (StA:groupby) ... 59

6.16.2.3. SIZE (SIA:SIZE) ...uvvviieieie et a e 60

6.16.2.4. Last (StA:IBSLEVENT)eeeeeiieieeeeeiiiie ettt 61

6.16.3. SEALISLICS VIEWSeeeeiiieieeeiiiiee ettt e ettt e ettt e e st e e ettt e e s enae e e e e e eeeeenees 61
6.16.3.1. Univariate statistiCS (SaiUNI)evvveeiiiiiee e 61

6.16.3.2. Regression (Stat:liNESt)ccccvvieiirieeeii e 61

6.16.3.3. Correlation (Stal:COMEl)eiiiiiiiiiee ittt 62

6.16.3.4. Weighted average (stat:weighted avg) ..., 62

6.16.3.5. Multi-dimensional statistics (stat:multidim_Stats)eeevveeeiiiiiiiiiienieeeenns 62

6.16.4. EXIENSION VIBW SEL ..ooiiieiiieiiiiee ettt e e e e e s s et e e e e e e s e e nnenneeeeeeas 63
6.16.4.1. Sorted Window VIew (EXEISOM)cooovcciiiiiieeee e et e e e e 63

6.17. User-Defined FUNCLIONS ..ottt e e e e e e e e s et eeaaaeeeans 64
7. Event Pattern REFEIENCE ..ottt 65
7.1 EVENt PaterN OVEIVIEWoecciiiiiiiieiie ettt e et e e e e e e e s s st e e e e e e e e s anntsbnneeaaaeesans 65
T.2. HOW tO USE PALLEINS ... 65
T.2.1. Patern SYNTAX oooeeeee e 65
7.2.2. SUDLSCIibiNG tO Pattern EVENTSc.vviiiiiiiiiee et 66
7.2.3. PUlling Datafrom Patternscoiieiiiiiiiiiieiie et 66

7.3. Pattern Filter EXPrESSIONSccuuviiiiiiiiieeiie ettt e e e e e nnneeeeean 66
A s A (= (O] 01 = (0] PP 68
T L EVEY 68
2 N o PR STRRR 70

4 R PP PP PR 70
3 S Lo | P 70
745, FOHOWEH-DY ... e e e e e e e e s et reeeeaeas 70

7.5, PalerN GUEITScoeeieiiiiee ettt s et e e e e e e et eeae e e s s ssateaeeeeaeeeesantsnneeeaaaeeeans 71
4830 R 1 0 T= 0 1 o o PSP 71

7.6. Patern ODSEIVEIS ...ttt e e e e e e e e s e et e e e e e e e e aa e e aaaeeaans 72

Esper 1.8.0

Esper - Java Event Stream Processor

0 I 1 0T T 1= Y PRSP 72
A (1111 oF- SRR PRSP 72

8. EXIENSION @Nd PIUG-IN ittt et e e e e e e 74
S I @< V= PP PRRRR 74
8.2. Custom View IMpPlemMentationc.eeeiiiiiiieiiiiie e 74
8.2.1. Implementing aView FaCtOryoooiiiiiiiiiiieee et 74
8.2.2. IMPIeMENING A VIBW ..coiieiiiiiiiiee e e e e e e e e s e et raeeeaaas 75
8.2.3. Configuring View Namespace and NaMEoeeeiiiiiieiniiiee e 76

8.3. Custom AgQgregation FUNCLIONScoiiiiiiiiiiiiiiicee e e et e e e e e e et rre e e e e e e e e ns 77
8.3.1. Implementing an Aggregation FUNCLIONcueveiiiiiiieiiiiiee e 77
8.3.2. Configuring Aggregation FUnCtion Nameccccee e, 79

8.4. CUSIOM PAtErN GUAIcceeeeeiiieiiiieiii e ettt e s e e e e e e e e s et e e e e e e e s s sntrrnaeeaaaeeeans 79
8.4.1. Implementing & GUArd FACLOIYcooiiiiiiiiiiiie et e e eeeeeee e 79
8.4.2. Implementing @ GUAIM ClaSSciiieeiiiiiiiiieiee e e e e e e e e eeaeas 80
8.4.3. Configuring Guard Namespace and NaMEccooiiiiieiniiiieeiiieee e 81

8.5. CUSLOM PaterN ODSEIVENcciiiiiieeiiiiiee ettt e e ettt e e sttt e e e e st e e e s snbe e e e e aseeeeessnaeaeeennseeeeeans 81
8.5.1. Implementing an ODSEIVEr FCIONYccuviiiiiiiiieeiiiee e 81
8.5.2. Implementing an Observer Classcccceeeeee e 82
8.5.3. Configuring Observer Namespace and Namecccvvveevieeeiiicciiieeee e 83

9. Examples, TULOrials, Case SLUAIEScceeiiiiiiiiiiee e et e e e e e e e e e e e e e neneneeeeeas 84
9.1, EXAMPIES OVEIVIEW ...uvvieiiieee ittt e e ettt e e e e e e et e e e e e e e e s s st b e e e aaeeeesantbbneeeaaaeeaans 84
9.2. Market Data FEEd IMONITOLeeiieiiieee ettt e e e e e e e r e e e e e e e e neraeeeeeaaeeaans 84
8 2 I 1 g o LU Y | £ 84
0.2.2. Computing RAES Per FEEUcooiiiiieiiieiie e 84
9.2.3. DetectingaFall-oOff ... 85
.24, EVENE QENEIAION ...ccce e e 85

9.3. Transaction 3-EVent ChalleNgeueiiiiiiiie et 85
0.3. 1. TREEVENLS ..eeieiiiiiie ettt ettt e e et e e e e e e e e e e e e enees 85
0.3.2. COMDBINEA BVENToiiiiiiiie e e e e e e e e e s e eeeaas 86
9.3.3. Real time SUMMANY alac.cvvviiiiie e e et e e 86
0.3.4. FING PrODIEIMS ...t e e 86

O G T Y o 10 1= 1 o 86

9.4. J2EE Self-Service Terminal ManagemMentcooeeeiiiiiiiiiiiieiee e eesiiniee e e e e e s ssivrneeeaae e e e 87
S | PSR SORSR 87
9.4.2. Detecting Customer CheCK-IN ISSUESc.uvveiiieeei it 87
9.4.3. AbSENCE Of SEALUS EVENLS ...ttt e e e e e e 88
9.4.4. Activity SUMMary Dalaccoooeeiieiei 88
9.4.5. Sample Application for J2EE AppliCation SEIVErccooviiiieiiiiiee e 88
9.4.5.1. Running the EXamPle ..o 88

9.4.5.2. BUilding the EXAMPIEccceiiiiieiiie et 89

9.4.5.3. Running the Event Simulator and RECEIVEYcccvviiiiiiiiiiiiiece e 89

O.5. AULOID RFID REAENeeeiiiiiiiiii ettt ettt et e et e e e e nnbneeeean 89
S S (o Tox I ot = PSPPSR 90
O.7. MACNIMBKEYeiieiieeie ettt et et e e et e e e ettt e e e e s st e e e e sbe e e e e snsaeeeeasnsaeeeeennsneeeeans 90
0.8, QUEAIITYOTSEIVICEeeiiiiiiiiie ettt et e et e e e st b e e e e b e e e e nnbneeeeans 90
LSS I T 07 0 7= o SRS 91
9.10. SEOCKTICK RS ...ttt et e et e e e s e e e e nnbeeeeean 91
O = g o= RSP 93
101, REFEIBNCE LIS .uvieieeiiiiiie ettt ettt e e e e e e et e e e s anbb e e e e nnneeeeeennes 93

Esper 1.8.0

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of custom applications.
Typicaly these applications must obtain the data to analyze, filter data, derive information and then indicate
this information through some form of presentation or communication. Data may arrive with high frequency re-
quiring high throughput processing. And applications may need to be flexible and react to changes in require-
ments while the data is processed. Esper is an event stream processor that aims to enable a short development
cycle from inception to production for these types of applications.

If you are new to Esper, please follow these steps:

1

Read the tutorials, case studies and solution patterns available on the Esper public web site at ht -
t p: // esper. codehaus. org

Read Section 1.1, “Introduction to CEP and event stream analysis’ if you are new to CEP and ESP
(complex event processing, event stream processing)

Read Section 6.1, “EQL Introduction” for an introduction to event stream processing via EQL
Read Section 7.1, “Event Pattern Overview” for an overview over event patterns
Read Chapter 4, Understanding the Output Model to gain insight into EQL continuous query results

Then glance over the examples Section 9.1, “Examples Overview”

Esper 1.8.0 Vi

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze and react to
events. Some typical examples of applications are:

» Business process management and automation (process monitoring, BAM, reporting exceptions)

» Finance (algorithmic trading, fraud detection, risk management)

¢ Network and application monitoring (intrusion detection, SLA monitoring)

» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air traffic)

What these applications have in common is the requirement to process events (or messages) in real-time or near
real-time. This is sometimes referred to as complex event processing (CEP) and event stream analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the logic required.

e High throughput - applications that process large volumes of messages (between 1,000 to 100k messages
per second)

* Low latency - applications that react in real-time to conditions that occur (from a few milliseconds to a few
seconds)

« Complex computations - applications that detect patterns among events (event correlation), filter events, ag-
gregate time or length windows of events, join event streams, trigger based on absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in which most datais
fairly static and complex queries are less frequent. Also, most databases store al data on disks (except for in-
memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the data 10 times per
second it must fire the query 10 times per second. This does not scale well to hundreds or thousands of queries
per second.

Database triggers can be used to fire in response to database update events. However database triggers tend to
be slow and often cannot easily perform complex condition checking and implement logic to react.

In-memory databases may be better suited to CEP applications then traditional relational database as they gen-
eraly have good query performance. Y et they are not optimized to provide immediate, real-time query results
required for CEP and event stream analysis.

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and running quer-
ies against stored data, the Esper engine allows applications to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur that match queries. The execution model is thus con-
tinuous rather then only when a query is submitted.

Esper 1.8.0 1

Technology Overview

Esper provides two principal methods or mechanisms to process events. event patterns and event stream quer-
ies.

Esper offers an event pattern language to specify expression-based event pattern matching. Underlying the pat-
tern matching engine is a state machine implementation. This method of event processing matches expected se-
quences of presence or absence of events or combinations of events. It includes time-based correlation of
events.

Esper aso offers event stream queries that address the event stream analysis requirements of CEP applications.
Event stream queries provide the windows, aggregation, joining and analysis functions for use with streams of
events. These queries are following the EQL syntax. EQL has been designed for similarity with the SQL query
language but differs from SQL in its use of views rather then tables. Views represent the different operations
needed to structure datain an event stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

1.4. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

« ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EQL syntax.
Credit goes to Terence Parr at http://www.antlr.org. The ANTLR licenseis in the lib directory. The library
isrequired for compile-time only.

e CGLIB isthe code generation library for fast method calls. This open source software is under the Apache
license. The Apache 2.0 licenseisin thelib directory.

¢ LOG4J and Apache commons logging are logging components. This open source software is under the
Apache license. The Apache 2.0 licenseisin thelib directory.

Esper requires the following 3rd-party libraries at compile-time and for running the test site:

e JUnitisagreat unit testing framework. Its license has also been placed in the lib directory. Thelibrary isre-
quired for build-time only.

* MySQL connector library is used for testing SQL integration and is required for running the automated test
suite.

Esper 1.8.0 2

Chapter 2. Configuration

Esper engine configuration is entirely optional. Esper has a very small number of configuration parameters that
can be used to simplify event pattern and EQL statements, and to tune the engine behavior to specific require-
ments. The Esper engine works out-of-the-box without configuration.

2.1. Programmatic Configuration

An instance of net.esper.client.Configuration represents all configuration parameters. The Confi gur a-
ti on isused to build an (immutable) EPSer vi cePr ovi der , which provides the administrative and runtime inter-
faces for an Esper engine instance.

You may obtain a Confi gurati on instance by instantiating it directly and adding or setting values on it. The
Conf i gurat i on instance is then passed to EPSer vi cePr ovi der Manager to obtain a configured Esper engine.

Configuration configuration = new Configuration();

configuration. addEvent TypeAl i as("PriceLimt", PriceLinmit.class.getNane());
configuration. addEvent TypeAl i as(" St ockTi ck", StockTick. cl ass. get Name());
confi guration. addl nport ("org. myconpany. nypackage. MyUtility");
configuration. addl nport ("org. nyconpany. util.*");

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der ("sanpl e, configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine represented by an
EPSer vi cePr ovi der isimmutable and does not retain any association back to the Confi gurati on.

2.2. Configuration via XML File

An aternative approach to configuration is to specify a configuration in an XML file.

The default name for the XML configuration file is esper . cf g. xnl . Esper reads this file from the root of the
CLASSPATH as an application resource viathe conf i gur e method.

Configuration configuration = new Configuration();
configuration. configure();

The configuration class can read the XML configuration file from other sources as well. The confi gure
method accepts URL, File and String filename parameters.

Configuration configuration = new Configuration();
configuration. configure("nyengi ne. esper.cfg.xm");

2.3. XML Configuration File

Here is an example configuration file. The schema for the configuration file can be found in the et ¢ folder and
is named esper - confi gurati on- 1- 0.

<?xm version="1.0" encodi ng="UTF-8""?>
<esper-configuration xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmalLocat i on="esper - confi gurati on- 1- 0. xsd" >
<event-type alias="StockTi ck" class="net.esper.exanple.stockticker.event. StockTick"/>
<event-type alias="PriceLimt" class="net.esper.exanple.stockticker.event.PriceLimt"/>
<aut o-i mport i nmport-nane="org. myconpany. nypackage. MyUtility"/>

Esper 1.8.0 3

Configuration

<aut o-i nport inport-name="org. myconpany.util.*"/>
</ esper-confi guration>

The example above is only a subset of the configuration items available. The next chapters outline the available
configuration in greater detail.

2.4. Configuration Items

2.4.1. Events represented by Java Classes

Event type alias to Java class mapping

This configuration item can be used to allow event pattern statements and EQL statements to use an event type
alias rather then the fully qualified Java class name. Note that Java Interface classes and abstract classes are
also supported as event types via the fully qualified Java class name, and an event type alias can also be defined
for such classes.

The example pattern statement below first shows a pattern that uses the alias St ockTi ck. The second pattern
statement is equivalent but specifies the fully-qualified Java class name.

every StockTick(symbol ="1BM)"
every net.esper.exanpl e. st ockti cker. event. StockTi ck(synbol =' | BM)

The event type dias can be listed in the XML configuration file as shown below. The Confi gurati on API can
also be used to programatically specify an event type alias, as shown in an earlier code snippet.

<event-type alias="StockTick" class="net.esper.exanpl e.stockticker.event. StockTi ck"/>

Non-JavaBean and Legacy Java Event Classes

Esper can process Java classes that provide event properties through other means then through JavaBean-style
getter methods. It is not necessary that the method and member variable names in your Java class adhere to the
JavaBean convention - any public methods and public member variables can be exposed as event properties via
the below configuration.

A Java class can optionally be configured with an accessor style attribute. This attribute instructs the engine
how it should expose methods and fields for use as event propertiesin statements.

Table 2.1. Accessor Styles

Style Name Description

j avabean As the default setting, the engine exposes an event property
for each public method following the JavaBean getter-method
conventions

public The engine exposes an event property for each public method

and public member variable of the given class

explicit The engine exposes an event property only for the explicitly
configured public methods and public member variables

Esper 1.8.0 4

Configuration

Using the publ i ¢ setting for the accessor - st yl e attribute instructs the engine to expose an event property for
each public method and public member variable of a Java class. The engine assigns event property names of the
same name as the name of the method or member variable in the Java class.

For example, assuming the class MyLegacyEvent exposes a method named r eadval ue and a member variable
named nyFi el d, we can then use properties as shown.

sel ect readVal ue, nyField from M/LegacyEvent

Using theexpl i cit setting for the accessor - st yl e attribute requires that event properties are declared via con-
figuration. Thisis outlined in the next chapter.

When configuring an engine instance from an XML configuration file, the XML snippet below demonstrates
the use of thel egacy-t ype element and the accessor - st yl e attribute.

<event-type alias="M/VLegacyEvent" class="com myconpany. nypackage. \yLegacyEvent Cl ass" >
<l egacy-type accessor-style="public"/>
</ event-type>

When configuring an engine instance via Configuration API, the sample code below shows how to set the ac-
cessor style.

