
Esper Reference Documentation

Version: 1.3.0

Table of Contents
Preface .. vi
1. Technology Overview .. 1

1.1. Introduction to CEP and event stream analysis ... 1
1.2. CEP and relational databases .. 1
1.3. The Esper engine for CEP ... 1

2. Configuration .. 3
2.1. Programmatic Configuration ... 3
2.2. Configuration via XML File .. 3
2.3. XML Configuration File ... 3
2.4. Configuration Items .. 4

2.4.1. Events represented by Java Classes ... 4
2.4.1.1. Event type alias to Java class mapping ... 4
2.4.1.2. Non-JavaBean and Legacy Java Event Classes ... 4
2.4.1.3. Specifying Event Properties for Java Classes .. 5
2.4.1.4. Turning off Code Generation ... 6

2.4.2. Events represented by java.util.Map .. 6
2.4.3. Events represented by org.w3c.dom.Node ... 7

2.4.3.1. Schema Resource ... 8
2.4.3.2. XPath Property ... 8

2.4.4. Class and package imports ... 8
2.4.5. Relational Database Access .. 9

2.4.5.1. Connections obtained via DataSource .. 9
2.4.5.2. Connections obtained via DriverManager ... 10
2.4.5.3. Connections-level settings ... 10
2.4.5.4. Connections lifecycle settings .. 10
2.4.5.5. Cache settings .. 11

3. API Reference ... 12
3.1. API Overview .. 12
3.2. Engine Instances .. 12
3.3. The Administrative Interface ... 12
3.4. The Runtime Interface .. 13
3.5. Time-Keeping Events ... 14
3.6. Events Received from the Engine .. 14

4. Event Representations ... 16
4.1. Event Underlying Java Objects ... 16
4.2. Event Properties ... 16
4.3. Plain Java Object Events ... 17

4.3.1. Java Object Event Properties .. 17
4.4. java.util.Map Events ... 18
4.5. org.w3c.dom.Node XML Events ... 19

5. Event Pattern Reference ... 21
5.1. Event Pattern Overview .. 21
5.2. How to use Patterns .. 21

5.2.1. Pattern Syntax ... 21
5.2.2. Subscribing to Pattern Events ... 22
5.2.3. Pulling Data from Patterns ... 22

5.3. Filter Expressions ... 22
5.4. Pattern Operators ... 24

Esper 1.3.0 ii

5.4.1. Every .. 24
5.4.2. And .. 25
5.4.3. Or ... 25
5.4.4. Not ... 25
5.4.5. Followed-by .. 26

5.5. Pattern Guards ... 26
5.5.1. timer:within .. 26

5.6. Pattern Observers ... 27
5.6.1. timer:interval .. 27
5.6.2. timer:at ... 27

6. EQL Reference .. 28
6.1. EQL Introduction ... 28
6.2. EQL Syntax ... 28

6.2.1. Specifying Time Periods .. 29
6.3. Choosing Event Properties And Events: the Select Clause ... 29

6.3.1. Choosing all event properties: select * .. 29
6.3.2. Choosing specific event properties .. 29
6.3.3. Expressions ... 30
6.3.4. Renaming event properties ... 30
6.3.5. Selecting istream and rstream events ... 30

6.4. Specifying Event Streams : the From Clause .. 31
6.4.1. Filter-based event streams .. 31

6.4.1.1. Specifying an event type ... 31
6.4.1.2. Specifying event filter criteria .. 32

6.4.2. Pattern-based event streams ... 32
6.4.3. Specifying views ... 32

6.5. Specifying Search Conditions: the Where Clause ... 33
6.6. Aggregates and grouping: the Group-by Clause and the Having Clause 33

6.6.1. Using aggregate functions .. 33
6.6.2. Organizing statement results into groups: the Group-by clause 35
6.6.3. Selecting groups of events: the Having clause ... 36
6.6.4. How the stream filter, Where, Group By and Having clauses interact 37

6.7. Stabilizing and Limiting Output: the Output Clause .. 37
6.7.1. Output Clause Options ... 37
6.7.2. Group By, Having and Output clause interaction ... 38

6.8. Sorting Output: the Order By Clause ... 39
6.9. Merging Streams and Continuous Insertion: the Insert Into Clause 39
6.10. Joining Event Streams .. 40
6.11. Outer Joins ... 40
6.12. Joining Relational Data via SQL ... 41

6.12.1. Joining SQL Query Results .. 42
6.12.2. Outer Joins With SQL Queries ... 43
6.12.3. Using Patterns to Request (Poll) Data ... 43
6.12.4. JDBC Implementation Overview .. 43

6.13. Single-row Function Reference ... 43
6.13.1. The Min and Max Functions ... 44
6.13.2. The Coalesce Function ... 45
6.13.3. The Case Control Flow Function .. 45

6.14. Operator Reference ... 45
6.14.1. Arithmatic Operators ... 45
6.14.2. Logical And Comparsion Operators .. 46
6.14.3. Concatenation Operators .. 46

Esper - Java Event Stream Processor

Esper 1.3.0 iii

6.14.4. Binary Operators ... 46
6.14.5. The 'in' Keyword ... 47
6.14.6. The 'between' Keyword .. 47
6.14.7. The 'like' Keyword ... 47
6.14.8. The 'regexp' Keyword .. 48

6.15. Build-in views .. 48
6.15.1. Window views .. 48

6.15.1.1. Length window ... 48
6.15.1.2. Time window ... 49
6.15.1.3. Externally-timed window .. 49
6.15.1.4. Time window buffer ... 49

6.15.2. Standard view set ... 49
6.15.2.1. Unique ... 49
6.15.2.2. Group By ... 49
6.15.2.3. Size .. 50
6.15.2.4. Last .. 50

6.15.3. Statistics views .. 50
6.15.3.1. Univariate statistics ... 50
6.15.3.2. Regression .. 50
6.15.3.3. Correlation ... 51
6.15.3.4. Weighted average ... 51
6.15.3.5. Multi-dimensional statistics ... 51