Configuration configuration = new Configuration();

Conf i gur ati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypeLegacy();

| egacyDef . set Accessor Styl e(Confi gurati onEvent TypeLegacy. Accessor Styl e. PUBLI C) ;

confi g. addEvent TypeAl i as(" MyLegacyEvent", MyLegacyEvent Cl ass. cl ass. get Name(), | egacyDef);

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der ("sanpl e", configuration);

Specifying Event Properties for Java Classes

Sometimes it may be convenient to use event property names in pattern and EQL statements that are backed up
by a given public method or member variable (field) in a Java class. And it can be useful to declare multiple
event properties that each map to the same method or member variable.

We can configure properties of events via net hod- property and fi el d- property elements, as the next ex-
ample shows.

<event-type alias="StockTi ck" class="net.esper.exanple.stockticker.event. StockTi ckEvent">
<l egacy-type accessor-styl e="javabean" code-generati on="enabl ed">
<met hod- property name="price" accessor-nethod="getCurrentPrice" />
<fiel d-property nane="vol une" accessor-fiel d="vol uneFi el d" />
</l egacy-type>
</ event-type>

The XML configuration snippet above declared an event property named pri ce backed by a getter-method
named get Current Pri ce, and a second event property named vol une that is backed by a public member vari-
able named vol uneFi el d. Thus the price and volume properties can be used in a statement:

sel ect avg(price * volunme) from StockTick

Aswith all configuration options, the API can also be used:

Configuration configuration = new Configuration();

Confi gurati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypelLegacy();

| egacyDef . addMet hodPr operty("price", "getCurrentPrice");

| egacyDef . addFi el dProperty("vol une", "vol uneField");

confi g. addEvent TypeAl i as(" St ockTi ck", StockTi ckEvent. cl ass. get Nane(), |egacyDef);

Esper 1.8.0 5

Configuration

Turning off Code Generation

Esper employes the caLl B library for very fast read access to event property values. For certain legacy Java
classes it may be desirable to disable the use of thislibrary and instead use Java reflection to obtain event prop-
erty values from event objects.

In the XML configuration, the optional code- generati on attribute in the | egacy-t ype section can be set to
di sabl ed as shown next.

<event-type alias="MVLegacyEvent" cl ass="com myconpany. package. MyLegacyEvent Cl ass" >
<l egacy-type accessor-styl e="javabean" code-generati on="di sabl ed" />
</ event-type>

The sample below shows how to configure this option viathe API.

Configuration configuration = new Configuration();

Configurati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypelLegacy();

| egacyDef . set CodeGener at i on(Confi gur ati onEvent TypelLegacy. CodeGener ati on. DI SABLED) ;

confi g. addEvent TypeAl i as(" MyLegacyEvent", MyLegacyEvent Cl ass. cl ass. get Nane(), | egacyDef);

2.4.2. Events represented by java. util. Map

The engine can processj ava. uti | . Map eventsviathe sendEvent (Map map, String event TypeAl i as) method
on the EPruntine interface. Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property names in pattern or EQL statements.
Vaues can be of any type. JavaBean-style objects as values in a Map can also be processed by the engine.
Please see the Chapter 5, Event Representations section for details on how to use Map events with the engine.

Via configuration we provide an event type alias name for Map events for use in statements, and the event prop-
erty names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event named MyMapEvent .

<event-type alias="MMapEvent">
<j ava-util - map>
<map- property name="carld" class="int"/>
<map- property nanme="car Type" class="string"/>
<map- property name="assenbly" cl ass="com nmyconpany. Assenbl y"/>
</java-util - map>
</ event-type>

This configuration defines the car 1 d property of MyMapEvent events to be of typei nt, and the car Type prop-
erty to be of type java. util.String. The assenbl y property of the Map event will contain instances of
com nyconpany. Assenbl y for the engine to query.

Thevalid list of values for the type definition viathecl ass attributeis:

e stringOrjava.lang. String

e char Orjava.l ang. Character
* byteOrjava.lang.Byte

* short Orjava.l ang. Short

* int Orjava.lang.|nteger

* J|ongoOfrjava.lang. Long

e float Orjava.l ang. Fl oat

* doubl e Orjava.l ang. Doubl e

* bool ean Orj ava. | ang. Bool ean

Esper 1.8.0 6

Configuration

* Any fully-qualified Java class name that can be resolved by the engineviad ass. f or Nane

You can also use the configuration API to configure Map event types, as the short code snippet below demon-
Strates.

Properties properties = new Properties();
properties.put("carld", "int");

properties. put ("carType", "string");

properties. put ("assenbly", Assenbly.class.getNane());

Configuration configuration = new Configuration();
configuration. addEvent TypeAl i as(" MyMapEvent", properties);

Finally, here is a sample EQL statement that uses the configured MyMapEvent map event. This statement uses
the chassi sTag and nunPar t s properties of Assenbl y objectsin each map.

sel ect car Type, assenbly. chassisTag, count(assenbly.nunParts) from MyMapEvent.wi n:tinme(60 sec)

2.4.3. Events represented by org. w3c. dom Node

Viathis configuration item the Esper engine can natively process or g. wdc. dom Node instances, i.e. XML docu-
ment object model (DOM) nodes. Please see the Chapter 5, Event Representations section for details on how to
use Node events with the engine.

Esper alows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property hame by which their result values will be available for use in expressions.

For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wadc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.

In the simplest form, the Esper engine only requires a configuration entry containing the root element name and
the event type alias in order to process or g. w3c. dom Node events:

<event -type al i as="M/XM.NodeEvent">
<xm - dom r oot - el ement - name="nyevent" />
</ event-type>

You can aso use the configuration API to configure XML event types, as the short example below demon-
strates. In fact, all configuration options available through XML configuration can also be provided via setter
methods on the Conf i gur at i onEvent TypeXM.DOMCclass.

Configuration configuration = new Configuration();

Confi gurati onEvent TypeXM_.DOM desc = new Confi gurati onEvent TypeXM.DOV) ;

desc. set Root El enent Nanme(" myevent");

desc. addXPat hProperty("nanmel", "/elenment/ @ttribute", XPathConstants. STRI NG ;
desc. addXPat hProperty("nanme2", "/el enent/subel enent", XPat hConstants. NUVMBER);
configuration. addEvent TypeAl i as(" MyXM_NodeEvent", desc);

The next example presents all relevant configuration options in a sample configuration entry.

<event -type al i as="Aut ol dRFI DEvent ">
<xm -dom r oot - el enent - nane="Sensor" schena-resour ce="dat a/ Aut ol dPm Cor e. xsd"
def aul t - nanespace="ur n: aut oi d: speci fi cati on:i nterchange: PM.Cor e: xm : schema: 1" >
<nanespace- prefix prefix="pmni core"
nanmespace="ur n: aut oi d: speci fi cati on: i nt erchange: PM.Cor e: xm : schena: 1"/ >

Esper 1.8.0 7

Configuration

<xpat h- property property-nanme="count Tags"
xpat h="count (/ pnl cor e: Sensor/ pm cor e: Cbservati on/ pnl core: Tag)" type="nunber"/>
</ xm - don®
</ event-type>

This example configures an event property named count Tags Whose value is computed by an XPath expres-
sion. The namespace prefixes and default namespace are for use with XPath expressions and must also be made
known to the engine in order for the engine to compile XPath expressions. Viathe schema- r esour ce attribute
we instruct the engine to load a schemafile.

Hereis an example EQL statement using the configured event type named Aut ol dRFI DEvent .

sel ect I D, countTags from Aut ol dRFI DEvent.w n:ti me(30 sec)

Schema Resource

The schema-resour ce atribute takes a schema resource URL or classpath-relative filename. The engine at-
tempts to resolve the schema resource as an URL. If the schema resource name is not a valid URL, the engine
attempts to resolve the resource from classpath via the d assLoader . get Resour ce method using the thread
context class loader. If the name could not be resolved, the engine uses the Configuration class classloader.

By configuring a schemafile for the engine to load, the engine performs these additional services:

e Vadlidates the event properties in a statement, ensuring the event property name matches an attribute or ele-
ment in the XML

« Determines the type of the event property allowing event properties to be used in type-sensitive expressions
such as expressions involving arithmatic (Note: XPath properties are also typed)

» Matches event property names to either element names or attributes

If no schema resource is specified, none of the event properties specified in statements are validated at state-
ment creation time and their type defaultstoj ava. I ang. St ri ng. Also, attributes are not supported if no schema
resource is specified and must thus be declared via X Path expression.

XPath Property

The xpat h- property element adds event properties to the event type that are computed via an XPath expres-
sion. In order for the XPath expression to compile, be sure to specify the def aul t - namespace attribute and use
the namespace- pr ef i x to declare namespace prefixes.

XPath expression properties are strongly typed. The type attribute alows the following values. These values
correspond to those declared by j avax. xni . xpat h. XPat hConst ant s.

* number (Note: resolvesto adoubl e)
e string
* boolean

2.4.4. Class and package imports

Esper allows invocations of static Java library functions as outlined in Section 6.14, “ Single-row Function Ref-
erence’. This configuration item can be set to allow a partial rather than a fully qualified class namein such in-
vocations. The imports work in the same way asin Javafiles, so both packages and classes can be imported.

sel ect Mat h. max(priceOne, PriceTwo)
/1 via configuration equivalent to
sel ect java.l ang. Mat h. max(pri ceOne, priceTwo)

Esper 1.8.0 8

Configuration

Esper auto-imports the following Java library packages if no other configuration is supplied. This list is re-
placed with any configuration specified in a configuration file or through the API.

e javalang.*
e javamath.*
e javatext.*
e javadutil.*

In an XML configuration file the auto-import configuration may look as below. Note that al configuration op-
tions are available through the Conf i gur ati on APl aswell.

<aut o-i nport i nport-nanme="com myconpany. nypackage.*"/>
<aut o-i mport i nmport-nanme="com nyconpany. nyapp. MyUtilityC ass"/>

2.4.5. Relational Database Access

Esper has the capability to join event streams against historical data sources, such as arelational database. This
section describes the configuration entries that the engine requires to access data stored in your database. Please
see Section 6.13, “Joining Relational Data via SQL” for information on the use of EQL queries that include his-
torical data sources.

EQL queriesthat poll datafrom arelationa database specify the name of the database as part of the EQL state-
ment. The engine uses the configuration information described here to resolve the database name in the state-
ment to database settings. The required and optional database settings are summarized below.

e Database connections can be obtained via JDBC javax.xnl.DataSource or aternatively via
java. sql . Dri ver Manager . Either one of these methods to obtain new database connections is a required
configuration.

e Optionaly, JDBC connection-level settings such as auto-commit, transaction isolation level, read-only and
the catalog name can be defined.

e Optionaly, a connection lifecycle can be set to indicate to the engine whether the engine must retain con-
nections or must obtain a new connection for each lookup.

« Optionaly, define a cache poalicy to alow the engine to retrieve data from a query cache, reducing the num-
ber of query executions.

Some of the settings can have important performance implications that need to be carefully considered in rela-
tionship to your database software, JDBC driver and runtime environment. This section attempts to outline such
implications where appropriate.

The sample XML configuration file in the "etc" folder can be used as a template for configuring database set-
tings. All settings are also available by means of the configuration API through the classes Conf i gur at i on and
Conf i gur ati onDBRef .

Connections obtained via DataSource

The snippet of XML below configures a database named nydbl to obtain connections via a
j avax. sql . Dat aSour ce. The dat asour ce- connect i on €lement instructs the engine to obtain new connections
to the database nydb1 by performing alookup viaj avax. nami ng. I ni ti al Cont ext for the given object lookup
name. Optional environment properties for the i ni ti al Cont ext are also shown in the example.

<dat abase-ref erence nanme="nydbl">
<dat asour ce- connecti on cont ext - | ookup- nane="j ava: conp/ env/j dbc/ nydb" >
<env- property nanme="java. nam ng.factory.initial" value ="com nycl ass. Ct xFactory"/>
<env-property name="java. nam ng. provi der.url" value ="iiop://Iocal host:1050"/>
</ dat asour ce- connect i on>

Esper 1.8.0 9

Configuration

</ dat abase-r ef er ence>

To help you better understand how the engine uses this information to obtain connections, we have included the
logic below.

if (envProperties.size() > 0) {
initial Context = new Initial Context(envProperties);

}
el se {

initial Context = new Initial Context();
}

Dat aSour ce dat aSour ce
Connecti on connection

(Dat aSource) initial Context.|ookup(lookupNane);
dat aSour ce. get Connecti on();

Connections obtained via DriverManager

The next snippet of XML configures a database named nydb2 to obtain connections via
java.sql . Driver Manager. The dri ver manager - connect i on element instructs the engine to obtain new con-
nections to the database mydb2 by means of d ass. f or Name and Dr i ver Manager . get Connect i on using the class
name, URL and optional username, password and connection arguments.

<dat abase-ref erence nanme="nydb2">
<dri ver manager - connecti on cl ass-name="nmny. sql . Dri ver"
url ="j dbc: mysql : / /1 ocal host/t est ?user =r oot &anp; passwor d=nypasswor d"
user ="nyuser" password="nypassword">
<connecti on-arg nane="user" val ue ="myuser"/>
<connection-arg nanme="password" val ue ="nypassword"/>
<connecti on-arg nane="sonearg" val ue ="soneargval ue"/>
</ dri ver manager - connect i on>
</ dat abase-r ef erence>

The username and password are shown in multiple places in the XML only as an example. Please check with
your database software on the required information in URL and connection arguments.

Connections-level settings

Additional connection-level settings can optionally be provided to the engine which the engine will apply to
new connections. When the engine obtains a new connection, it applies only those settings to the connection
that are explicitly configured. The engine leaves all other connection settings at default values.

The below XML is a sample of all available configuration settings. Please refer to the Java APl JavaDocs for
java. sql . Connecti on for more information to each option or check the documentation of your JDBC driver
and database software.

<dat abase-ref erence nane="nydb2">
configure data source or driver nmanager settings...
<connection-settings auto-comit="true" catal og="mycatal og"
read-onl y="true" transaction-isolation="1" />
</ dat abase-r ef erence>

The r ead- onl y setting can be used to indicate to your database engine that SQL statements are read-only. The
transaction-isol ati on and aut o- commi t help you database software perform the right level of locking and
lock release. Consider setting these values to reduce transactional overhead in your database queries.

Connections lifecycle settings

By default the engine retains a separate database connection for each started EQL statement. However, it is

Esper 1.8.0 10

Configuration

possible to override this behavior and require the engine to obtain a new database connection for each |ookup,
and to close that database connection after the lookup is completed. This often makes sense when you have a
large number of EQL statements and require pooling of connections via a connection pool. If your runtime en-
vironment includes an application server, the connection pool may be exposed as a bat aSour ce.

The XML for this option is below. The connection lifecycle allows the following values: pool ed andr et ai n.

<dat abase-ref erence nanme="nydb2">
. configure data source or driver manager settings...
<connection-lifecycle val ue="pool ed"/ >
</ dat abase-ref erence>

Cache settings

Cache settings can dramatically reduce the number of database queries that the engine executes for EQL state-
ments. If no cache setting is specified, the engine does not cache query results and executes a separate database
query for every event.

Caches store the results of database queries and make these results available to subsequent queries using the ex-
act same query parameters as the query for which the result was stored. If your query returns one or more rows,
the cache keep the result rows of the query keyed to the parameters of the query. If your query returns no rows,
the cache also keeps the empty result. Query results are held by a cache until the cache entry is evicted. The
strategies available for evicting cached query results are listed next.

LRU Cache

The least-recently-used (LRU) cache is configured by a maximum size. The cache discards the least recently
used query results first once the cache reaches the maximum size.

The XML configuration entry for a LRU cache is as below. This entry configures an LRU cache holding up to
1000 query results.

<dat abase-r ef erence nane="nydb" >
. configure data source or driver nmanager settings...
<l ru-cache si ze="1000"/>
</ dat abase-ref erence>

Expiry-time Cache

The expiry time cache is configured by a maximum age in seconds and a purge interval. The cache discards (on
the get operation) any query results that are older then the maximum age so that stale data is not used. If the
cache is not empty, then every purge interval number of seconds the engine purges any expired entries from the
cache.

The XML configuration entry for an expiry-time cache is as follows. The example configures an expiry time
cache in which prior query results are valid for 60 seconds and which the engine inspects every 2 minutesto re-
move query results older then 60 seconds.

<dat abase-ref erence nane="nydb" >
. configure data source or driver nmanager settings...
<expiry-tinme-cache max-age-seconds="60" purge-interval -seconds="120"/>
</ dat abase-r ef erence>

Esper 1.8.0 11

Chapter 3. APl Reference

3.1. APl Overview

Esper has 2 primary interfaces that this section outlines. The administrative interface and the runtime interface.

Use Esper's administrative interface to create and manage EQL and pattern statements, and set runtime config-
urations, as discussed in Section 6.1, “EQL Introduction” and Section 7.1, “ Event Pattern Overview”.

Use Esper's runtime interface to send events into the engine, emit events and get statistics for an engine in-
stance.

The JavaDoc documentation is also a great source for API information.

3.2. Engine Instances

Each instance of an Esper engine is completely independent of other engine instances and has its own adminis-
trative and runtime interface.

An instance of the Esper engine is obtained via static methods on the EPSer vi cePr ovi der Manager class. The
get Def aul t Provi der method and the get Provi der (String URI) methods return an instance of the Esper en-
gine. The latter can be used to obtain multiple instances of the engine for different URI values. The EPSer vi ce-

Provi der Manager determines if the URI matches all prior URI values and returns the same engine instance for
the same URI value. If the URI has not been seen before, it creates a new engine instance.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the default engine in-
stance return the same instance.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;

This code snippet gets an Esper engine for URI RFI DPr ocessor 1. Subsequent calls to get an engine with the
same URI return the same instance.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der (" RFI DProcessor 1") ;

An existing Esper engine instance can be reset viathei ni ti al i ze method on the EPSer vi cePr ovi der instance.
This stops and removes all statements in the Engine.

3.3. The Administrative Interface

3.3.1. Creating Statements

Create event pattern expression and EQL statements via the administrative interface EPAdmi ni strat or .
This code snippet gets an Esper engine then creates an event pattern and an EQL statement.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPAdni ni strator admi n = epServi ce. get EPAdm ni strator();

EPSt at enent 10secRecur Tri gger = admi n. createPattern(

Esper 1.8.0 12

APl Reference

“every timer:at(*, *, *, *, *, */10)");

EPSt at enent count Stmt = admi n. cr eat eEQL(
"sel ect count (*) from Market Dat aBean.win:time(60 sec)");

Note that event pattern expressions can also occur within EQL statements. This is outlined in more detail in
Section 6.4.2, “Pattern-based event streams”.

The cr eat e methods on EPAdni ni st rat or are overloaded and allow an optional statement name to be passed to
the engine. A statement name can be useful for retrieving a statement by name from the engine at a later time.
The engine assigns a statement name if no statement name is supplied on statement creation.

The creat ePat t ern and cr eat eEQL methods return EPSt at ement instances. Statements are automatically star-
ted and active when created. A statement can also be stopped and started again viathe st op and st art methods
shown in the code snippet below.

count St nt . st op() ;
count Stnt.start();

3.3.2. Adding Listeners

We can subscribe to updates posted by a statement via the addLi st ener and r emovelLi st ener methods on EP-
St at ement . We need to provide an implementation of the Updat eLi st ener interface to the statement:

Updat eLi st ener nyLi stener = new MyUpdat eLi st ener () ;
count St nt . addLi st ener (myLi st ener);

EQL statements and event patterns publish old data and new data to registered Updat eLi st ener listeners. New
data published by statements is the events representing the new values of derived data held by the statement.
Old data published by statements constists of the events representing the prior values of derived data held by
the statement.

3.3.3. Using lterators

Subscribing to events posted by a statement is following a push model. The engine pushes data to listeners
when events are received that cause data to change or patterns to match. Alternatively, statements can also
serve up datain a pull model viatheiterator method. This can come in handy if we are not interested in al
new updates, but only want to perform a frequent poll for the latest data. For example, an event pattern that
fires every 5 seconds could be used to pull data from an EQL statement. The code snippet below demonstrates
some pull code.

Iterator<Event Bean> eventlter = countStnt.iterator();
for (EventBean event : eventlter) {

/1 .. do something ..
}

Thisis a second example:

doubl e averagePrice = (Double) eql Statenment.iterator().next().get("average");

Esper places the following restrictions on the pull APl and usage of thei t er at or method:

1. EQL statements joining multiple event streams do not support the pull API

Esper 1.8.0 13

APl Reference

3.3.4. Managing Statements

The EPAdni ni st rat or interface provides the facilities for managing statements:

e Usetheget st at ement method to obtain an existing started or stopped statement by name

» Usetheget St at ement Names methods to abtain alist of started and stopped statement names

e Use the startAll Statenents, stopAl | Statements and destroyAl | Stat ements methods to manage all
statements in one operation

3.3.5. Runtime Engine Configuration

Certain configuration changes are available to perform on an engine instance while in operation. Such configur-
ation operations are available via the get Conf i gur ati on method on EPAdni ni st rat or, Which returns an Con-
figurationQperations object.

The configuration operations available on a running engine instance are as follows. Please see Chapter 2, Con-
figuration for more information.

* Add an new event type for a JavaBean class, legacy Java class or custom Java class
e Addannew DOM XML event type
¢ Addan new Map-based event type

3.4. The Runtime Interface

The EPRunt i e interface is used to send events for processing into an Esper engine, and to emit Events from an
engine instance to the outside world.

The below code snippet shows how to send a Java object event to the engine. Note that the sendEvent method
is overloaded. As events can take on different representation classes in Java, the sendEvent takes parametersto
reflect the different types of events that can be send into the engine. The Chapter 5, Event Representations sec-
tion explains the types of events accepted.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRuntine runtime = epService. get EPRunti me();

/1 Send an exanpl e event containing stock market data
runti me. sendEvent (new Mar ket Dat aBean(' 1 BM, 75.0));

Another important method in the runtime interface is the r out e method. This method is designed for use by Up-
dat eLi st ener implementations that need to send events into an engine instance.

The et and addEni t t edLi st ener methods can be used to emit events from a runtime to a registered set of
one or more emitted event listeners. This mechanism is available as a service to enable channel-based publish-
subscribe of events emitted from an engine instance viathe eni t method. Emitting events is not integrated with
EQL and is available only via the EPRunt i ne interface. Events are emitted on an event channel identified by a
name. Listeners are implementations of the Eni t t edLi st ener interface. Viathe addeni t t edLi st ener method a
listener can be added to the specified event channel. The lister receives only those events posted to that channel.
The channel parameter to addEni t t edLi st ener aso allows null values. If anull channel value is specified, the
listeners receives emitted events posted on any channel.

3.5. Time-Keeping Events

Esper 1.8.0 14

APl Reference

Special events are provided that can be used to control the time-keeping of an engine instance. There are two
models for an engine to keep track of time. Interna clocking is when the engine instance relies on the
java.util.Timer classfor time tick events. External clocking can be used to supply time ticks to the engine.
The latter is useful for testing time-based event sequences or for synchronizing the engine with an external time
source.

By default, the Esper engine uses internal time ticks. This behavior can be changed by sending atimer control
event to the engine as shown below.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRuntine runtime = epService. get EPRunti nme();

Il switch to external clocking

runti me. sendEvent (new Ti ner Cont r ol Event (Ti mer Contr ol Event. O ockType. CLOCK_EXTERNAL)) ;

/1 send a time tick
long tinelnMIlis = SystemcurrentTineMIlis(); // O get the tinme sonmewhere el se
runti me. sendEvent (new Current Ti mreEvent (tinelnMI1is));

3.6. Events Received from the Engine

The Esper engine posts events to registered Updat eLi st ener instances (‘push’ method for receiving events). For
many statements events can also be pulled from statements viathei t er at or method. Both pull and push sup-
ply Event Bean instances representing the events generated by the engine or events supplied to the engine. Each
Event Bean instance represents an event, with each event being either an artificial event, composite event or an
event supplied to the engine viaits runtime interface.

The get Event Type method supplies an event's event type information represented by an Event Type instance.
The Event Type supplies event property names and types as well as information about the underlying object to
the event.

The engine may generate artificial events that contain information derived from event streams. A typical ex-
ample for artificial eventsis the events posted for a statement to calculate univariate statistics on an event prop-
erty. The below example shows such a statement and queries the generated events for an average value.

/1 Derive univariate statistics on price for the |ast 100 nmarket data events

String stmt = "select * from Market Dat aBean(synbol =" IBM). w n: | ength(100).stat: uni (' price')";
EPSt at enent priceStatsView = epService. get EPAdmi ni strator().createEQ(stnt);

priceSt at sVi ew. addLi st ener (t estLi stener);

/1 Exanple |istener code
public class MyUpdat elLi stener inplenments UpdatelLi st ener

{
public void update(Event Bean[] newData, EventBean[] ol dDat a)
{
/1 Interrogate events
System out. println("new average price=" + newbData[O0].get("average");
}
}

Composite events are events that aggregate one or more other events. Composite events are typically created by
the engine for statements that join two event streams, and for event patterns in which the causal events are re-
tained and reported in a composite event. The example below shows such an event pattern.

/1 Look for a pattern where AEvent follows BEvent

String pattern = "a=AEvent -> b=BEvent";

EPSt at enent stnt = epService. get EPAdmi ni strator().createPattern(pattern);
st nt . addLi st ener (t est Li st ener);

Esper 1.8.0 15

APl Reference

/| Exanple |istener code
public class MyUpdateLi stener inplenents UpdateLi st ener

{
public voi d update(Event Bean[] newData, EventBean[] ol dDat a)
{
Systemout.println("a event=" + newData[0].get("a").getUnderlying());
Systemout.println("b event=" + newData[0].get("b").getUnderlying());
}
}

Esper 1.8.0

16

Chapter 4. Understanding the Output Model

4.1. Introduction

The Esper output model is continuous. Update listeners to statements receive updated data as soon as the en-
gine processes events for that statement, according to the statement's choice of event streams, views, filters and
output rates.

As outlined in Chapter 3, APl Reference the interface for listenersisnet . esper. cli ent. Updat eLi st ener. Im-
plementations must provide a single updat e method that the engine invokes when results become available:

(Updatel istener w

update(EventBean]] newEvents.
EventBean[] aldEvents)

The engine provides statement results to update listeners by placing resultsin net . esper. event . Event Bean in-
stances. A typical listener implementation queries the Event Bean instances via getter methods to obtain the
statement-generated results.

(EventBean |
t;eﬂ.ﬁlnng properyMame) - Object

getUnderlying() ; Object
getEventType() | EventType

The get method on the Event Bean interface can be used to retrieve result columns by name. The property name
supplied to the get method can also be used to query nested, indexed or array properties of object graphs as dis-
cussed in more detail in Chapter 5, Event Representations.

The get Under | yi ng method on the Event Bean interface alows update listeners to obtain the underlying event
object. For wildcard selects, the underlying event is the event object that was sent into the engine via the
sendEvent method. For joins and select clauses with expressions, the underlying object implements
java.util . Map.

4.2. Insert Stream

In this section we look at the output of a very smple EQL statement. The statement selects an event stream
without using a data window and without applying any filtering, as follows:

select * from Wt hdrawal

This statement selects all wt hdr awal events. Every time the engine processes an event of type W t hdr anal oOr
any sub-type of wt hdrawal , it invokes all update listeners, handing the new event to each of the statement's
listeners.

The term insert stream denotes the new events arriving, and entering a data window or aggregation. The insert
stream in this example is the stream of arriving Withdrawal events, and is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in parenthesisis
the withdrawal amount, an event property that is used in the examples that discuss filtering.

Esper 1.8.0 17

Understanding the Output Model

UpdateListener

Incoming Events New Events Old Events
| |
W1(500) ——» W, | |
| |
| |
Wo(100) ——] W, | |
| |
| |
W3(200) —f W : :
| |
Wa(50) ———= Wa | |
| |
| |
Ws(150) ——m Wi : :
| |
W(300) —— Wi | |
| |

Time

Figure 4.1. Output examplefor a simple statement

The example statement above results in only new events and no old events posted by the engine to the state-
ment's listeners.

4.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next statement applies a
length window onto the Withdrawal event stream. The statement serves to illustrate the concept of data window
and events entering and leaving a data window:

sel ect * from Wthdrawal . wi n: | ength(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal events into
the length window. When the length window is full, the oldest Withdrawal event is pushed out the window.
The engine indicates to listeners all events entering the window as new events, and all events leaving the win-
dow as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events leaving a data
window, or changing aggregation values. In this example, the remove stream is the stream of Withdrawal
events that |eave the length window, and such events are posted to listeners as old events.

The next diagram illustrates how the length window contents change as events arrive and shows the events pos-
ted to an update listener.

Esper 1.8.0 18

Understanding the Output Model

UpdateListener

Incoming Events Length Window - 5 Events New Events Old Events
| |
W1(500) — W, | |
| |
| |
W2(100) — ! We | |
| |
| |
Wa(200) ——pm Ws : :
| |
Wa(50) — gl Wy | |
| |
| |
wow —» - ([e))w]mw]) | ow |
| |
W5(300) ——] G We |[w |[wa][we][w D Wis | W |
| |

Time

Figure 4.2. Output examplefor alength window

As before, al arriving events are posted as new events to listeners. In addition, when event W1 |leaves the
length window on arrival of event Wi, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time period. A time
window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds pass, the time window act-
ively pushes the oldest events out of the window resulting in one or more old events posted to update listeners.

Note EQL supports optional i st reamand r st r eamkeywords on select-clauses and on insert-into clauses. These
instruct the engine to only forward events that enter or leave data windows, or select only current or prior ag-
gregation values, i.e. the insert stream or the remove stream.

4.4. Filters and Where-clauses

Filters to event streams allow filtering events out of a given stream before events enter a data window. The
statement below shows afilter that selects Withdrawal events with an amount value of 200 or more.

select * from Wt hdrawal (anpbunt >=200) . wi n: | engt h(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length window and
are therefore not passed to update listeners. Filters are discussed in more detail in Section 6.4.1, “Filter-based
event streams” and Section 7.3, “Pattern Filter Expressions”.

Esper 1.8.0 19

Understanding the Output Model

UpdateListenar

; Filter: Length Window — 5 Events New Events Old Events
Incoming Events Amount==200 | |
W(B00) g W, | |

| |

| |

W2(100) — X | |
| |

| |

W5(200) — we | |
| |

| |

Wa(50) — o >< | |
| |

| |

Wel150) — pol X | |
| |

| |

We(300) —] We | |
| |

Time

Figure 4.3. Output example for a statement with an event stream filter

The where-clause and having-clause in statements eliminate potential result rows at a later stage in processing,
after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed in more detail in
Section 6.5, “ Specifying Search Conditions: the Where Clause”.

sel ect * from Wthdrawal .w n:|ength(5) where anount >= 200

The where-clause applies to both new events and old events. As the diagram below shows, arriving events enter
the window however only events that pass the where-clause are handed to update listeners. Also, as events
leave the data window, only those events that pass the conditions in the where-clause are posted to listeners as
old events.

Esper 1.8.0 20

Understanding the Output Model

Updatel istener

-)
Incoming Events Length Window - 5 Events Amozlrl:te;ﬁﬂi} New Events Old Events
|
Wi(500) —— | Wi
|
|
Wa(100) —pol X |
|
|
x
oo —w (el) X
|
|
wowo —w - ([mmm]]) X |
|
W;(300) — o G Wi || Ws || Wi || wa || wa D | Ws W
|

Time

Figure 4.4. Output examplefor a statement with where-clause

The where-clause can contain complex conditions while event stream filters are more restrictive in the type of
filters that can be specified. The next statement's where-clause appliesthecei | function of thej ava. | ang. Mat h
Java library class in the where clause. The insert-into clause makes the results of the first statement available to
the second statement:

insert into Wthdrawal Filtered select * from Wthdrawal where Mth. ceil (anbunt) >= 200

select * fromWthdrawal Filtered

4.5. Aggregation

Statements that aggregate events via aggregations functions also post remove stream events as aggregated val-
ues change.

Consider the following statement that aerts when 2 Withdrawal events have been received:

sel ect count(*) as nycount from Wthdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update listeners. The
value of the "mycount" property on that new event is 2. Additionally, when the engine encounters the third
Withdrawal event, it posts an old event to update listeners containing the prior value of the count. The value of
the "mycount” property on that old event isalso 2.

Theistreamor rst reamkeyword can be used to eliminate either new events or old events posted to listeners.
The next statement uses thei st r eamkeyword causing the engine to call the listener only once when the second
Withdrawal event is received:

sel ect istream count(*) as nmycount from Wthdrawal having count(*) = 2

Esper 1.8.0 21

Understanding the Output Model

4.6. Time Windows

In this section we explain the output model of statements employing a time window view and a time batch
view.