6.15.4. Extension View Set ... 52
6.15.4.1. Sorted Window View .. 52

6.16. User-Defined Functions .. 52
7. Adapters ... 54

7.1. Adapter ... 54
8. Indicators .. 55

8.1. Intro .. 55
8.2. JMX Indicator .. 55

9. Architecture .. 56
9.1. Overview ... 56
9.2. Building and Testing .. 56

10. Examples, Tutorials, Case Studies ... 57
10.1. Examples Overview ... 57
10.2. Market Data Feed Monitor .. 57

10.2.1. Input Events .. 57
10.2.2. Computing Rates Per Feed ... 57
10.2.3. Detecting a Fall-off .. 58
10.2.4. Event generator ... 58

10.3. Transaction 3-Event Challenge .. 58
10.3.1. The Events .. 58
10.3.2. Combined event .. 59
10.3.3. Real time summary data ... 59
10.3.4. Find problems ... 59
10.3.5. Event generator ... 59

10.4. J2EE Self-Service Terminal Management .. 60
10.4.1. Events ... 60
10.4.2. Detecting Customer Check-in Issues ... 60
10.4.3. Absence of Status Events ... 61
10.4.4. Activity Summary Data .. 61
10.4.5. Sample Application for J2EE Application Server ... 61

Esper - Java Event Stream Processor

Esper 1.3.0 iv

10.4.5.1. Running the Example .. 61
10.4.5.2. Building the Example .. 62
10.4.5.3. Running the Event Simulator and Receiver ... 62

10.5. AutoID RFID Reader .. 62
10.6. StockTicker ... 63
10.7. MatchMaker .. 63
10.8. QualityOfService ... 63
10.9. LinearRoad .. 64
10.10. StockTick RSI .. 64

11. References ... 65
11.1. Reference List .. 65

Esper - Java Event Stream Processor

Esper 1.3.0 v

Preface
Analyzing and reacting to information in real-time oftentimes requires the development of custom applications.
Typically these applications must obtain the data to analyze, filter data, derive information and then indicate
this information through some form of presentation or communication. Data may arrive with high frequency re-
quiring high throughput processing. And applications may need to be flexible and react to changes in require-
ments while the data is processed. Esper is an event stream processor that aims to enable a short development
cycle from inception to production for these types of applications.

If you are new to Esper, please follow these steps:

1. Read the tutorials, case studies and solution patterns available on the Esper public web site at ht-

tp://esper.codehaus.org

2. Read Section 1.1, “Introduction to CEP and event stream analysis” if you are new to CEP and ESP
(complex event processing, event stream processing)

3. Read Section 5.1, “Event Pattern Overview” for an overview over event patterns

4. Read Section 6.1, “EQL Introduction” for an introduction to event stream processing via EQL

5. Then glance over the examples Section 10.1, “Examples Overview”

Esper 1.3.0 vi

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze and react to
events. Some typical examples of applications are:

• Business process management and automation (process monitoring, BAM, reporting exceptions)
• Finance (algorithmic trading, fraud detection, risk management)
• Network and application monitoring (intrusion detection, SLA monitoring)
• Sensor network applications (RFID reading, scheduling and control of fabrication lines, air traffic)

What these applications have in common is the requirement to process events (or messages) in real-time or near
real-time. This is sometimes referred to as complex event processing (CEP) and event stream analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the logic required.

• High throughput - applications that process large volumes of messages (between 1,000 to 100k messages
per second)

• Low latency - applications that react in real-time to conditions that occur (from a few milliseconds to a few
seconds)

• Complex computations - applications that detect patterns among events (event correlation), filter events, ag-
gregate time or length windows of events, join event streams, trigger based on absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in which most data is
fairly static and complex queries are less frequent. Also, most databases store all data on disks (except for in-
memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the data 10 times per
second it must fire the query 10 times per second. This does not scale well to hundreds or thousands of queries
per second.

Database triggers can be used to fire in response to database update events. However database triggers tend to
be slow and often cannot easily perform complex condition checking and implement logic to react.

In-memory databases may be better suited to CEP applications then traditional relational database as they gen-
erally have good query performance. Yet they are not optimized to provide immediate, real-time query results
required for CEP and event stream analysis.

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and running quer-
ies against stored data, the Esper engine allows applications to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur that match queries. The execution model is thus con-
tinuous rather then only when a query is submitted.

Esper 1.3.0 1

Esper provides two principal methods or mechanisms to process events: event patterns and event stream quer-
ies.

Esper offers an event pattern language to specify expression-based event pattern matching. Underlying the pat-
tern matching engine is a state machine implementation. This method of event processing matches expected se-
quences of presence or absence of events or combinations of events. It includes time-based correlation of
events.

Esper also offers event stream queries that address the event stream analysis requirements of CEP applications.
Event stream queries provide the windows, aggregation, joining and analysis functions for use with streams of
events. These queries are following the EQL syntax. EQL has been designed for similarity with the SQL query
language but differs from SQL in its use of views rather then tables. Views represent the different operations
needed to structure data in an event stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

Technology Overview

Esper 1.3.0 2

Chapter 2. Configuration
Esper engine configuration is entirely optional. Esper has a very small number of configuration parameters that
can be used to simplify event pattern and EQL statements, and to tune the engine behavior to specific require-
ments. The Esper engine works out-of-the-box without configuration.

2.1. Programmatic Configuration

An instance of net.esper.client.Configuration represents all configuration parameters. The Configura-

tion is used to build an (immutable) EPServiceProvider, which provides the administrative and runtime inter-
faces for an Esper engine instance.

You may obtain a Configuration instance by instantiating it directly and adding or setting values on it. The
Configuration instance is then passed to EPServiceProviderManager to obtain a configured Esper engine.

Configuration configuration = new Configuration();
configuration.addEventTypeAlias("PriceLimit", PriceLimit.class.getName());
configuration.addEventTypeAlias("StockTick", StockTick.class.getName());
configuration.addImport("org.mycompany.mypackage.MyUtility");
configuration.addImport("org.mycompany.util.*");

EPServiceProvider epService = EPServiceProviderManager.getProvider("sample", configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine represented by an
EPServiceProvider is immutable and does not retain any association back to the Configuration.

2.2. Configuration via XML File

An alternative approach to configuration is to specify a configuration in an XML file.

The default name for the XML configuration file is esper.cfg.xml. Esper reads this file from the root of the
CLASSPATH as an application resource via the configure method.

Configuration configuration = new Configuration();
configuration.configure();

The Configuration class can read the XML configuration file from other sources as well. The configure

method accepts URL, File and String filename parameters.

Configuration configuration = new Configuration();
configuration.configure("myengine.esper.cfg.xml");

2.3. XML Configuration File

Here is an example configuration file. The schema for the configuration file can be found in the etc folder and
is named esper-configuration-1-0.

<?xml version="1.0" encoding="UTF-8"?>
<esper-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="esper-configuration-1-0.xsd">
<event-type alias="StockTick" class="net.esper.example.stockticker.event.StockTick"/>
<event-type alias="PriceLimit" class="net.esper.example.stockticker.event.PriceLimit"/>
<auto-import import-name="org.mycompany.mypackage.MyUtility"/>

Esper 1.3.0 3

<auto-import import-name="org.mycompany.util.*"/>
</esper-configuration>

The example above is only a subset of the configuration items available. The next chapters outline the available
configuration in greater detail.

2.4. Configuration Items

2.4.1. Events represented by Java Classes

Event type alias to Java class mapping

This configuration item can be used to allow event pattern statements and EQL statements to use an event type
alias rather then the fully qualified Java class name. Note that Java Interface classes and abstract classes are
also supported as event types via the fully qualified Java class name, and an event type alias can also be defined
for such classes.

The example pattern statement below first shows a pattern that uses the alias StockTick. The second pattern
statement is equivalent but specifies the fully-qualified Java class name.

every StockTick(symbol='IBM')"

every net.esper.example.stockticker.event.StockTick(symbol='IBM')

The event type alias can be listed in the XML configuration file as shown below. The Configuration API can
also be used to programatically specify an event type alias, as shown in an earlier code snippet.

<event-type alias="StockTick" class="net.esper.example.stockticker.event.StockTick"/>

Non-JavaBean and Legacy Java Event Classes

Esper can process Java classes that provide event properties through other means then through JavaBean-style
getter methods. It is not necessary that the method and member variable names in your Java class adhere to the
JavaBean convention - any public methods and public member variables can be exposed as event properties via
the below configuration.

A Java class can optionally be configured with an accessor style attribute. This attribute instructs the engine
how it should expose methods and fields for use as event properties in statements.

Table 2.1. Accessor Styles

Style Name Description

javabean As the default setting, the engine exposes an event property
for each public method following the JavaBean getter-method
conventions

public The engine exposes an event property for each public method
and public member variable of the given class

explicit The engine exposes an event property only for the explicitly
configured public methods and public member variables

Configuration

Esper 1.3.0 4

Using the public setting for the accessor-style attribute instructs the engine to expose an event property for
each public method and public member variable of a Java class. The engine assigns event property names of the
same name as the name of the method or member variable in the Java class.

For example, assuming the class MyLegacyEvent exposes a method named readValue and a member variable
named myField, we can then use properties as shown.

select readValue, myField from MyLegacyEvent

Using the explicit setting for the accessor-style attribute requires that event properties are declared via con-
figuration. This is outlined in the next chapter.

When configuring an engine instance from an XML configuration file, the XML snippet below demonstrates
the use of the legacy-type element and the accessor-style attribute.

<event-type alias="MyLegacyEvent" class="com.mycompany.mypackage.MyLegacyEventClass">
<legacy-type accessor-style="public"/>

</event-type>

When configuring an engine instance via Configuration API, the sample code below shows how to set the ac-
cessor style.

Configuration configuration = new Configuration();
ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();
legacyDef.setAccessorStyle(ConfigurationEventTypeLegacy.AccessorStyle.PUBLIC);
config.addEventTypeAlias("MyLegacyEvent", MyLegacyEventClass.class.getName(), legacyDef);

EPServiceProvider epService = EPServiceProviderManager.getProvider("sample", configuration);

Specifying Event Properties for Java Classes

Sometimes it may be convenient to use event property names in pattern and EQL statements that are backed up
by a given public method or member variable (field) in a Java class. And it can be useful to declare multiple
event properties that each map to the same method or member variable.

We can configure properties of events via method-property and field-property elements, as the next ex-
ample shows.

<event-type alias="StockTick" class="net.esper.example.stockticker.event.StockTickEvent">
<legacy-type accessor-style="javabean" code-generation="enabled">

<method-property name="price" accessor-method="getCurrentPrice" />
<field-property name="volume" accessor-field="volumeField" />

</legacy-type>
</event-type>

The XML configuration snippet above declared an event property named price backed by a getter-method
named getCurrentPrice, and a second event property named volume that is backed by a public member vari-
able named volumeField. Thus the price and volume properties can be used in a statement:

select avg(price * volume) from StockTick

As with all configuration options, the API can also be used:

Configuration configuration = new Configuration();
ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();
legacyDef.addMethodProperty("price", "getCurrentPrice");
legacyDef.addFieldProperty("volume", "volumeField");
config.addEventTypeAlias("StockTick", StockTickEvent.class.getName(), legacyDef);

Configuration

Esper 1.3.0 5

Turning off Code Generation

Esper employes the CGLIB library for very fast read access to event property values. For certain legacy Java
classes it may be desirable to disable the use of this library and instead use Java reflection to obtain event prop-
erty values from event objects.

In the XML configuration, the optional code-generation attribute in the legacy-type section can be set to
disabled as shown next.