4.6.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on the system
time. Time windows enable us to limit the number of events considered by a query, as do length windows.

As apractical example, consider the need to determine all accounts where the average withdrawa amount per
account for the last 4 seconds of withdrawals is greater then 1000. The statement to solve this problem is shown
below.

sel ect account, avg(anount)
fromWthdrawal . win:tine(4 sec)
group by account

havi ng amount > 1000

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume a query
that simply selects the event itself and does not group or filter events.

select * fromWthdrawal .win:tinme(4 sec)

The diagram starts at a given timet and displays the contents of thetimewindow att + 4 andt + 5 seconds
and so on.

UpdateListener

Time Window — 4 seconds
Incoming Events MNew Events Old Events
At t+d At i+E A t+ES At t+3
1
| t1
"
| +2
1+3
) (D] (]| w o ow
w ™ eenld
T —— - J—

+6

E
EE
B

7

— e [R

Figure 4.5. Output examplefor a statement with a time window

The activity asillustrated by the diagram:

Esper 1.8.0 22

Understanding the Output Model

1. Attimet + 4 seconds anevent w arrives and enters the time window. The engine reports the new event
to update listeners.

2. Attimet + 5 seconds an event w arrives and enters the time window. The engine reports the new event
to update listeners.

3. Attimet + 6.5 seconds an event w arrives and enters the time window. The engine reports the new
event to update listeners.

4. Attimet + 8 seconds event w |eaves the time window. The engine reports the event as an old event to
update listeners.

4.6.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update. Time win-
dows contral the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of atime batch view. For the diagram, we assume asimple
query as below:

select * fromWthdrawal .win:tinme_batch(4 sec)

The diagram starts at agiventimet and displays the contents of thetimewindow att + 4andt + 5 seconds
and so on.

UpdateListener

. Time Batch — 4 seconds
Incoming Events New Events Old Events
Att+d At Atted AtH+ES5 ALt+E
[

7y

e w
| 2

W —w W

e — Wi and W,

t+5

&

=7

8 Y A \ /
—I3 W, and Wa

m Wa

Figure 4.6. Output examplefor a statement with a time batch view

The activity asillustrated by the diagram:

1. Attimet + 1 seconds anevent w arrives and enters the batch. No call to inform update listeners occurs.

Esper 1.8.0 23

Understanding the Output Model

2. Attimet + 3 seconds anevent w arrives and enters the batch. No call to inform update listeners occurs.

3. Attimet + 4 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports events w and W to update listeners.

4. Attimet + 6.5 seconds an event W arrives and enters the batch. No call to inform update listeners oc-
curs.

5. Attimet + 8 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports the event W as new datato update listeners. The engine reports the events w and W as old data (prior
batch) to update listeners.

4.7. Event Bean Query Results

The engine posts events to Updat eLi st ener implementations as net . esper. event . Event Bean instances. The
Event Bean represents arow (event) in your continuous query's result set.

Usethei t er at or method on EPSt at enent statements to poll or read data out of statements, if you require read-
based access to statement result sets. Statement iterators also return Event Bean instances.

The Event Bean interface offers property type metadata via the get Event Type method returning an Event Type.
The Event Type provides property name, property type and underlying type information. This information can
be useful to dynamically interrogate query results. The underlying event that an Event Bean represents can be
obtained via the get Under | yi ng method. Please see Chapter 5, Event Representations for more information on
different event underlying objects.

Consider a statement that returns the symbol, count of events per symbol and average price per symbol for tick
events. Our sample statement may declare a fully-qualified Java class name as the event type:
org. sanpl e. St ockTi ckEvent . Assume that this class exists and exposes a synmbol property of type String, and
aprice property of type (Java primitive) double.

sel ect synbol, avg(price) as avgprice, count(*) as nycount
from org. sanpl e. St ockTi ckEvent
group by synbol

The next table summarizes the property names and types as posted by the statement above:

Table4.1. Properties offered by sample statement aggregating price

Name Type Description Java code snippet

synbol javalang.String Value of symbol event property
event Bean. get (" synbol ")

avgpri ce javalang.Double Average price per symbol
event Bean. get ("avgpri ce")

mycount javalang.Long | Number of events per symbol
event Bean. get (" nycount ")

A code snippet out of a possible Updat eLi st ener implementation to this statement may look as below:

String synmbol = (String) newEvents[O].get("synbol");
Doubl e price= (Doubl e) newEvents[O].get("avgprice");

Esper 1.8.0 24

Understanding the Output Model

Long count= (Long) newkEvents[O0].get("mycount");

The engine supplies the boxed j ava. | ang. Doubl e and j ava. | ang. Long types as property values rather then
primitive Javatypes. Thisis because aggregated values can return anul | value to indicate that no datais avail-
able for aggregation. Also, in a select statement that computes expressions, the underlying event objects to
Event Bean instances are of typej ava. uti | . Map.

Consider the next statement that specifies awildcard selecting the same type of event:

select * from org. sanpl e. St ockTi ckEvent where price > 100

The property names and types provided by an Event Bean query result row, as posted by the statement above are
asfollows:

Table 4.2. Properties offered by sample wildcar d-select statement

Name Type Description Java code snippet

synbol javalang.String | Value of symbol event property
event Bean. get ("synbol ")

price double Vaue of price event property
event Bean. get ("price")

As an alternative to querying individual event properties via the get methods, the get Under | yi ng method on
Event Bean returns the underlying object representing the query result. In the sample statement that features a
wildcard-select, the underlying event object is of type or g. sanpl e. St ockTi ckEvent :

St ockTi ckEvent tick = (StockTi ckEvent) newEvents[O0].getUnderlying();

Esper 1.8.0 25

Chapter 5. Event Representations

5.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. An event can have a set of
event properties that supply information about the event. An event also has an underlying Java object type.

In Esper, an event can be represented by any of the following underlying Java objects:

Table5.1. Event Underlying Java Objects

Java Class Description

java. | ang. Obj ect Any Java POJO (plain-old java object) with getter methods
following JavaBean conventions

java.util.Map Map events are key-values pairs

or g. w3c. dom Node XML document object model (DOM)

5.2. Event Properties

Esper expressions can include simple as well as indexed, mapped and nested event properties. The table below
outlines the different types of properties and their syntax in an event expression. This syntax allows statements
to query deep JavaBean objects graphs, XML structures and Map events.

Table5.2. Types of Event Properties

Type Description Syntax Example
Simple A property that has a single value that

may be retrieved. name sensorld
Indexed An indexed property stores an ordered

collection of objects (all of the same name[index] sensor [0]

type) that can be individualy accessed
by an integer-valued, non-negative index
(or subscript).

Mapped A mapped property stores a keyed col-

lection of objects (al of the same type). name(" key") sensor (" light")
Nested A nested property is a property that lives

within another property of an event. name. nest ednane sensor. val ue

Combinations are adso possble For example, a vaid combination could be per-
son. address(' hone').street[0].

Esper 1.8.0 26

Event Representations

5.3. Plain Java Object Events

Plain Java object events are object instances that expose event properties through JavaBean-style getter meth-
ods. Events classes or interfaces do not have to be fully compliant to the JavaBean specification; however for
the Esper engine to obtain event properties, the required JavaBean getter methods must be present.

Esper supports JavaBean-style event classes that extend a superclass or implement one or more interfaces.
Also, Esper event pattern and EQL statements can refer to Javainterface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state change or action
that occurred in the past, the relevant event properties should not be changeable. However thisis not a hard re-
quirement and the Esper engine accepts events that are mutable as well.

Please see Chapter 2, Configuration on options for naming event types represented by Java object event classes.

5.3.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans specification, and
some of which are uniquely supported by Esper:

« Smple properties have a single value that may be retrieved. The underlying property type might be a Java
language primitive (such as int, a simple object (such as a java.lang.String), or a more complex object
whose classis defined either by the Javalanguage, by the application, or by a class library included with the
application.

« Indexed - Anindexed property stores an ordered collection of objects (all of the same type) that can be indi-
vidually accessed by an integer-valued, non-negative index (or subscript). Alternatively, the entire set of
values may be retrieved using an array.

* Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that accepts a String-
valued key a mapped property.

* Nested - A nested property is a property that lives within another Java object which itself is a property of an
event.

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed properties in this ex-
ample return Java objects but could aso return Java language primitive types (such as int or String). The Ad-
dress object and Employee objects can themselves have properties that are nested within them, such as a street-
Name in the Address object or a name of the employee in the Employee object.

public class Enpl oyeeEvent ({
public String getFirstName();
publ i c Address get Address(String type);
publ i c Enpl oyee get Subordi nate(int index);
publ i c Enpl oyee[] get Al | Subordi nates();

}

Smple event properties require a getter-method that returns the property value. In this example, the get Fi r st -
Nane getter method returnsthefi r st Nane event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes an integer-
type key value and returns the property value, such as the get Subor di nat e method. Or a method that returns an
array-type such as the get Subor di nat es getter method, which returns an array of Employee. In an EQL or
event pattern statement, indexed properties are accessed viathe pr opert y[i ndex] syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns the property
value, such as the get Address method. In an EQL or event pattern statement, mapped properties are accessed

Esper 1.8.0 27

Event Representations

viathe property(' key') syntax.

Nested event properties require a getter-method that returns the nesting object. The get Addr ess and get Subor -
di nat e methods are mapped and indexed properties that return a nesting object. In an EQL or event pattern
statement, nested properties are accessed viathe pr opert y. nest edPr oper t y Syntax.

All event pattern and EQL statements allow the use of indexed, mapped and nested properties (or a combina
tion of these) anywhere where one or more event property names are expected. The below example shows dif-
ferent combinations of indexed, mapped and nested propertiesin filters of event pattern expressions.

every Enpl oyeeEvent (firstName=" nyNane')

every Enpl oyeeEvent (address(' hone'). street Nane=' Park Avenue')

every Enpl oyeeEvent (subordi nat e[0] . name="anot her Nane')

every Enpl oyeeEvent (al | Subor di nat es[1] . name="t hat Nane')

every Enpl oyeeEvent (subordi nate[0] . address(' hone'). street Name=' Vlater Street')

Similarly, the syntax can be used in EQL statements in all places where an event property name is expected,
such asin select lists, where-clauses or join criteria.

sel ect firstName, address('work'), subordinate[0].name, subordinate[1].nane
from Enpl oyeeEvent
where address('work').streetName = ' Park Ave'

5.4.java.util.Map Events

Events can also be represented by objects that implement the j ava. uti | . Map interface. Event properties of vap
events are the values in the map accessible through the get method exposed by thej ava. uti | . Map interface.

The engine can processj ava. uti | . Map eventsviathe sendevent (Map map, String event TypeAl i as) method
on the EPruntinme interface. Entries in the Map represent event properties. Keys must be of type
java.util.string for the engine to be able to look up event property names specified by pattern or EQL state-
ments. Values can be of any type. JavaBean-style objects as values in a Map can also be processed by the en-
gine.

In order to use Map events, the event type name and property names and types must be made known to the en-
gine via Configuration. Please see the examplesin Section 2.4.2, “ Events represented by java.util.Map”.

The code snippet below creates and processes a Map event. The example assumes the Car Locat i onUpdat eEvent
event type alias has been configured.

Map event = new HashMap();

event.put("carld", carld);

event. put ("direction", direction);

epRunti me. sendEvent (event, " CarlLocUpdat eEvent");

The Car LocUpdat eEvent can now be used in a statement:

sel ect carld from CarLocUpdateEvent. win:time(1l nmn) where direction = 1

The engine can aso query Java objects as valuesin a Map event via the nested property syntax. Thus Map events
can be used to aggregate multiple datastructures into a single event and query the composite information in a
convenient way. The example below demonstrates a Map event with atransaction and an account object.

Map event = new HashMap();

event. put ("txn", txn);

event . put ("account", account);

epRunti me. sendEvent (event, "TxnEvent");

Esper 1.8.0 28

Event Representations

An example statement could look as follows.

sel ect account.id, account.rate * txn.anount from TxnEvent.w n:time(60 sec) group by account.id

5.5. org. w3c. dom Node XML Events

Events can also be represented as or g. w3c. dom Node instances and send into the engine via the sendEvent
method on EPRunt i me. Please note that configuration is required for alowing the engine to map the event type
aliasto Node element names. See Chapter 2, Configuration.

Esper allows configuring XPath expressions as event properties. Y ou can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.
For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wadc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.

Let'slook at how asample XML document could be queried, given the sample XML below.

<?xm version="1.0" encodi ng="UTF-8""?>
<Sensor >
<| D>urn: epc: 1: 4. 16. 36<I D>
<Cbservati on Cormand="READ PALLET TAGS ONLY">
<I b>00000001<I| D>
<Tag>
<| D>urn: epc: 1: 2. 24. 400<I D>
</ Tag>
<Tag>
<I D>urn: epc: 1: 2. 24. 401<I| D>
</ Tag>
</ Cbservati on>
</ Sensor >

To configure the engine for processing Sensor documents, simply configure a Sensor Event event type alias for
the sensor element name via Configuration. Now the document can be queried as below.

select I D, Cbservation.|D, Observation.Command, Observation. Tag[0], count Tags
from Sensor Event . wi n: ti me(30 sec)

The equivalent XPath expressions to each of the properties are listed below.

* Theequivalent XPath expression to bser verati on. | DiS/ Sensor/ Coser vati on/ | D

¢ Theequivalent XPath expression to Ghser ver at i on. Conmand IS/ Sensor / Chser vat i on/ @onmand

« The equivalent XPath expression to Gbser verati on. Tag[0] iS/ Sensor/ Cbservati on/ Tag[position() =
1]

e The equivaent XPath expression to count Tags iScount (/ Sensor/ Cbser vat i on/ Tag) for returning a count
of tag elements. This assumes the count Tags property has been configured as an XPath property.

By specifying an event property such below:

nest edEl enent . mappedEl enent (' key') . i ndexedEl enent [1]

The equivalent XPath expression is as follows:

Esper 1.8.0 29

Event Representations

/ si mpl eEvent / nest edEl enent / mappedEl enent [@ d=" key'] /i ndexedEl ement [position() = 2]

Esper 1.8.0

Chapter 6. EQL Reference

6.1. EQL Introduction

EQL statements are used to derive and aggregate information from one or more streams of events, and to join
or merge event streams. This section outlines EQL syntax. It aso outlines the built-in views, which are the
building blocks for deriving and aggregating information from event streams.

EQL issimilar to SQL inits use of the sel ect clause and the wher e clause. Where EQL differs most from SQL
isinthe use of tables. EQL replaces tables with the concept of event streams.

EQL statements contain definitions of one or more views. Similar to tables in an SQL statement, views define
the data available for querying and filtering. Some views represent windows over a stream of events. Other
views derive statistics from event properties, group events or handle unique event property values. Views can
be staggered onto each other to build a chain of views. The Esper engine makes sure that views are reused
among EQL statements for efficiency.

The built-in set of viewsis:

1. Views that represent moving event windows. win:length, win:length_batch, win:tinme,
Wi n:time_batch,w n:ext _tinme,ext:sort_w ndow

2. Views for aggregation: st d: uni que, std: groupby, std: | astevent (note: the group-by clause and the
st d: gr oupby view are very similar in function, see view description for differences)

3. Views that derive statistics. std:size, stat:uni, stat:linest, stat:correl, stat:weighted_avg,
stat:nultidi mstat

Esper can be extended by plugging-in custom developed views.

6.2. EQL Syntax

EQL queries are created and stored in the engine, and publish results as events are received by the engine or
timer events occur that match the criteria specified in the query. Events can also be pulled from running EQL
queries.

The select clause in an EQL query specifies the event properties or events to retrieve. The from clause in an
EQL query specifies the event stream definitions and stream names to use. The wher e clause in an EQL query
specifies search conditions that specify which event or event combination to search for. For example, the fol-
lowing statement returns the average price for IBM stock ticks in the last 30 seconds.

sel ect avg(price) from StockTick.w n:tinme(30 sec) where synbol =' | BM

EQL queries follow the below syntax. EQL queries can be simple queries or more complex queries. A simple
select contains only a select clause and a single stream definition. Complex EQL queries can be build that fea-
ture a more elaborate select list utilizing expressions, may join multiple streams, may contain a where clause
with search conditions and so on.