<event-type alias="MyLegacyEvent" class="com.mycompany.package.MyLegacyEventClass">
<legacy-type accessor-style="javabean" code-generation="disabled" />

</event-type>

The sample below shows how to configure this option via the API.

Configuration configuration = new Configuration();
ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();
legacyDef.setCodeGeneration(ConfigurationEventTypeLegacy.CodeGeneration.DISABLED);
config.addEventTypeAlias("MyLegacyEvent", MyLegacyEventClass.class.getName(), legacyDef);

2.4.2. Events represented by java.util.Map

The engine can process java.util.Map events via the sendEvent(Map map, String eventTypeAlias) method
on the EPRuntime interface. Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property names in pattern or EQL statements.
Values can be of any type. JavaBean-style objects as values in a Map can also be processed by the engine.
Please see the Chapter 4, Event Representations section for details on how to use Map events with the engine.

Via configuration we provide an event type alias name for Map events for use in statements, and the event prop-
erty names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event named MyMapEvent.

<event-type alias="MyMapEvent">
<java-util-map>
<map-property name="carId" class="int"/>
<map-property name="carType" class="string"/>
<map-property name="assembly" class="com.mycompany.Assembly"/>

</java-util-map>
</event-type>

This configuration defines the carId property of MyMapEvent events to be of type int, and the carType prop-
erty to be of type java.util.String. The assembly property of the Map event will contain instances of
com.mycompany.Assembly for the engine to query.

The valid list of values for the type definition via the class attribute is:

• string or java.lang.String
• char or java.lang.Character
• byte or java.lang.Byte
• short or java.lang.Short
• int or java.lang.Integer
• long or java.lang.Long
• float or java.lang.Float
• double or java.lang.Double
• boolean or java.lang.Boolean

Configuration

Esper 1.3.0 6

• Any fully-qualified Java class name that can be resolved by the engine via Class.forName

You can also use the configuration API to configure Map event types, as the short code snippet below demon-
strates.

Properties properties = new Properties();
properties.put("carId", "int");
properties.put("carType", "string");
properties.put("assembly", Assembly.class.getName());

Configuration configuration = new Configuration();
configuration.addEventTypeAlias("MyMapEvent", properties);

Finally, here is a sample EQL statement that uses the configured MyMapEvent map event. This statement uses
the chassisTag and numParts properties of Assembly objects in each map.

select carType, assembly.chassisTag, count(assembly.numParts) from MyMapEvent.win:time(60 sec)

2.4.3. Events represented by org.w3c.dom.Node

Via this configuration item the Esper engine can natively process org.w3c.dom.Node instances, i.e. XML docu-
ment object model (DOM) nodes. Please see the Chapter 4, Event Representations section for details on how to
use Node events with the engine.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.

For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against org.w3c.dom.Node

events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphs or java.util.Map events.

In the simplest form, the Esper engine only requires a configuration entry containing the root element name and
the event type alias in order to process org.w3c.dom.Node events:

<event-type alias="MyXMLNodeEvent">
<xml-dom root-element-name="myevent" />

</event-type>

You can also use the configuration API to configure XML event types, as the short example below demon-
strates. In fact, all configuration options available through XML configuration can also be provided via setter
methods on the ConfigurationEventTypeXMLDOM class.

Configuration configuration = new Configuration();
ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();
desc.setRootElementName("myevent");
configuration.addEventTypeAlias("MyXMLNodeEvent", desc);

The next example presents all relevant configuration options in a sample configuration entry.

<event-type alias="AutoIdRFIDEvent">
<xml-dom root-element-name="Sensor" schema-resource="data/AutoIdPmlCore.xsd"

default-namespace="urn:autoid:specification:interchange:PMLCore:xml:schema:1">
<namespace-prefix prefix="pmlcore"

namespace="urn:autoid:specification:interchange:PMLCore:xml:schema:1"/>
<xpath-property property-name="countTags"

xpath="count(/pmlcore:Sensor/pmlcore:Observation/pmlcore:Tag)" type="number"/>

Configuration

Esper 1.3.0 7

</xml-dom>
</event-type>

This example configures an event property named countTags whose value is computed by an XPath expres-
sion. The namespace prefixes and default namespace are for use with XPath expressions and must also be made
known to the engine in order for the engine to compile XPath expressions. Via the schema-resource attribute
we instruct the engine to load a schema file.

Here is an example EQL statement using the configured event type named AutoIdRFIDEvent.

select ID, countTags from AutoIdRFIDEvent.win:time(30 sec)

Schema Resource

The schema-resource attribute takes a schema resource URL or classpath-relative filename. The engine at-
tempts to resolve the schema resource as an URL. If the schema resource name is not a valid URL, the engine
attempts to resolve the resource from classpath via the ClassLoader.getResource method using the thread
context class loader. If the name could not be resolved, the engine uses the Configuration class classloader.

By configuring a schema file for the engine to load, the engine performs these additional services:

• Validates the event properties in a statement, ensuring the event property name matches an attribute or ele-
ment in the XML

• Determines the type of the event property allowing event properties to be used in type-sensitive expressions
such as expressions involving arithmatic (Note: XPath properties are also typed)

• Matches event property names to either element names or attributes

If no schema resource is specified, none of the event properties specified in statements are validated at state-
ment creation time and their type defaults to java.lang.String. Also, attributes are not supported if no schema
resource is specified and must thus be declared via XPath expression.

XPath Property

The xpath-property element adds event properties to the event type that are computed via an XPath expres-
sion. In order for the XPath expression to compile, be sure to specify the default-namespace attribute and use
the namespace-prefix to declare namespace prefixes.

XPath expression properties are strongly typed. The type attribute allows the following values. These values
correspond to those declared by javax.xml.xpath.XPathConstants.

• number (Note: resolves to a double)
• string
• boolean

2.4.4. Class and package imports

Esper allows invocations of static Java library functions as outlined in Section 6.13, “Single-row Function Ref-
erence”. This configuration item can be set to allow a partial rather than a fully qualified class name in such in-
vocations. The imports work in the same way as in Java files, so both packages and classes can be imported.

select Math.max(priceOne, PriceTwo)
// via configuration equivalent to
select java.lang.Math.max(priceOne, priceTwo)

Configuration

Esper 1.3.0 8

Esper auto-imports the following Java library packages if no other configuration is supplied. This list is re-
placed with any configuration specified in a configuration file or through the API.

• java.lang.*
• java.math.*
• java.text.*
• java.util.*

In an XML configuration file the auto-import configuration may look as below. Note that all configuration op-
tions are available through the Configuration API as well.

<auto-import import-name="com.mycompany.mypackage.*"/>
<auto-import import-name="com.mycompany.myapp.MyUtilityClass"/>

2.4.5. Relational Database Access

Esper has the capability to join event streams against historical data sources, such as a relational database. This
section describes the configuration entries that the engine requires to access data stored in your database. Please
see Section 6.12, “Joining Relational Data via SQL” for information on the use of EQL queries that include his-
torical data sources.

EQL queries that poll data from a relational database specify the name of the database as part of the EQL state-
ment. The engine uses the configuration information described here to resolve the database name in the state-
ment to database settings. The required and optional database settings are summarized below.

• Database connections can be obtained via JDBC javax.xml.DataSource or alternatively via
java.sql.DriverManager. Either one of these methods to obtain new database connections is a required
configuration.

• Optionally, JDBC connection-level settings such as auto-commit, transaction isolation level, read-only and
the catalog name can be defined.

• Optionally, a connection lifecycle can be set to indicate to the engine whether the engine must retain con-
nections or must obtain a new connection for each lookup.

• Optionally, define a cache policy to allow the engine to retrieve data from a query cache, reducing the num-
ber of query executions.

Some of the settings can have important performance implications that need to be carefully considered in rela-
tionship to your database software, JDBC driver and runtime environment. This section attempts to outline such
implications where appropriate.

The sample XML configuration file in the "etc" folder can be used as a template for configuring database set-
tings. All settings are also available by means of the configuration API through the classes Configuration and
ConfigurationDBRef.

Connections obtained via DataSource

The snippet of XML below configures a database named mydb1 to obtain connections via a
javax.sql.DataSource. The datasource-connection element instructs the engine to obtain new connections
to the database mydb1 by performing a lookup via javax.naming.InitialContext for the given object lookup
name. Optional environment properties for the InitialContext are also shown in the example.

<database-reference name="mydb1">
<datasource-connection context-lookup-name="java:comp/env/jdbc/mydb">
<env-property name="java.naming.factory.initial" value ="com.myclass.CtxFactory"/>
<env-property name="java.naming.provider.url" value ="iiop://localhost:1050"/>

</datasource-connection>

Configuration

Esper 1.3.0 9

</database-reference>

To help you better understand how the engine uses this information to obtain connections, we have included the
logic below.

if (envProperties.size() > 0) {
initialContext = new InitialContext(envProperties);

}
else {

initialContext = new InitialContext();
}
DataSource dataSource = (DataSource) initialContext.lookup(lookupName);
Connection connection = dataSource.getConnection();

Connections obtained via DriverManager

The next snippet of XML configures a database named mydb2 to obtain connections via
java.sql.DriverManager. The drivermanager-connection element instructs the engine to obtain new con-
nections to the database mydb2 by means of Class.forName and DriverManager.getConnection using the class
name, URL and optional username, password and connection arguments.

<database-reference name="mydb2">
<drivermanager-connection class-name="my.sql.Driver"

url="jdbc:mysql://localhost/test?user=root&password=mypassword"
user="myuser" password="mypassword">

<connection-arg name="user" value ="myuser"/>
<connection-arg name="password" value ="mypassword"/>
<connection-arg name="somearg" value ="someargvalue"/>

</drivermanager-connection>
</database-reference>

The username and password are shown in multiple places in the XML only as an example. Please check with
your database software on the required information in URL and connection arguments.

Connections-level settings

Additional connection-level settings can optionally be provided to the engine which the engine will apply to
new connections. When the engine obtains a new connection, it applies only those settings to the connection
that are explicitly configured. The engine leaves all other connection settings at default values.

The below XML is a sample of all available configuration settings. Please refer to the Java API JavaDocs for
java.sql.Connection for more information to each option or check the documentation of your JDBC driver
and database software.

<database-reference name="mydb2">
... configure data source or driver manager settings...

<connection-settings auto-commit="true" catalog="mycatalog"
read-only="true" transaction-isolation="1" />

</database-reference>

The read-only setting can be used to indicate to your database engine that SQL statements are read-only. The
transaction-isolation and auto-commit help you database software perform the right level of locking and
lock release. Consider setting these values to reduce transactional overhead in your database queries.

Connections lifecycle settings

By default the engine retains a separate database connection for each started EQL statement. However, it is

Configuration

Esper 1.3.0 10

possible to override this behavior and require the engine to obtain a new database connection for each lookup,
and to close that database connection after the lookup is completed. This often makes sense when you have a
large number of EQL statements and require pooling of connections via a connection pool. If your runtime en-
vironment includes an application server, the connection pool may be exposed as a DataSource.

The XML for this option is below. The connection lifecycle allows the following values: pooled and retain.

<database-reference name="mydb2">
... configure data source or driver manager settings...

<connection-lifecycle value="pooled"/>
</database-reference>

Cache settings

Cache settings can dramatically reduce the number of database queries that the engine executes for EQL state-
ments. If no cache setting is specified, the engine does not cache query results and executes a separate database
query for every event.

Caches store the results of database queries and make these results available to subsequent queries using the ex-
act same query parameters as the query for which the result was stored. If your query returns one or more rows,
the cache keep the result rows of the query keyed to the parameters of the query. If your query returns no rows,
the cache also keeps the empty result. Query results are held by a cache until the cache entry is evicted. The
strategies available for evicting cached query results are listed next.

LRU Cache

The least-recently-used (LRU) cache is configured by a maximum size. The cache discards the least recently
used query results first once the cache reaches the maximum size.