[insert into insert_into_def]

sel ect select_list

fromstreamdef [as nane] [, streamdef [as nane]] [,...]
[where search_conditions]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

Esper 1.8.0 31

EQL Reference

[out put out put _speci fication]
[order by order_by expression_list]

6.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter. Time periods
follow the syntax below.

time-period : [day-part] [hour-part] [minute-part] [seconds-part] [m|liseconds-part]

day-part : nunber ("days" | "day")

hour-part : nunber ("hours" | "hour")

m nute-part : nunber ("mnutes" | "mnute" | "mn")

seconds-part : nunber ("seconds" | "second" | "sec")
m|liseconds-part : nunber ("mlliseconds"” | "mllisecond" | "nsec")

Some examples of time periods are:

10 seconds

10 m nutes 30 seconds

20 sec 100 nsec

1 day 2 hours 20 minutes 15 seconds 110 mlliseconds
0.5 m nutes

6.3. Choosing Event Properties And Events: the Select Clause

The select clauseisrequired in all EQL statements. The select clause can be used to select all properties viathe
wildcard *, or to specify a list of event properties and expressions. The select clause defines the event type
(event property names and types) of the resulting events published by the statement, or pulled from the state-
ment.

The select clause also offers optional i st reamand r st r eam keywords to control how events are posted to Up-
dat eLi st ener instances listening to the statement.

The syntax for the sel ect clause is summarized below.

select [rstream | istreani * | expression_list ...

6.3.1. Choosing all event properties: select *

The syntax for selecting all event propertiesin astream is:

sel ect * from stream def

The following statement selects univariate statistics for the last 30 seconds of IBM stock ticks for price.

sel ect * from StockTi ck(synbol ="IBM).win:time(30 sec).stat:uni('price')

In ajoin statement, using the sel ect * syntax selects event properties that contain the events representing the
joined streams themselves.

The * wildcard and expressions can also be combined in a sel ect clause. The combination selects all event
properties and in addition the computed values as specified by any additional expressions that are part of the
sel ect clause. Here is an example that selects all properties of stock tick events plus a computed product of

Esper 1.8.0 32

EQL Reference

price and volume that the statement names 'pricevolume’:

select *, price * volunme as pricevol ume from StockTi ck(synbol =" 1 BM)

6.3.2. Choosing specific event properties

To chose the particular event propertiesto return:

sel ect event _property [, event_property] [, ...] from stream def

The following statement selects the count and standard deviation properties for the last 100 events of IBM
stock ticks for volume.

sel ect count, stdev from StockTi ck(synbol ='"1BM).w n: | ength(100).stat: uni ('vol urme')

6.3.3. Expressions

The select clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

The following statement selects the volume multiplied by price for atime batch of the last 30 seconds of stock
tick events.

sel ect volunme * price from StockTick.w n:tine_batch(30 sec)

6.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

sel ect [event property | expression] as identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for the event prop-
erty.

sel ect volune * price as vol Price from StockTi ck. w n: | ength(100)

6.3.5. Selecting i streamand rstreamevents

The optional i st reamand r st reamkeywords in the select clause define the event stream posted to listeners to
the statement.

If neither keyword is specified, the engine posts insert stream events viathe newEvent s parameter to the updat e
method of Updat eLi st ener instances listening to the statement. The engine posts remove stream events to the
ol dEvents parameter of the updat e method. The insert stream consists of the events entering the respective
window(s) or stream(s) or aggregations, while the remove stream consists of the events leaving the respective
window(s) or the changed aggregation result. See Chapter 4, Under standing the Output Model for more inform-
ation on insert and remove streams.

By specifying the i st ream keyword you can instruct the engine to only post insert stream events via the
newEvent s parameter to the updat e method on listeners. The engine will then not post any remove stream

Esper 1.8.0 33

EQL Reference

events, and the ol dEvent s parameter is aways anull value.

By specifying the r st ream keyword you can instruct the engine to only post remove stream events via the
newEvent s parameter to the updat e method on listeners. The engine will then not post any insert stream events,
and the ol dEvent s parameter is also always anull value.

The following statement selects only the events that are leaving the 30 second time window.

sel ect rstream* from StockTi ck.wi n:tine(30 sec)

Thei streamand r st r eamkeywords in the select clause are matched by same-name keywords available in the
insert into clause. While the keywords in the select clause control the event stream posted to listeners to the
statement, the same keywords in the insert into clause specify the event stream that the engine makes available
to other statements.

6.4. Specifying Event Streams : the From Clause

The fromclause is required in all EQL statements. It specifies one or more event streams. Each event stream
can optionally be given aname by means of the as syntax.

fromstreamdef [as name] [, streamdef [as nane]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either a filter-based event
stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based and filter-based event
streams are al so supported.

Esper supports joins against relational databases for access to historical or reference data as explained in Sec-
tion 6.13, “Joining Relational Datavia SQL".

6.4.1. Filter-based event streams

For filter-based event streams, the event stream definition stream_def as shown in the from-clause syntax con-
sists of an event type, optional filter expressions and an optional list of views that derive data from a stream.
The syntax for afilter-based event stream is as below:

event _type ([filter_criteria]) [.view spec] [.view spec] [...]

The following EQL statement shows event type, filter criteria and views combined in one statement. It selects
all event properties for the last 100 events of IBM stock ticks for volume. In the example, the event type is the
fully qualified Java class name or g. esper . exanpl e. St ockTi ck. The expression filters for events where the
property synmbol has a value of "IBM". The optiona view specifications for deriving data from the StockTick
events are a length window and a view for computing statistics on volume. The name for the event stream is
"volumeStats'.

select * from
or g. esper. exanpl e. St ockTi ck(synmbol =" I BM). w n: | engt h(100) . stat: uni (' vol ume') as volunmeStats

Esper filters out events in an event stream as defined by filter criteria before it sends events to subsequent
views. Thus, compared to search conditions in a where-clause, filter criteria remove unneeded events early. In
the above example, events with a symbol other then IBM do not enter the time window.

Esper 1.8.0 34

EQL Reference

Specifying an event type

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardliess of the event's properties. The example below is
such afilter.

sel ect * from com nypackage. nyevents. Rfi dEvent

Instead of the fully-qualified Java class name any other event name can be mapped via Configuration to a Java
class, making the resulting statement more readabl e:

select * from Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example | Rf i dReadabl e is an inter-
face class.

select * fromorg.nyorg.rfid.|RfidReadabl e

Specifying filter criteria

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name;

sel ect * from Rfi dEvent (cat egory="Peri shabl e")

All expressions can be used in filters, including static methods that return a boolean value:

select * from Rfi dEvent (M/RFI DLi b. i sl nRange(x, y) or (x < 0 and y < 0))

Filter expressions can be separated via a single comma’, '. The comma represents a logical AND between filter
expressions:

sel ect * from Rfi dEvent (zone=1, category=10)
...is equivalent to...
select * from Rfi dEvent (zone=1 and cat egor y=10)

The following set of operators are highly optimized through indexing and are the preferred means of filtering in
high-volumne event streams:

e equals=

* notequals!=

e cOomparison operators< , > , >=, <=
e ranges

e usethebet ween keyword for a closed range where both endpoints are included
e usethein keyword and round () or square brackets[] to control how endpoints are included
« forinverted ranges use the not keyword and the bet ween or i n keywords
» ligt-of-values checks using the i n keyword or the not i n keywords followed by a comma-separated list of
values

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions that can be
indexed. Indexing filter values to match event properties of incoming events enables the engine to match in-
coming events faster. The above list of operators represents the set of operators that the engine can best convert
into indexes. The use of comma or logical and in filter expressions does not impact optimizations by the engine.

Esper 1.8.0 35

EQL Reference

Filtering Ranges

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates whether an end-
point is included or excluded. The low point and the high-point of the range are separated by the colon : char-
acter.

¢ Open ranges that contain neither endpoint (I ow. hi gh)

e Closed ranges that contain both endpoints [| ow: hi gh] . The equivalent 'between' keyword also defines a
closed range.

« Half-open ranges that contain the low endpoint but not the high endpoint [1 ow: hi gh)

» Half-closed ranges that contain the high endpoint but not the low endpoint (1 ow: hi gh]

The next statement shows afilter specifying arange for x and y values of RFID events. The range includes both
endpoints therefore uses[] hard brackets.

nmypackage. Rfi dEvent (x in [100:200], y in [0:100])

The bet ween keyword is equivalent for closed ranges. The same filter using the bet ween keyword is:

nmypackage. Rf i dEvent (x between 100 and 200, y between 0 and 50)

Thenot keyword can be used to determine if avalue falls outside a given range:

nypackage. Rfi dEvent (x not in [0:100])

The equivaent statement using the bet ween keyword is:

nmypackage. Rfi dEvent (x not between 0 and 100)

Filtering Sets of Values
Thei n keyword for filter criteria determinesif a given value matches any valuein alist of values.
In this example we are interested in RFID events where the category matches any of the given values:

mypackage. Rfi dEvent (category in (' Perishable', 'Container'))

By using thenot i n keywords we can filter events with a property value that does not match any of the values
inalist of values:

nmypackage. Rfi dEvent (category not in ('Household', 'Electrical'))

Filter Limitations

The following restrictions apply to filter criteria:

* Range and comparison operators require the event property to be of a numeric type.
» Aggregation functions are not allowed within filter expressions.
e Theprev previous event function and the pri or prior event function cannot be used in filter expressions.

6.4.2. Pattern-based event streams

Event pattern expressions can also be used to specify one or more event streams in an EQL statement. For pat-

Esper 1.8.0 36

EQL Reference

tern-based event streams, the event stream definition stream_def consists of the keyword pat t er n and a pattern
expression in brackets[]. The syntax for an event stream definition using a pattern expression is below. Asin
filter-based event streams, an optional list of views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view spec] [.view spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade events. The ex-
ample tags stock tick events with the name "tick" and trade events with the name "trade”.

select * frompattern [every tick=StockTi ckEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types. The generated
events resemble a map with "tick" and "trade" keys. For stock tick events, the "tick" key value is the underlying
stock tick event, and the "trade" key value is anull value. For trade events, the "trade" key value is the underly-
ing trade event, and the "tick” key valueisanull value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock tick or trade
events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sun(tick.price) + sum(trade.price) as total
frompattern [every tick=StockTi ckEvent or every trade=TradeEvent].w n:tine(30 sec)

Note that in the statement above ti ckPrice and tradePri ce can each be null values depending on the event
processed. Therefore, an aggregation function such assun(ti ck. price + trade. price)) would aways return
null values as either of the two price properties are always a null value for any event matching the pattern. Use
the coal esce function to handle null values, for example: sum(coal esce(tick.price, 0) + co-
al esce(trade. price, 0)).

6.4.3. Specifying views

Views are used to derive or aggregate data. Views can be staggered onto each other. See the section Sec-
tion 6.16, “Built-in views’ on the views available.

Views can optionally take one or more parameters. These parameters can consist of primitive constants such as
String, boolean or numeric types. Arrays are also supported as a view parameter types.

The below example serves to show views and staggering of views. It uses a car location event that contains in-
formation about the location of acar on ahighway.

The first view st d: gr oupby(' carld') groups car location events by car id. The second view wi n: | engt h(4)
keeps a length window of the 4 last events, with one length window for each car id. The next view
std: groupby({' expressway', ‘'direction', ‘segment'}) groups each event by its expressway, direction
and segment property values. Again, the grouping is done for each car id considering the last 4 events only. The
last view st d: si ze() is used to report the number of events. Thus the below example reports the number of
events per car id and per expressway, direction and segment considering the last 4 events for each car id only.

select * from CarLocEvent. std: groupby('carld).w n:length(4).
std: groupby({' expressway', 'direction', 'segnent'}).std:size()

6.5. Specifying Search Conditions: the Where Clause

Esper 1.8.0 37

EQL Reference

The where clause is an optional clause in EQL statements. Via the where clause event streams can be joined
and events can befiltered.

Comparison operators=, <, >, >=, <= I= <> is null, is not null andlogica combinations via
and and or are supported in the where clause. The where clause can also introduce join conditions as outlined in
Section 6.10, “Joining Event Streams’. Where-clauses can also contain expressions. Some examples are listed
below.

..where fraud.severity = 5 and ambunt > 500

..where (orderltemorderld is null) or (orderltemclass != 10)
...where (orderltemorderld = null) or (orderltemclass <> 10)
..where itenCount / packageCount > 10

6.6. Aggregates and grouping: the Group-by Clause and the
Having Clause

6.6.1. Using aggregate functions

The aggregate functions aresum avg, count, max, min, median, stddev, avedev.YOU Can use aggregate
functions to calculate and summarize data from event properties. For example, to find out the total price for all
stock tick eventsin the last 30 seconds, type:

sel ect sun(price) from StockTi ckEvent.w n:tinme(30 sec)

Here isthe syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to al events in an event stream window or other view, or to one or more
groups of events. From each set of events to which an aggregate function is applied, Esper generates a single
value.

Expr essi on is usually an event property name. However it can also be a constant, function, or any combination
of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the price was
doubled:

sel ect avg(price * 2) from StockTi ckEvent.w n:time(30 seconds)
You can use the optional keyword di sti nct with all aggregate functions to eliminate duplicate values before

the aggregate function is applied. The optional keyword al I which performs the operation on all events is the
default.

The syntax of the aggregation functions and the results they produce are shown in below table.

Table 6.1. Syntax and results of aggregate functions

Aggregate Function Result

sum([all|distinct] expression)
Totals the (distinct) values in the expression, returning a value of | ong,

Esper 1.8.0 38

EQL Reference

Aggregate Function Result
doubl e, float or integer type depending on the expression

avg([all|distinct] expression)
Average of the (distinct) values in the expression, returning a value of

doubl e type

count([all|distinct] expression)
Number of the (distinct) non-null values in the expression, returning a

value of I ong type

count(*)
Number of events, returning avalue of | ong type

max([all|distinct] expression)
Highest (distinct) value in the expression, returning a value of the same

type as the expression itself returns

min([all|distinct] expression)
Lowest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

median([all|distinct] expression)
Median (distinct) value in the expression, returning a value of doubl e
type

stddev([all|distinct] expression)
Standard deviation of the (distinct) values in the expression, returning a
value of doubl e type

avedev([all|distinct] expression)
Mean deviation of the (distinct) values in the expression, returning a
value of doubl e type

Y ou can use aggregation functionsin asel ect clause and in ahavi ng clause. You cannot use aggregate func-
tionsin awher e clause, but you can use the where clause to restrict the events to which the aggregate is applied.
The next query computes the average and sum of the price of stock tick events for the symbol IBM only, for the
last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent . wi n: | engt h(10)
wher e synbol =' | BM

In the above example the length window of 10 elements is not affected by the where-clause, i.e. al events enter
and leave the length window regardless of their symbol. If we only care about the last 10 IBM events, we need
to add filter criteria as below.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent (synbol =" | BM). wi n: | engt h(10)
where synbol =' | BM

Y ou can use aggregate functions with any type of event property or expression, with the following exceptions:

1. Youcanusesum avg, nedian, stddev, avedev with numeric event propertiesonly

Esper ignores any null values returned by the event property or expression on which the aggregate function is
operating, except for the count (*) function, which counts null values as well. All aggregate functions return
null if the data set contains no events, or if all events in the data set contain only null values for the aggregated

Esper 1.8.0 39

EQL Reference

expression.

6.6.2. Organizing statement results into groups: the Group-by clause

The group by clause is optional in al EQL statements. The group by clause divides the output of an EQL
statement into groups. Y ou can group by one or more event property names, or by the result of computed ex-
pressions. When used with aggregate functions, gr oup by retrieves the calculations in each subgroup. Y ou can
usegroup by without aggregate functions, but generally that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in the last 30
seconds:

sel ect synbol, sun{price) from StockTi ckEvent.wi n:time(30 sec) group by synbol

The syntax of the group by clauseis:

group by arregate free_expression [, arregate free_expression] [, ...]

Esper places the following restrictions on expressionsin the gr oup by clause:

1. Expressionsinthegroup by cannot contain aggregate functions
2. Event properties that are used within aggregate functions in the sel ect clause cannot also be used in a
group by expression

Y ou can list more then one expression in the group by clause to nest groups. Once the sets are established with
group by the aggregation functions are applied. This statement posts the median volume for al stock tick
events in the last 30 seconds per symbol and tick data feed. Esper posts one event for each group to statement
listeners:

sel ect synbol, tickDataFeed, nedi an(vol une)
from St ockTi ckEvent.win:ti me(30 sec)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also listed in the
group by clause. The statement thus follows the SQL standard which prescribes that non-aggregated event
propertiesin the sel ect list must match the gr oup by columns.