The XML configuration entry for a LRU cache is as below. This entry configures an LRU cache holding up to
1000 query results.

<database-reference name="mydb">
... configure data source or driver manager settings...

<lru-cache size="1000"/>
</database-reference>

Expiry-time Cache

The expiry time cache is configured by a maximum age in seconds and a purge interval. The cache discards (on
the get operation) any query results that are older then the maximum age so that stale data is not used. If the
cache is not empty, then every purge interval number of seconds the engine purges any expired entries from the
cache.

The XML configuration entry for an expiry-time cache is as follows. The example configures an expiry time
cache in which prior query results are valid for 60 seconds and which the engine inspects every 2 minutes to re-
move query results older then 60 seconds.

<database-reference name="mydb">
... configure data source or driver manager settings...

<expiry-time-cache max-age-seconds="60" purge-interval-seconds="120"/>
</database-reference>

Configuration

Esper 1.3.0 11

Chapter 3. API Reference

3.1. API Overview

Esper has 2 primary interfaces that this section outlines: The administrative interface and the runtime interface.

Use Esper's administrative interface to create event patterns and EQL statements as discussed in Section 5.1,
“Event Pattern Overview” and Section 6.1, “EQL Introduction”.

Use Esper's runtime interface to send events into the engine, emit events and get statistics for an engine in-
stance.

The JavaDoc documentation is also a great source for API information.

3.2. Engine Instances

Each instance of an Esper engine is completely independent of other engine instances and has its own adminis-
trative and runtime interface.

An instance of the Esper engine is obtained via static methods on the EPServiceProviderManager class. The
getDefaultProvider method and the getProvider(String URI) methods return an instance of the Esper en-
gine. The latter can be used to obtain multiple instances of the engine for different URI values. The EPService-

ProviderManager determines if the URI matches all prior URI values and returns the same engine instance for
the same URI value. If the URI has not been seen before, it creates a new engine instance.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the default engine in-
stance return the same instance.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

This code snippet gets an Esper engine for URI RFIDProcessor1. Subsequent calls to get an engine with the
same URI return the same instance.

EPServiceProvider epService = EPServiceProviderManager.getProvider("RFIDProcessor1");

An existing Esper engine instance can be reset via the initialize method on the EPServiceProvider instance.
This stops and removes all statements in the Engine.

3.3. The Administrative Interface

Create event pattern expression and EQL statements via the administrative interface EPAdministrator.

This code snippet gets an Esper engine then creates an event pattern and an EQL statement.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();
EPAdministrator admin = epService.getEPAdministrator();

EPStatement 10secRecurTrigger = admin.createPattern(
"every timer:at(*, *, *, *, *, */10)");

EPStatement countStmt = admin.createEQL(
"select count(*) from MarketDataBean.win:time(60 sec)");

Esper 1.3.0 12

Note that event pattern expressions can also occur within EQL statements. This is outlined in more detail in
Section 6.4.2, “Pattern-based event streams”.

The createPattern and createEQL methods return EPStatement instances. Statements are automatically star-
ted and active when created. A statement can also be stopped and started again via the stop and start methods
shown in the code snippet below.

countStmt.stop();
countStmt.start();

We can subscribe to updates posted by a statement via the addListener and removeListener methods the EP-

Statement statement. We need to provide an implementation of the UpdateListener interface to the statement.

UpdateListener myListener = new MyUpdateListener();
countStmt.addListener(myListener);

EQL statements and event patterns publish old data and new data to registered UpdateListener listeners. New
data published by statements is the events representing the new values of derived data held by the statement.
Old data published by statements constists of the events representing the prior values of derived data held by
the statement.

Subscribing to events posted by a statement is following a push model. The engine pushes data to listeners
when events are received that cause data to change or patterns to match. Alternatively, statements can also
serve up data in a pull model via the iterator method. This can come in handy if we are not interested in all
new updates, but only want to perform a frequent poll for the latest data. For example, an event pattern that
fires every 5 seconds could be used to pull data from an EQL statement. The code snippet below demonstrates
some pull code.

Iterator<EventBean> eventIter = countStmt.iterator();
for (EventBean event : eventIter) {

// .. do something ..
}

This is a second example:

double averagePrice = (Double) eqlStatement.iterator().next().get("average");

Esper places the following restrictions on the pull API and usage of the iterator method:

1. EQL statements joining multiple event streams do not support the pull API

3.4. The Runtime Interface

The EPRuntime interface is used to send events for processing into an Esper engine, and to emit Events from an
engine instance to the outside world.

The below code snippet shows how to send a Java object event to the engine. Note that the sendEvent method
is overloaded. As events can take on different representation classes in Java, the sendEvent takes parameters to
reflect the different types of events that can be send into the engine. The Chapter 4, Event Representations sec-
tion explains the types of events accepted.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();
EPRuntime runtime = epService.getEPRuntime();

API Reference

Esper 1.3.0 13

// Send an example event containing stock market data
runtime.sendEvent(new MarketDataBean('IBM', 75.0));

Another important method in the runtime interface is the route method. This method is designed for use by Up-

dateListener implementations that need to send events into an engine instance.

The emit and addEmittedListener methods can be used to emit events from a runtime to a registered set of
one or more emitted event listeners. This mechanism is available as a service to enable channel-based publish-
subscribe of events emitted from an engine instance via the emit method. Emitting events is not integrated with
EQL and is available only via the EPRuntime interface. Events are emitted on an event channel identified by a
name. Listeners are implementations of the EmittedListener interface. Via the addEmittedListener method a
listener can be added to the specified event channel. The lister receives only those events posted to that channel.
The channel parameter to addEmittedListener also allows null values. If a null channel value is specified, the
listeners receives emitted events posted on any channel.

3.5. Time-Keeping Events

Special events are provided that can be used to control the time-keeping of an engine instance. There are two
models for an engine to keep track of time. Internal clocking is when the engine instance relies on the
java.util.Timer class for time tick events. External clocking can be used to supply time ticks to the engine.
The latter is useful for testing time-based event sequences or for synchronizing the engine with an external time
source.