Esper also supports statements in which one or more event properties in the sel ect list are not listed in the
group by clause. The statement below demonstrates this case. It calcul ates the standard deviation for the last 30
seconds of stock ticks aggregating by symbol and posting for each event the symbol, tickDataFeed and the
standard deviation on price.

sel ect synbol, tickDataFeed, stddev(price) from StockTi ckEvent.w n:tinme(30 sec) group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces one event per
incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the group by clause are not
listed in the sel ect list. Thisis an example that calculates the mean deviation per symbol and ti ckDat aFeed
and posts one event per group with synbol and mean deviation of price in the generated events. Since tick-
DataFeed is not in the posted results, this can potentially be confusing.

sel ect synbol, avedev(price)
from St ockTi ckEvent.wi n: ti me(30 sec)
group by synbol, tickDataFeed

Esper 1.8.0 40

EQL Reference

Expressions are also allowed in the group by list:

sel ect synbol * price, count(*) from StockTi ckEvent.wi n:tinme(30 sec) group by symbol * price

If the group by expression resulted in a null value, the null value becomes its own group. All null values are
aggregated into the same group. If you are using the count (expr essi on) aggregate function which does not
count null values, the count returns zero if only null values are encountered.

Y ou can use awher e clausein a statement with group by. Eventsthat do not satisfy the conditions in the wher e
clause are eliminated before any grouping is done. For example, the statement below posts the number of stock
ticksin the last 30 seconds with avolume larger then 100, posting one event per group (symbol).

sel ect synmbol, count(*) from StockTi ckEvent.win:time(30 sec) where volune > 100 group by symnbo

6.6.3. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng clause sets condi-
tions for the gr oup by clause in the same way wher e sets conditions for the sel ect clause, except wher e cannot
include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total price per symbol
for the last 30 seconds of stock tick events for only those symbols in which the total price exceeds 1000. The
havi ng clause eliminates all symbolswhere the total priceis equal or less then 1000.

sel ect synbol, sun(price)

from St ockTi ckEvent.win:ti me(30 sec)
group by synbo

havi ng sum(price) > 1000

To include more then one condition in the havi ng clause combine the conditions with and, or or not. Thisis
shown in the statement below which selects only groups with a total price greater then 1000 and an average
volume less then 500.

sel ect synbol, sun{price), avg(vol une)

from St ockTi ckEvent . wi n: ti me(30 sec)

group by synbol

havi ng sum(price) > 1000 and avg(vol une) < 500

Esper places the following restrictions on expressionsin the havi ng clause:

1. Any expressionsthat contain aggregate functions must also occur in the sel ect clause

A statement with the havi ng clause should also have a group by clause. If you omit gr oup- by, al the events
not excluded by the wher e clause return as a single group. In that case havi ng acts like awher e except that hav-
i ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The example below
posts events where the price is less then the current running average price of all stock tick eventsin the last 30
seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent . wi n: ti me(30 sec)
havi ng price < avg(price)

Esper 1.8.0 41

EQL Reference

6.6.4. How the stream filter, Where, Group By and Having clauses interact

When you include filters, the wher e condition, the group by clause and the havi ng condition in an EQL state-
ment the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is used). The
filter discards any events not meeting filter criteria.

2. Thewher e clause excludes events that do not meet its search condition.

3. Aggregate functionsin the select list calculate summary values for each group.

4. Thehavi ng clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and havi ng clauses in one statement with a
sel ect Clause containing an aggregate function.

sel ect tickDataFeed, stddev(price)

from St ockTi ckEvent (synbol =' | BM). wi n: | engt h(10)
where vol une > 1000

group by tickDat aFeed

havi ng stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream st ockTi ckEvent . In the example above only
events with symbol IBM enter the length window over the last 10 events, all other events are ssmply discarded.
The where clause removes any events posted by the length window (events entering the window and event
leaving the window) that do not match the condition of volume greater then 1000. Remaining events are ap-
plied to the st ddev standard deviation aggregate function for each tick data feed as specified in the group by
clause. Each ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
passfor ti ckDat aFeed groups with a standard deviation of price greater then 0.8.

6.7. Stabilizing and Limiting Output: the Output Clause

6.7.1. Output Clause Options

Theout put clauseisoptional in Esper and is used to control or stabilize the rate at which events are output. For
example, the following statement batches old and new events and outputs them at the end of every 90 second
interval.

sel ect * from St ockTi ckEvent.w n: | ength(5) output every 90 seconds

Hereisthe syntax for output rate limiting:

output [all | first | last] every nunber [m nutes | seconds | events]

Theal | keyword is the default and specifies that all events in a batch should be output. The batch size can be
specified in terms of time or number of events.

The first keyword specifies that only the first event in an output batch is to be output. Using the first
keyword instructs the engine to output the first matching event as soon as it arrives, and then ignore matching
events for the time interval or number of events specified. After the time interval elapsed, or the number of
matching events has been reached, the next first matching event is output again and the following interval the
engine again ignores matching events.

Thel ast keyword specifies to only output the last event at the end of the given time interval or after the given

Esper 1.8.0 42

EQL Reference

number of matching events have been accumulated.
Thetimeinterval can aso be specified in terms of minutes; the following statement isidentical to the first one.

select * from StockTi ckEvent.wi n: | ength(5) output every 1.5 mnutes

A second way that output can be stabilized is by batching events until a certain number of events have been col-
lected. The next statement only outputs when either 5 (or more) new or 5 (or more) old events have been
batched.

select * from StockTi ckEvent.win:time(30 sec) output every 5 events

Additionally, event output can be further modified by the optional | ast keyword, which causes output of only
the last event to arrive into an output batch.

select * from StockTi ckEvent.win:tinme(30 sec) output |ast every 5 events

Using thefirst keyword you can be notified at the start of the interval. The allows to watch for situations such
as arate falling below athreshold and only be informed every now and again after the specified output interval,
but be informed the moment it first happens.

select * from T TickRate.win:tine(30 seconds) output first every 60 seconds where rate<100

6.7.2. Group By, Having and Output clause interaction

The out put clause interacts in two ways with the gr oup by and havi ng clauses. First, in the out put every n
events case, the number n refers to the number of events arriving into the group by cl ause. That is, if the
group by clause outputs only 1 event per group, or if the arriving events don't satisfy the havi ng clause, then
the actual number of events output by the statement could be fewer than n.

Second, the | ast and al I keywords have special meanings when used in a statement with aggregate functions
and the group by clause. Thel ast keyword specifies that only groups whose aggregate values have been up-
dated with the most recent batch of events should be output. The al I keyword (the default) specifies that the
most recent data for all groups seen so far should be output, whether or not these groups aggregate values have
just been updated.

6.8. Sorting Output: the Order By Clause

Theorder by clauseisoptional in Esper. It is used for ordering output events by their properties, or by expres-
sions involving those properties. For example, the following statement outputs batches of 5 or more stock tick
events that are sorted first by price and then by volume.

sel ect synmbol from StockTi ckEvent.w n:tine(60 sec)
out put every 5 events
order by price, volune

Hereisthe syntax for the or der by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

Esper places the following restrictions on the expressions in the or der by clause:

1. All aggregate functions that appear in the or der by clause must also appear in the sel ect expression.

Esper 1.8.0 43

EQL Reference

Otherwise, any kind of expression that can appear in the sel ect clause, as well as any alias defined in the se-
I ect clause, isalso valid in the order by clause.

6.9. Merging Streams and Continuous Insertion: the Insert Into
Clause

Theinsert into clauseis optiona in Esper. This clause can be specified to make the results of a statement
available as an event stream for use in further statements. The clause can aso be used to merge multiple event
streamsto form a single stream of events.

insert into Conbi nedEvent

sel ect A custonerld as custld, Atinmestanp - B.tinmestanp as | atency
fromEventAwin:tine(30 min) AL EventB.win:tine(30 mn) B

where A.txnld = B.txnld

Theinsert into clausein above statement generates events of type Conbi nedEvent . Each generated Conbi ne-
dEvent event has 2 event properties named "custld" and "latency". The events generated by above statement
can be used in further statements. The below statement uses the generated events.

sel ect custld, sum(l atency)
from Conbi nedEvent . wi n: ti ne(30 m n)
group by custld

Theinsert into clause can consist of just an event type alias, or of an event type alias and 1 or more event
property names. The syntax for thei nsert into clauseisasfollows:

insert [istream| rstrean] into event_type_alias [(property_name [, property_nanme])]

Thei stream(default) and r st r eamkeywords are optional. If neither keyword or the i st r eamkeyword is spe-
cified, the engine supplies the insert stream events generated by the statement. The insert stream consists of the
events entering the respective window(s) or stream(s). If the r st reamkeyword is specified, the engine supplies
the remove stream events generated by the statement. The remove stream consists of the events leaving the re-
spective window(s).

The event _type_al i as is an identifier that names the events generated by the engine. The identifier can be
used in statements to filter and process events of the given name.

The engine also allows listeners to be attached to a statement that contain ani nsert i nto clause.

To merge event streams, simply use the same event _type_al i as identifier in al EQL statements that merge
their result event streams. Make sure to use the same number and names of event properties and event property
types match up.

Esper places the following restrictionson thei nsert i nt o clause:

1. The number of elements in the sel ect clause must match the number of elementsin theinsert into
clause if the clause specifies alist of event property names

2. If the event type dias has aready been defined by a prior statement or configuration, and the event prop-
erty names and types do not match, an exception is thrown at statement creation time.

The example statement below shows the alternative form of thei nsert i nt o clause that explicitly defines the
property namesto use.

insert into Combi nedEvent (custld, |atency)

Esper 1.8.0 44

EQL Reference

sel ect A custonerld, A tinestanp - B.tinestanp

The r st reamkeyword can be useful to indicate to the engine to generate only remove stream events. This can
be useful if we want to trigger actions when events leave a window rather then when events enter a window.
The statement below generates Conbi nedEvent events when EventA and EventB leave the window after 30
minutes (1800 seconds).

insert rstreaminto Conbi nedEvent
sel ect A custonerld as custld, Atinmestanp - B.tinmestanp as | atency
fromEventAwin:time(30 nmin) Al EventB.win:tine(30 nin) B
where A txnld = B.txnld

6.10. Joining Event Streams

Two or more event streams can be part of the f r omclause and thus both streams determine the resulting events.
The where-clause lists the join conditions that Esper uses to relate events in the two or more streams. Reference
and historical data such as stored in your relational database can also be included in joins. Please see Sec-
tion 6.13, “Joining Relational Datavia SQL” for details.

Each point in time that an event arrives to one of the event streams, the two event streams are joined and output
events are produced according to the where-clause.

This example joins 2 event streams. The first event stream consists of fraud warning events for which we keep
the last 30 minutes (1800 seconds). The second stream is withdrawal events for which we consider the last 30
seconds. The streams are joined on account number.

sel ect fraud.account Nunber as accnt Num fraud. warning as warn, W thdraw. anount as anount,
max(fraud. ti mestanp, withdraw tinestanp) as tinestanp, 'w thdraw Fraud' as desc
from net. esper. exanpl e. at m FraudWar ni ngEvent . win: ti me(30 nmin) as fraud,
net . esper. exanpl e. atm Wt hdrawal Event.wi n:ti me(30 sec) as wi thdraw
wher e fraud. account Nunmber = w t hdr aw. account Nunber

Joins can also include one or more pattern statements as the next example shows:

sel ect * from FraudWarni ngEvent.win:tinme(30 nin) as fraud,
pattern [every w=Wt hdrawal Event -> Pl NChangeEvent (acct=w.acct)] as wi thdraw
where fraud. account Nunber = withdraw. w. account Nunber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern consists of every
withdrawal event that is followed by a PIN change event for the same account number. It joins the two event
streams on account number.

6.11. Outer Joins

Esper supports left outer joins, right outer joins and full outer joins between an unlimited number of event
streams. Outer joins can aso join reference and historical data as explained in Section 6.13, “ Joining Relational
Datavia SQL".

If the outer join is aleft outer join, there will be an output event for each event of the stream on the left-hand
side of the clause. For example, in the left outer join shown below we will get output for each event in the
stream RfidEvent, even if the event does not match any event in the event stream OrderList.

sel ect * from net. esper.exanple.rfid. Rfi dEvent.win:tine(30 sec) as rfid

Esper 1.8.0 45

EQL Reference

left outer join
net . esper. exanpl e. rfid. OrderList.w n:|length(10000) as orderli st
on rfid.itemd = orderList.itemd

Similarly, if thejoin is a Right Outer Join, then there will be an output event for each event of the stream on the
right-hand side of the clause. For example, in the right outer join shown below we will get output for each event
in the stream OrderList, even if the event does not match any event in the event stream RfidEvent.

sel ect * from net.esper.exanple.rfid. Rfi dEvent.win:tine(30 sec) as rfid
right outer join
net. esper. exanpl e.rfid. OrderList.wn:|ength(10000) as orderli st
on rfid.itemd = orderList.itemd

For al types of outer joins, if the join condition is not met, the select list is computed with the event properties
of the arrived event while all other event properties are considered to be null.

sel ect * from net. esper.exanple.rfid. Rfi dEvent.win:tine(30 sec) as rfid
full outer join
net . esper. exanpl e.rfid. OrderList.wn:|ength(10000) as orderli st
on rfid.itemd = orderList.itemd

The last type of outer join isafull outer join. In afull outer join, each point in time that an event arrives to one
of the event streams, one or more output events are produced. In the example below, when either an RfidEvent
or an OrderList event arrive, one or more output event is produced.

6.12. Subqueries

A subquery is a sel ect within another statement. Esper supports subqueries in the select-clause and in the
where-clause of EQL statements. Subqueries provide an aternative way to perform operations that would oth-
erwise reguire complex joins. Subgueries can aso make statements more readable then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery, the inner query is
not correlated to the outer query. Here is an example simple subquery within a select-clause:

sel ect assetld, (select zone from ZoneC osed. std: | astevent) as |astC osed from RFl DEvent

If the inner query is dependent on the outer query, we will have a correlated subquery. An example of a correl-
ated subquery is shown below. Notice the where-clause in the inner query, where the condition involves a
stream from the outer query:

select * from Rfi dEvent as RFID where 'Dock 1' =
(sel ect name from Zones. std: uni que(' zoneld') where zoneld = RFID. zonel d)

The example above shows a subquery in the where-clause. The statement selects RFID events in which the
zone name matches a string constant based on zone id. The statement uses the view st d: uni que to guarantee
that only the last event per zoneid is held from processing by the subquery.

The next example is a correlated subquery within a select-clause. In this statement the select-clause retrieves
the zone name by means of a subquery against the Zones set of events correlated by zoneid:

sel ect zoneld, (select nane from Zones. std: uni que(' zonel d')
where zoneld = RFID. zoneld) as nane from RFI DEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns a NULL value as the
subquery result. To limit the number of events returned by a subquery consider using one of the views

Esper 1.8.0 46

EQL Reference

std: | ast event, st d: uni que and st d: gr oupby.

The following restrictions apply to subqueries:

1. Wildcard selection criteria can only be used in subqueries using the exi st s keyword

2. The subquery stream definition must define a data window or other view to limit subquery results, redu-
cing the number of events held for subquery execution

3. Aggregation functions cannot be used in subqueries. Instead, the insert-into clause can be used to provide
aggregation results for use in subqueries

4. Subqueries can only consist of a select-clause, a from-clause and a where-clause. The group-by and hav-
ing-clauses, as well asjoins, outer-joins and output rate limiting are not permitted within subqueries.

Performance of your statement containing one or more subqueries principally depends on two parameters. First,
if your subguery correlates one or more columns in the subquery stream with the enclosing statement's streams
via equals '=', the engine automatically builds the appropriate indexes for fast row retrieval based on the key
values correlated (joined). The second parameter is the number of rows found in the subquery stream and the
complexity of the filter criteria (where-clause), as each row in the subquery stream must evaluate against the
where-clause filter.

6.12.1. The 'exi sts' keyword

Theexi st's condition is considered "to be met" if the subquery returns at least one row. Thenot exi sts condi-
tion is considered true if the subquery returns no rows.

Let'stake alook at asimple example. The following is an EQL statement that uses the exi st s condition:

sel ect assetld from RFI DEvent as RFI D
where exists (select * from Asset. std: uni que(assetld) where assetld = RFID. asset | d)

This select statement will return all RFID events where there is at least one event in Assets unique by asset id
with the same asset id.