By default, the Esper engine uses internal time ticks. This behavior can be changed by sending a timer control
event to the engine as shown below.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();
EPRuntime runtime = epService.getEPRuntime();
// switch to external clocking
runtime.sendEvent(new TimerControlEvent(TimerControlEvent.ClockType.CLOCK_EXTERNAL));

// send a time tick
long timeInMillis = System.currentTimeMillis(); // Or get the time somewhere else
runtime.sendEvent(new CurrentTimeEvent(timeInMillis));

3.6. Events Received from the Engine

The Esper engine posts events to registered UpdateListener instances ('push' method for receiving events). For
many statements events can also be pulled from statements via the iterator method. Both pull and push sup-
ply EventBean instances representing the events generated by the engine or events supplied to the engine. Each
EventBean instance represents an event, with each event being either an artificial event, composite event or an
event supplied to the engine via its runtime interface.

The getEventType method supplies an event's event type information represented by an EventType instance.
The EventType supplies event property names and types as well as information about the underlying object to
the event.

The engine may generate artificial events that contain information derived from event streams. A typical ex-
ample for artificial events is the events posted for a statement to calculate univariate statistics on an event prop-
erty. The below example shows such a statement and queries the generated events for an average value.

// Derive univariate statistics on price for the last 100 market data events
String stmt = "select * from MarketDataBean(symbol='IBM').win:length(100).stat:uni('price')";

API Reference

Esper 1.3.0 14

EPStatement priceStatsView = epService.getEPAdministrator().createEQL(stmt);
priceStatsView.addListener(testListener);

// Example listener code
public class MyUpdateListener implements UpdateListener
{

public void update(EventBean[] newData, EventBean[] oldData)
{

// Interrogate events
System.out.println("new average price=" + newData[0].get("average");
}

}

Composite events are events that aggregate one or more other events. Composite events are typically created by
the engine for statements that join two event streams, and for event patterns in which the causal events are re-
tained and reported in a composite event. The example below shows such an event pattern.

// Look for a pattern where AEvent follows BEvent
String pattern = "a=AEvent -> b=BEvent";
EPStatement stmt = epService.getEPAdministrator().createPattern(pattern);
stmt.addListener(testListener);

// Example listener code
public class MyUpdateListener implements UpdateListener
{

public void update(EventBean[] newData, EventBean[] oldData)
{

System.out.println("a event=" + newData[0].get("a").getUnderlying());
System.out.println("b event=" + newData[0].get("b").getUnderlying());
}

}

API Reference

Esper 1.3.0 15

Chapter 4. Event Representations

4.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. An event can have a set of
event properties that supply information about the event. An event also has an underlying Java object type.

In Esper, an event can be represented by any of the following underlying Java objects:

Table 4.1. Event Underlying Java Objects

Java Class Description

java.lang.Object Any Java POJO (plain-old java object) with getter methods
following JavaBean conventions

java.util.Map Map events are key-values pairs

org.w3c.dom.Node XML document object model (DOM)

4.2. Event Properties

Esper expressions can include simple as well as indexed, mapped and nested event properties. The table below
outlines the different types of properties and their syntax in an event expression. This syntax allows statements
to query deep JavaBean objects graphs, XML structures and Map events.

Table 4.2. Types of Event Properties

Type Description Syntax Example

Simple A property that has a single value that
may be retrieved. name sensorId

Indexed An indexed property stores an ordered
collection of objects (all of the same
type) that can be individually accessed
by an integer-valued, non-negative index
(or subscript).

name[index] sensor[0]

Mapped A mapped property stores a keyed col-
lection of objects (all of the same type). name('key') sensor('light')

Nested A nested property is a property that lives
within another property of an event. name.nestedname sensor.value

Combinations are also possible. For example, a valid combination could be per-

son.address('home').street[0].

Esper 1.3.0 16

4.3. Plain Java Object Events

Plain Java object events are object instances that expose event properties through JavaBean-style getter meth-
ods. Events classes or interfaces do not have to be fully compliant to the JavaBean specification; however for
the Esper engine to obtain event properties, the required JavaBean getter methods must be present.

Esper supports JavaBean-style event classes that extend a superclass or implement one or more interfaces.
Also, Esper event pattern and EQL statements can refer to Java interface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state change or action
that occurred in the past, the relevant event properties should not be changeable. However this is not a hard re-
quirement and the Esper engine accepts events that are mutable as well.

Please see Chapter 2, Configuration on options for naming event types represented by Java object event classes.

4.3.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans specification, and
some of which are uniquely supported by Esper:

• Simple properties have a single value that may be retrieved. The underlying property type might be a Java
language primitive (such as int, a simple object (such as a java.lang.String), or a more complex object
whose class is defined either by the Java language, by the application, or by a class library included with the
application.

• Indexed - An indexed property stores an ordered collection of objects (all of the same type) that can be indi-
vidually accessed by an integer-valued, non-negative index (or subscript). Alternatively, the entire set of
values may be retrieved using an array.

• Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that accepts a String-
valued key a mapped property.

• Nested - A nested property is a property that lives within another Java object which itself is a property of an
event.

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed properties in this ex-
ample return Java objects but could also return Java language primitive types (such as int or String). The Ad-
dress object and Employee objects can themselves have properties that are nested within them, such as a street-
Name in the Address object or a name of the employee in the Employee object.

public class EmployeeEvent {
public String getFirstName();
public Address getAddress(String type);
public Employee getSubordinate(int index);
public Employee[] getAllSubordinates();

}

Simple event properties require a getter-method that returns the property value. In this example, the getFirst-

Name getter method returns the firstName event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes an integer-
type key value and returns the property value, such as the getSubordinate method. Or a method that returns an
array-type such as the getSubordinates getter method, which returns an array of Employee. In an EQL or
event pattern statement, indexed properties are accessed via the property[index] syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns the property
value, such as the getAddress method. In an EQL or event pattern statement, mapped properties are accessed

Event Representations

Esper 1.3.0 17

via the property('key') syntax.