6.12.2. The 'in' keyword

The i n subquery condition is true if the value of an expression matches one or more of the values returned by
the subquery. Consequently, the not i n condition istrue if the value of an expression matches none of the val-
ues returned by the subquery.

The next statement demonstrates the use of the i n subquery condition:

sel ect assetld from RFl DEvent as RFID
where zone in (select zone from ZoneUpdate.win:tine(10 m n) where status = 'cl osed')

The above statement demonstrated the i n subquery to select RFID events for which the zone status is in a
closed state.

6.13. Joining Relational Data via SQL

This chapter outlines how reference data and historical datathat are stored in a relational database can be quer-
ied via SQL within EQL statements.

Esper can join and outer join all types of event streams to stored data. In order for such data sources to become
accessible to Esper, some configuration is required. The Section 2.4.5, “Relational Database Access’ explains

Esper 1.8.0 47

EQL Reference

the required configuration for database access in greater detail, and includes information of configuring a query
result cache.

The following restrictions currently apply:

« Only one event stream and one SQL query can be joined; Joins of two or more event streams with an SQL
query are not yet supported.

e Sub-viewson an SQL query are not allowed; That is, one cannot create atime or length window on an SQL
query. However one can usetheinsert i nt o Syntax to make join results available to a further statement.

e Your database software must support JDBC prepared statements that provide statement meta data at com-
pilation time. Most major databases provide this function.

The next sections assume basic knowledge of SQL (Structured Query Language).

6.13.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of the database and
a parameterized SQL query. The syntax to use in the from-clause of an EQL statement is:

sql : dat abase_nane [" paraneterized_sql _query "]

The engine uses the database name identifier to obtain configuration information in order to establish a data-
base connection, as well as settings that control connection creation and removal. Please see Section 2.4.5,
“Relational Database Access’ to configure an engine for database access.

Following the database name is the SQL query to execute. The SQL query can contain one or more substitution
parameters. The SQL query string is placed in single brackets[and]. The SQL query can be placed in either
single quotes (') or double quotes (). The SQL query grammer is passed to your database software unchanged,
allowing you to write any SQL query syntax that your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${ event_property_name} . The engine resolves
event_property_name at statement execution time to the actual event property value supplied by the eventsin
the joined event stream.

The engine determines the type of the SQL query output columns by means of the result set metadata that your
database software returns for the statement. The actual query results are obtained via the get bj ect on
java.sql . Resul t Set .

The sample EQL statement below joins an event stream consisting of Cust oner Cal | Event events with the res-
ults of an SQL query against the database named My Cust oner DB and table Cust oner :

sel ect custld, cust_nane from CustonerCall Event,
sql : MyCustonerDB [' sel ect cust_nanme from Custoner where cust_id = ${custld} ']

The example above assumes that Cust omer Cal | Event supplies an event property named cust |1 d. The SQL
query selects the customer name from the Customer table. The where-clause in the SQL matches the Customer
table column cust _i d with the value of cust1d in each cust oner Cal | Event event. The engine executes the
SQL query for each new Cust oner Cal | Event encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event. Else the engine
generates one output event for each row returned by the SQL query. An outer join as described in the next sec-
tion can be used to control whether the engine should generate output events even when the SQL query returns
NO rows.

The next example adds a time window of 30 seconds to the event stream Cust oner Cal | Event . It also renames

Esper 1.8.0 48

EQL Reference

the selected properties to customerName and customerld to demonstrate how the naming of columnsin an SQL
query can be used in the select clause in the EQL query. And the example uses explicit stream names viathe as

keyword.

sel ect custonerld, customerNane from
Cust oner Cal | Event.win: ti ne(30 sec) as cce,
sql : MyCustonerDB ["sel ect cust_id as custonmerld, cust_nanme as custonmer Nanme from Custoner
where cust_id = ${cce.custld}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events enter the window,
and remove stream (rstream) events as events leave the window. The engine executes the given SQL query for
each cust oner Cal | Event in both the insert stream and the remove stream. As a performance optimization, the
i streamor rstreamkeywords in the select-clause can be used to instruct the engine to only join insert stream
or remove stream events, reducing the number of SQL query executions.

6.13.2. Outer Joins With SQL Queries

Y ou can use outer joins to join data obtained from an SQL query and control when an event is produced. Use a
left outer join, such asin the next statement, if you need an output event for each event regardless of whether or
not the SQL query returns rows. If the SQL query returns no rows, the join result populates null values into the
selected properties.

sel ect custld, custNanme from
Cust onmer Cal | Event as cce
left outer join
sql : MyCustoner DB ["sel ect cust_id, cust_nanme as custNane
from Customer where cust_id = ${cce.custld}"] as cq
on cce.custld = cq.cust_id

The statement above always generates at least one output event for each cust oner Cal | Event, containing all
columns selected by the SQL query, even if the SQL query does not return any rows. Note the on expression
that is required for outer joins. The on acts as an additional filter to rows returned by the SQL query.

6.13.3. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use is to poll or re-
quest data from a database at regular intervals. The next statement is an example that shows a pattern that fires
every 5 seconds to query the NewQrder table for new orders:

insert into NewOrders
sel ect orderld, order Anount from
pattern [every timer:interval (5 sec)],
sql : MyCustoner DB [' sel ect orderld, orderAmpount from NewOrders']

6.13.4. JIDBC Implementation Overview

The engine translates SQL queriesinto JDBC j ava. sql . Prepar edSt at enent Statements by replacing ${ name}
parameters with '? placeholders. It obtains name and type of result columns from the compiled Pr epar ed-
St at ement meta data when the EQL statement is created.

The engine supplies parameters to the compiled statement via the set vj ect method on Pr epar edSt at ement .
The engine uses the get bj ect method on the compiled statement Pr epar edSt at ement to obtain column val-
ues.

Esper 1.8.0 49

EQL Reference

6.14. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement. These func-
tions can appear anywhere where expressions are allowed.

Esper alows static Java library methods as single-row functions, and also features built-in single-row functions.

Esper auto-imports the following Java library packages:

e javalang.*
e javamath.*
* javatext.*
e javautil.*

Thus Java static library methods can be used in al expressions as shown in below example:

sel ect synbol, WMath.round(vol une/ 1000)
from St ockTi ckEvent . wi n: ti me(30 sec)

In general, arbitrary Java class names have to be fully qualified (e.g. java.lang.Math) but Esper provides a
mechanism for user-controlled imports of classes and packages as outlined in Chapter 2, Configuration.

The below table outlines the built-in single-row functions available.

Table 6.2. Syntax and results of single-row functions

Single-row Function Result

max(expressi on, expression [, expression ...]) Returns the highest numeric value among the
2 or more comma-separated expressions.

m n(expression, expression [, expression ...]) Returns the lowest numeric value among the
2 or more comma-separated expressions.

coal esce(expression, expression [, expression ...]) Returnsthefirst non-nul | valueinthelist, or
nul | if thereare no non-nul | values.

case val ue Returns resul t where the first val ue equals
when conpare_val ue then result
[when conmpare_val ue then result ...]
[el se result]

conpar e_val ue.

end
case Returns the r esul t for the first condition that
when condition then result istrue.

[when condition then result ...]
[el se result]

end
prev(expressi on, event_property) Returns a property value of a previous event,
relative to the event order within a data win-
dow

Esper 1.8.0 50

EQL Reference

Single-row Function Result

prior(integer, event property) Returns a property value of a prior event, rel-
ative to the natural order of arrival of events

6.14.1. The M n and max Functions

The i n and max function take two or more parameters that itself can be expressions. The ni n function returns
the lowest numeric value among the 2 or more comma-separated expressions, while the max function returns the
highest numeric value. The return type is the compatible aggregated type of all return values.

The next example shows the max function that has a Doubl e return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from...

The nmi n function returns the lowest value. The statement below uses the function to determine the smaller of
two timestamp values.

sel ect synmbol, mn(ticks.tinmestanp, news.tinestanp) as mnT
from St ockTi ckEvent.win:time(30 sec) as ticks, NewsEvent.win:tine(30 sec) as news
where ticks.synbol = news. synbol

6.14.2. The coal esce Function

The result of the coal esce function is the first expression in alist of expressions that returns a non-null value.
The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo'.

sel ect coal esce(null, '"foo') from...

6.14.3. The case Control Flow Function

The case control flow function has two versions. The first version takes avalue and alist of compare values to
compare against, and returns the result where the first value equals the compare value. The second version
takesalist of conditions and returns the result for the first condition that is true.

Thereturn type of acase expression is the compatible aggregated type of all return values.

The example below shows the first version of a case statement. It has a Stri ng return type and returns the
value 'one’.

sel ect case 1 when 1 then 'one' when 2 then 'two' else 'nore' end from...

The second version of the case function takes alist of conditions. The next example has a Bool ean return type
and returns the boolean value true.

sel ect case when 1>0 then true else false end from...

6.14.4. The previ ous Function

Esper 1.8.0 51

EQL Reference

The pr ev function returns the property value of a previous event. The first parameter denotes the i-th previous
event in the order established by the data window. The second parameter is a property name for which the func-
tion returns the value for the previous event.

This example selects the value of the pri ce property of the 2nd-previous event from the current Trade event.

select prev(2, price) from Trade.w n: | ength(10)

Since the prev function takes the order established by the data window into account, the function works well
with sorted windows. In the following example the statement selects the symbol of the 3 Trade events that had
the largest, second-largest and third-largest volume.

sel ect prev(0, synbol), prev(l, synmbol), prev(2, synbol)
from Trade. ext:sort(vol ume, true, 10)

Thei-th previous event parameter can also be an expression returning an Integer-type value. The next statement
joins the Trade data window with an RankSel ect i onEvent event that provides ar ank property used to ook up
a certain position in the sorted Trade data window:

sel ect prev(rank, synmbol) from Trade. ext:sort(volune, true, 10), RankSel ecti onEvent

And the expression count (*) - 1 alows usto select the oldest event in the length window:

sel ect prev(count(*) - 1, price) from Trade.w n: | ength(100)

The prev function returns anul | value if the data window does not currently hold the i-th previous event. The
example below illustrates this using a time batch window. Here the pr ev function returns a null value for any
events in which the previous event is not in the same batch of events. Note that the pri or function as discussed
below can be used if anull value is not the desired result.

sel ect prev(l, synbol) from Trade.w n:tine_batch(1 nin)

Previous Event per Group

The combination of prev function and group-by view returns the property value for a previous event in the giv-
en group.

Let'slook at an example. Assume we want to obtain the price of the previous event of the same symbol as the
current event.

The statement that follows solves this problem. It declares a group-by view grouping on the symbol property
and atime window of 1 minute. As aresult, when the engine encounters a new symbol value that it hasn't seen
before, it creates a new time window specifically to hold events for that symbol. Consequently, the previous
function returns the previous event within the respective time window for that event's symbol value.

select prev(l, price) as prevPrice from Trade. std: groupby('synbol').win:tinme(1l mn)

In a second example, assume we heed to return, for each event, the current top price per symbol. We can use
the pr ev to obtain the highest price from a sorted data window, and use the group-by view to group by symbol:

sel ect prev(0, price) as topPricePer Synbol
from Trade. std: groupby(' synbol ') .ext:sort('price', false, 1)

Restrictions

Esper 1.8.0 52

EQL Reference

The following restrictions apply to the pr ev functions and its results:

e Thefunction always returnsanul | value for remove stream (old data) events
» The function requires a data window view, or a group-by and data window view, without any additional
sub-views. Datawindow views are: length window, time and time batch window and sorted window

Comparison to the pri or Function

The prev function is similar to the pri or function. The key differences between the two functions are as fol-
lows:

« The prev function returns previous events in the order provided by the data window, while the pri or func-
tion returns prior eventsin the order of arrival as posted by a stream's declared views.

e The prev function requires a data window view while the pri or function does not have any view require-
ments.

e Theprev function returns the previous event grouped by a criteria by combining the st d: gr oupby view and
a datawindow. The pri or function returns prior events posted by the last view regardless of data window
grouping.

* Theprev function returnsanul | value for remove stream events, i.e. for events leaving a data window. The
pri or function does not have this restriction.

6.14.5. The pri or Function

The pri or function returns the property value of a prior event. The first parameter is an integer value that de-
notes the i-th prior event in the natural order of arrival. The second parameter is a property name for which the
function returns the value for the prior event.

This example selects the value of the pri ce property of the 2nd-prior event to the current Trade event.

select prior(2, price) from Trade

Thepri or function can be used on any event stream or view and does not have any specific view requirements.
The function operates on the order of arrival of events by the event stream or view that provides the events.

The next statement uses a time batch window to compute an average volume for 1 minute of Trade events,
posting results every minute. The select-clause employs the pri or function to select the current average and the
average before the current average:

sel ect average, prior(1, average)
from TradeAverages. wi n: ti me_batch(1 min).stat:uni('volunme')

6.15. Operator Reference

Esper arithmatic and logical operator precedence follows Java standard arithmatic and logical operator preced-
ence.

6.15.1. Arithmatic Operators

The below table outlines the arithmatic operators available.

Table 6.3. Syntax and results of arithmatic operators

Esper 1.8.0 53

EQL Reference

Operator Description

+, -
As unary operators they denote a positive or
negative expression. As binary operators they
add or subtract.

*

%

6.15.2. Logical And Comparsion

Operators

Multiplication and division are binary operat-
ors.

Modulo binary operator.

The below table outlines the logical and comparison operators available.

Table 6.4. Syntax and results of logical and comparison operators

Operator Description

NOT
Returns true if the following condition is
false, returnsfaseif itistrue.

OR
Returns true if either component condition is
true, returns false if both are false.

AND
Returns true if both component conditions are
true, returnsfalse if either isfalse.

=1 !=1 <1 > <:1 >=!

6.15.3. Concatenation Operators

The below table outlines the concatenation operators available.

Table 6.5. Syntax and results of concatenation operators

Operator

6.15.4. Binary Operators

The below table outlines the binary operators available.

Comparison.

Description

Concatenates character strings

Esper 1.8.0

EQL Reference

Table 6.6. Syntax and results of binary operators

Operator Description

&
Bitwise AND if both operands are numbers;

conditional AND if both operands are
boolean

Bitwise OR if both operands are numbers;
conditional OR if both operands are boolean

Bitwise exclusive OR (XOR)

6.15.5. Array Definition Operator

The{ and} curly braces are array definition operators following the Java array initialization syntax. Arrays can
be useful to pass to user-defined functions or to select array datain a select clause.

Array definitions consist of zero or more expressions within curly braces. Any type of expression is allowed
within array definitions including constants, arithmatic expressions or event properties. Thisis the syntax of an
array definition:

{ [expression [,expression...]] }

Consider the next statement that returns an event property named act i ons. The engine populates the act i ons
property as an array of j ava. | ang. Stri ng values with a length of 2 elements. The first element of the array
contains the observati on property value and the second element the conmand property value of RFI DEvent
events.

sel ect {observation, conmand} as actions from RFl DEvent

The engine determines the array type based on the types returned by the expressions in the array definiton. For
example, if all expressions in the array definition return integer values then the type of the array is
java.lang. I nteger[]. If the types returned by all expressions are compatible number types, such as integer
and double values, the engine coerces the array element values and returns a suitable type,
java.lang. Doubl e[] in this example. The type of the array returned is obj ect[] if the types of expressions
cannot be coerced or return object values. Null values can also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

sel ect * from RFI DEvent where Filter.nyFilter(zone, {1,2,3})

6.15.6. The 'i n" Keyword

Thei n keyword determinesif a given value matches any valuein alist. The syntax of the keyword is:

test_expression [not] in (expression [,expression...])

The test_expression is any valid expression. The keyword is followed by a list of expressions to test for a

Esper 1.8.0 55

EQL Reference

match. The optional not keyword specifies that the result of the predicate be negated.

The result of an i n expression is of type Bool ean. If the value of test_expression is equal to any expression
from the comma-separated list, the result value is t r ue. Otherwise, the result value is f al se. All expressions
must be of the same type as or a compatible type to test_expression.

The next example shows how thei n keyword can be applied to select certain command types of RFID events:

sel ect * from RFI DEvent where command in (' OBSERVATI ON', ' SIGNAL')

The statement is equivalent to:

sel ect * from RFI DEvent where comand = ' OBSERVATI ON' or synbol = 'SI GNAL'

6.15.7. The 'bet ween' Keyword

Thebet ween keyword specifies arange to test. The syntax of the keyword is:

test _expression [not] between begi n_expression and end_expression

The test_expression is any valid expression and is the expression to test for in the range defined by be-
gin_expression and end_expression. The not keyword specifies that the result of the predicate be negated.

The result of abet ween expression is of type Bool ean. If the value of test_expression is greater then or equal to
the value of begin_expression and less than or equal to the value of end_expression, theresultistrue.

The next example shows how the bet ween keyword can be used to select events with a price between 55 and 60
(inclusive).

select * from StockTi ckEvent where price between 55 and 60

The equivaent expression without bet ween is:

select * from StockTi ckEvent where price >= 55 and price <= 60

And also equivalent to:

sel ect * from StockTi ckEvent where price between 60 and 55

6.15.8. The '1i ke' Keyword

The 1i ke keyword provides standard SQL pattern matching. SQL pattern matching allows you to use' _* to
match any single character and ' % to match an arbitrary number of characters (including zero characters). In
Esper, SQL patterns are case-sensitive by default. The syntax of 1 i ke is:

test _expression [not] |ike pattern_expression [escape string_literal]

The test_expression is any valid expression yielding a String-type or a numeric result. The optiona not
keyword specifies that the result of the predicate be negated. The i ke keyword is followed by any valid stand-
ard SQL pattern_expression yielding a String-typed result. The optiona escape keyword signals the escape
character to escape' _* and' % valuesin the pattern.

The result of a Iike expression is of type Bool ean. If the value of test expression matches the pat-

Esper 1.8.0 56

EQL Reference

tern_expression, theresult valueist r ue. Otherwise, the result valueisf al se.
An examplefor thel i ke keyword is below.

sel ect * from PersonLocati onEvent where nane |ike '%ack%

The escape character can be defined as follows. In this example the where-clause matches events where the suf-
fix property isasingle' _* character.

sel ect * from PersonLocati onEvent where suffix like '! ' escape '!'

6.15.9. The 'regexp' Keyword

Theregexp keyword is aform of pattern matching based on regular expressions implemented through the Java
java. util.regex package. The syntax of regexp is:

test_expression [not] regexp pattern_expression

The test_expression is any valid expression yielding a String-type or a numeric result. The optiona not
keyword specifies that the result of the predicate be negated. The r egexp keyword is followed by any valid reg-
ular expression pattern_expression yielding a String-typed result.

The result of aregexp expression is of type Bool ean. If the value of test_expression matches the regular ex-
pression pattern_expression, the result valueist r ue. Otherwise, the result valueisf al se.

An example for ther egexp keyword is below.

sel ect * from PersonLocati onEvent where nane regexp '*Jack*'

6.16. Built-in views

This chapter outlines the views that are built into Esper. All views can be arbitrarily combined as many of the
examples below show. The section on Chapter 4, Under standing the Output Model provides additional inform-
ation on the relationship of views, filtering and aggregation.

6.16.1. Window views

Length window (wi n: | engt h)

Creates a moving window extending the specified number of elements into the past. The view takes a single nu-
meric parameter that defines the window size:

wi n: | engt h(si ze)
The below example calcul ates univariate statistics on price for the last 5 stock ticks for symbol IBM.

sel ect * from St ockTi ckEvent (synbol =" IBM). w n: Il ength(5).stat:uni('price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. The statistics on priceis calculated only for the last 10 events for each symbol.

sel ect * from St ockTi ckEvent. std: groupby(' synmbol').w n: | ength(10).stat: uni (' price')

Esper 1.8.0 57

EQL Reference

Length window batch (wi n: | engt h_bat ch)

This window view buffers events and rel eases them when a given minimum number of events has been collec-
ted. The view takes the number of eventsto batch as a parameter:

wi n: | engt h_bat ch(si ze)

The next statement buffers events until a minimum of 5 events have collected. Listeners to updates posted by
this view receive updated information only when 5 or more events have collected.

select * from StockTi ckEvent.wi n: | engt h_bat ch(5)

Time window (wi n:tine)

Creates a moving time window extending from the specified time interval into the past based on the system
time. This view takes atime period (see Section 6.2.1, “ Specifying Time Periods’) or a number of seconds as a
parameter:

win:time(tinme period)
wi n:time(nunber of seconds)

For the IBM stock tick eventsin the last 1 second, calculate statistics on price.

select * from StockTi ckEvent (synbol ="' IBM).win:time(l sec).stat:uni('price')

The same statement rewritten to use a parameter supplying number-of-secondsiis:

sel ect * from St ockTi ckEvent (synbol =" IBM).w n:time(1).stat:uni (' price')

The following time windows are equivalent specifications:

win:time(2 mnutes 5 seconds)
win:time(125 sec)
win:tinme(1l25)

Externally-timed window (wi n: ext _ti med)

Similar to the time window, this view is a moving time window extending from the specified time interval into
the past, but based on the millisecond time value supplied by an event property. The view takes two parameters:
the name of the event property to return the long-typed timestamp value, and a time period or a number of
seconds:

win:time(ti mestanp_property_nane, tine_period)
win:time(tinestanp_property_name, nunber_of seconds)
This view holds stock tick events of the last 10 seconds based on the timestamp property in St ockTi ckEvent .

sel ect * from St ockTi ckEvent.w n: ext_tined('tinestanp', 10 seconds)

Time window batch (wi n: ti me_bat ch)

Esper 1.8.0 58

EQL Reference

This window view buffers events and rel eases them every specified time interval in one update. The view takes
atime period or a number of seconds as a parameter.

Wi n:time_batch(tinme_period)
Wi n: ti me_bat ch(nunber _of seconds)

The below example batches events into a 5 second window releasing new batches every 5 seconds. Listenersto
updates posted by this view receive updated information only every 5 seconds.

sel ect * from St ockTi ckEvent.wi n:ti me_batch(5 sec)

6.16.2. Standard view set

Unigue (st d: uni que)

The uni que view is aview that includes only the most recent among events having the same value for the spe-
cified field:

st d: uni que(event _property_nane)

The view acts as a length window of size 1 for each distinct value of the event property. It thus posts as old
events the prior event of the same property value, if any.

The below example creates a view that retains only the last event per symbol.

sel ect * from StockTi ckEvent. std: uni que(' synbol ')

Group By (st d: gr oupby)

This view groups events into sub-views by the value of the specified field. The view takes a single property
name to supply the group-by values, or alist of property names as the synopsis shows:

st d: gr oupby(property_nane)
st d: groupby({property_nanme [, property_name ...] })

This example calculates statistics on price separately for each symbol.

select * from StockTi ckEvent. st d: groupby(' synbol').stat: uni (' price')

The group-by view can also take multiple fields to group by. This example cal culates statistics on price for each
symbol and feed.

select * from StockTi ckEvent. std: groupby({' synbol', 'feed'}).stat:uni (' price')

The order in which the group-by view appears within sub-views of a stream controls the data the engine derives
from events for each group. The next 2 statements demonstrate this using alength window.

This example keeps alength window of 10 events of stock trade events, with a separate length window for each
symbol. The engine calculates statistics on price for the last 10 events for each symbol. During runtime, the en-
gine actually allocates a separate length window for each new symbol arriving.

Esper 1.8.0 59

EQL Reference

select * from StockTi ckEvent. std: groupby(' synbol"').w n: |l ength(10).stat:uni (' price')

By putting the group-by view in position after the length window, we can change the semantics of the query.
The query now returns the statistics on price per symbol for only the last 10 events across al symbols. Here the
engine allocates only one length window for al events.

select * from StockTi ckEvent.wi n: | ength(10).std: groupby(' synbol').stat:uni('price')

We have learned that by placing the group-by view before other views, these other views become part of the
grouped set of views. The engine dynamically allocates a new view instance for each subview, every time it en-
counters a new group key such as a new value for symbol. Therefore, in
std: groupby(' synbol ') . win: 1 ength(10) the engine alocates a new length window for each distinct symbol.
However inwi n: | engt h(10) . st d: gr oupby (' symbol) the engine maintains a single length window.

Multiple group-by views can also be used in the same statement. The statement below groups by symbol and
feed. As the statement declares the time window after the group-by view for symbols, the engine alocates a
new time window per symbol however reports statistics on price per symbol and feed. The query results are
statistics on price per symbol and feed for the last 1 minute of events per symbol (and not per feed).

select * from StockTi ckEvent. std: groupby(' synbol').win:tine(1l m nute)
.std: groupby('feed').stat:uni('price')

Last, we consider the permutation where the time window is declared after the group-by. Here, the query results
are statistics on price per symbol and feed for the last 1 minute of events per symbol and feed.

select * from StockTi ckEvent. std: groupby({' synbol ', 'feed})
.win:tine(l mnute).stat:uni('price')

Size (std: si ze)
This view simply posts the number of events received from a stream or view. The synopsisis simply:

std: size()

The view posts a single long-typed property named si ze. The view posts the prior size as old data, and the cur-
rent size as new data to update listeners of the view. Viatheit er at or method of the statement the size value
can also be polled (read).

When combined with a data window view, the size view reports the current and prior number of eventsin the
datawindow. This example reports the number of tick events within the last 1 minute:

sel ect size from StockTi ckEvent.win:time(l mn).std:size()

The size view is also useful in conjunction with a group-by view to count the number of events per group. The
EQL below returns the number of events per symbol.

sel ect size from StockTi ckEvent. std: groupby(' synbol ') . std: si ze()

When used without a data window, the view simply counts the number of events:

sel ect size from StockTi ckEvent. std: si ze()

All views can be used with pattern statements as well. The next EQL snippet shows a pattern where we look for
tick events followed by trade events for the same symbol. The size view counts the number of occurances of the

Esper 1.8.0 60

EQL Reference

pattern.

sel ect size from pattern[every s=StockTi ckEvent -> TradeEvent (synbol =s. synbol)] . std: si ze()

Last (std: 1 astevent)
This view exposes the last element of its parent view:
std: | astevent ()
The view acts as alength window of size 1. It thus posts as old events the prior event in the stream, if any.
This example statement retains statistics calculated on stock tick price for the symbol IBM.

select * from StockTi ckEvent (synbol ="' I BM). stat:uni (' price').std:lastevent()

6.16.3. Statistics views

Univariate statistics (stat: uni)

Thisview calculates univariate statistics on an event property. The view takes a single event property name as a
parameter. The event property must be of numeric type:

stat:uni (event _property_nane)

Table 6.7. Univariate statistics derived properties

Property Name Description

count Number of values

sum Sum of values

aver age Average of values

vari ance Variance

st dev Sample standard deviation (square root of variance)
st devpa Population standard deviation

The below example selects the standard deviation on price for stock tick events for the last 10 events.

sel ect stdev from StockTi ckEvent.wi n: | ength(10).stat:uni('price')

Regression (stat:linest)

This view calculates regression on two event properties. The view takes two event property hames as paramet-
ers. The event properties must be of numeric type:

stat:linest(event_property_nane_1, event_property_nanme_2)

Esper 1.8.0 61

EQL Reference

Table 6.8. Regression derived properties

Property Name Description
sl ope Slope
yi nt er cept Y Intercept

Calculate dope and y-intercept on price and offer for all eventsin the last 10 seconds.

sel ect slope, yintercept from StockTi ckEvent.w n:tine(10 seconds).stat:linest('price', 'offer")

Correlation (stat: correl)

This view calculates the correlation value on two event properties. The view takes two event property names as
parameters. The event properties must be of numeric type:

stat:correl (event _property_nane_1, event_property_nanme_2)

Table 6.9. Correlation derived properties

Property Name Description

correl Correlation between two event properties

Calculate correlation on price and offer over all stock tick eventsfor IBM.

sel ect * from St ockTi ckEvent (synbol =" IBM).stat:correl ('price', 'offer")

Weighted average (st at : wei ght ed_avg)

This view returns the weighted average given a weight field and a field to compute the average for. The view
takes two event property names as parameters. The event properties must be of numeric type:

stat: wei ghted_avg(event _property_nanme_field, event_property nane_wei ght)

Table 6.10. Weighted average derived properties

Property Name Description

aver age Weighted average

A statement that derives the volume-weighted average price for the last 3 seconds:

sel ect average
from St ockTi ckEvent (synbol =" IBM). wi n:tinme(3 seconds).stat: weighted_avg(' price', 'volune')

Multi-dimensional statistics (stat: nultidi mstats)

This view works similar to the st d: gr oupby views in that it groups information by one or more event proper-

Esper 1.8.0 62

EQL Reference

ties. The view accepts 3 or more parameters: The first parameter to the view defines the univariate statistics
values to derive. The second parameter is the property name to derive data from. The remaining parameters
supply the event property names to use to derive dimensions.

stat:nmul tidi mstats(values_to_derive, property_name_datapoi nt, property_nane_col um)

stat:nmultidi mstats(values_to_derive, property_name_datapoint, property_nanme_col um,
property_nane_r ow)

stat:multidi mstats(values_to_derive, property_name_datapoint, property_nanme_col um,
property_nane_row, property_nane_page)

Table 6.11. Multi-dim derived properties

Property Name Description

cube The cube following the net . esper . vi ew. st at . ol ap. Cube interface

The example below derives the count, average and standard deviation latency of service measurement events
per customer.

sel ect cube from Servi ceMeasurenent.stat: multidimstats({‘count’, ‘average’, ‘stdev'},
'l atency', 'customner')

This example derives the average latency of service measurement events per customer, service and error status
for eventsin the last 30 seconds.

sel ect * from Servi ceMeasurenent. wi n: | engt h(30000).stat: multidi mstats({‘average’},
"latency', 'customer', 'service', 'status')

6.16.4. Extension View Set

Sorted Window View (ext: sort)
This view sorts by values of the specified event properties and keeps only the top events up to the given size.
The syntax to sort on a single event property is as follows.
std: sort(property_name, is_descending, size)
To sort on amultiple event properties the syntax is as follows.
sort({ property_nane, is_descending [, property_name, is_descending ...] }, size)
The view below sorts on price descending keeping the lowest 10 prices and reporting statistics on price.

sel ect * from StockTi ckEvent.ext:sort('price', false, 10).stat:uni('price')

The following example sorts events first by price in descending order, and then by symbol name in ascending
(alphabetical) order, keeping only the 10 events with the highest price (with ties resolved by alphabetical order
of symbal).

select * from StockTi ckEvent.ext:sort({' price', true, 'synbol', false}, 10)

Esper 1.8.0 63

EQL Reference

6.17. User-Defined Functions

A user-defined function can be invoked anywhere as an expression itself or within an expresson. The function
must simply be a public static method that the classloader can resolve at statement creation time. The engine re-
solves the function reference at statement creation time and verifies parameter types.

The example below assumes a class Myd ass that exposes a public static method nyFunct i on accepting 2 para-
meters, and returing a numeric type such as doubl e.

select 3 * MyC ass. nyFunction(price, volune) as nyVal ue
from St ockTick.wi n:tinme(30 sec)

User-defined functions also take array parameters as this example shows. The section on Section 6.15.5, “Array
Definition Operator” outlines in more detail the types of arrays produced.

sel ect * from RFI DEvent where com nmyconpany.rfid. M/Checker.i sl nZone(zone, {10, 20, 30})

Esper 1.8.0 64

Chapter 7. Event Pattern Reference

7.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition. Patterns can
also be time-based.

Pattern expressions can consist of filter expressions combined with pattern operators. Expressions can contain
further nested pattern expressions by including the nested expression(s) in () round brackets.

There are 5 types of operators.

Operators that control pattern sub-expression repetition: every

Logical operators: and, or, not

Temporal operators that operate on event order: - > (followed-by)

Guards are where-conditions that control the lifecycle of sub-expressions. Examplesareti mer: wi t hi n.
Observers observe time events as well as other events. Examplesaretiner:interval andtimer: at .

bk wdNE

7.2. How to use Patterns

7.2.1. Pattern Syntax

Thisis an example pattern expression that matches on every Ser vi ceMeasur enent events in which the value of
thel at ency event property is over 20 seconds, and on every Ser vi ceMeasur enent event in which the success
property isfalse. Either one or the other condition must be true for this pattern to match.

every (spi ke=Servi ceMeasur enent (| at ency>20000) or error=Servi ceMeasur enent (success=f al se))

In the example above, the pattern expression starts with an every operator to indicate that the pattern should
fire for every matching events and not just the first matching event. Within the every operator in round brack-
etsis a nested pattern expression using the or operator. The left hand of the or operator is a filter expression
that filters for events with a high latency value. The right hand of the operator contains