Nested event properties require a getter-method that returns the nesting object. The getAddress and getSubor-

dinate methods are mapped and indexed properties that return a nesting object. In an EQL or event pattern
statement, nested properties are accessed via the property.nestedProperty syntax.

All event pattern and EQL statements allow the use of indexed, mapped and nested properties (or a combina-
tion of these) anywhere where one or more event property names are expected. The below example shows dif-
ferent combinations of indexed, mapped and nested properties in filters of event pattern expressions.

every EmployeeEvent(firstName='myName')
every EmployeeEvent(address('home').streetName='Park Avenue')
every EmployeeEvent(subordinate[0].name='anotherName')
every EmployeeEvent(allSubordinates[1].name='thatName')
every EmployeeEvent(subordinate[0].address('home').streetName='Water Street')

Similarly, the syntax can be used in EQL statements in all places where an event property name is expected,
such as in select lists, where-clauses or join criteria.

select firstName, address('work'), subordinate[0].name, subordinate[1].name
from EmployeeEvent
where address('work').streetName = 'Park Ave'

4.4. java.util.Map Events

Events can also be represented by objects that implement the java.util.Map interface. Event properties of Map
events are the values in the map accessible through the get method exposed by the java.util.Map interface.

The engine can process java.util.Map events via the sendEvent(Map map, String eventTypeAlias) method
on the EPRuntime interface. Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property names specified by pattern or EQL state-
ments. Values can be of any type. JavaBean-style objects as values in a Map can also be processed by the en-
gine.

In order to use Map events, the event type name and property names and types must be made known to the en-
gine via Configuration. Please see the examples in Section 2.4.2, “Events represented by java.util.Map”.

The code snippet below creates and processes a Map event. The example assumes the CarLocationUpdateEvent

event type alias has been configured.

Map event = new HashMap();
event.put("carId", carId);
event.put("direction", direction);
epRuntime.sendEvent(event, "CarLocUpdateEvent");

The CarLocUpdateEvent can now be used in a statement:

select carId from CarLocUpdateEvent.win:time(1 min) where direction = 1

The engine can also query Java objects as values in a Map event via the nested property syntax. Thus Map events
can be used to aggregate multiple datastructures into a single event and query the composite information in a
convenient way. The example below demonstrates a Map event with a transaction and an account object.

Map event = new HashMap();
event.put("txn", txn);
event.put("account", account);
epRuntime.sendEvent(event, "TxnEvent");

Event Representations

Esper 1.3.0 18

An example statement could look as follows.

select account.id, account.rate * txn.amount from TxnEvent.win:time(60 sec) group by account.id

4.5. org.w3c.dom.Node XML Events

Events can also be represented as org.w3c.dom.Node instances and send into the engine via the sendEvent

method on EPRuntime. Please note that configuration is required for allowing the engine to map the event type
alias to Node element names. See Chapter 2, Configuration.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.
For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against org.w3c.dom.Node

events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphs or java.util.Map events.

Let's look at how a sample XML document could be queried, given the sample XML below.

<?xml version="1.0" encoding="UTF-8"?>
<Sensor>

<ID>urn:epc:1:4.16.36<ID>
<Observation Command="READ_PALLET_TAGS_ONLY">

<ID>00000001<ID>
<Tag>

<ID>urn:epc:1:2.24.400<ID>
</Tag>
<Tag>

<ID>urn:epc:1:2.24.401<ID>
</Tag>

</Observation>
</Sensor>

To configure the engine for processing Sensor documents, simply configure a SensorEvent event type alias for
the Sensor element name via Configuration. Now the document can be queried as below.

select ID, Observation.ID, Observation.Command, Observation.Tag[0], countTags
from SensorEvent.win:time(30 sec)

The equivalent XPath expressions to each of the properties are listed below.

• The equivalent XPath expression to Observeration.ID is /Sensor/Observation/ID
• The equivalent XPath expression to Observeration.Command is /Sensor/Observation/@Command
• The equivalent XPath expression to Observeration.Tag[0] is /Sensor/Observation/Tag[position() =

1]

• The equivalent XPath expression to countTags is count(/Sensor/Observation/Tag) for returning a count
of tag elements. This assumes the countTags property has been configured as an XPath property.

By specifying an event property such below:

nestedElement.mappedElement('key').indexedElement[1]

The equivalent XPath expression is as follows:

Event Representations

Esper 1.3.0 19

/simpleEvent/nestedElement/mappedElement[@id='key']/indexedElement[position() = 2]

Event Representations

Esper 1.3.0 20

Chapter 5. Event Pattern Reference

5.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition. Patterns can
also be time-based.

Pattern expressions can consist of filter expressions combined with pattern operators. Expressions can contain
further nested pattern expressions by including the nested expression(s) in () round brackets.

There are 5 types of operators:

1. Operators that control pattern finder creation and termination: every
2. Logical operators: and, or, not
3. Temporal operators that operate on event order: -> (followed-by)
4. Guards are where-conditions that filter out events and cause termination of the pattern finder. Examples

are timer:within.
5. Observers observe time events as well as other events. Examples are timer:interval and timer:at.

5.2. How to use Patterns

5.2.1. Pattern Syntax

This is an example pattern expression that matches on every ServiceMeasurement events in which the value of
the latency event property is over 20 seconds, and on every ServiceMeasurement event in which the success

property is false. Either one or the other condition must be true for this pattern to match.

every (spike=ServiceMeasurement(latency>20000) or error=ServiceMeasurement(success=false))

In the example above, the pattern expression starts with an every operator to indicate that the pattern should
fire for every matching events and not just the first matching event. Within the every operator in round brack-
ets is a nested pattern expression using the or operator. The left hand of the or operator is a filter expression
that filters for events with a high latency value. The right hand of the operator contains a filter expression that
filters for events with error status. Filter expressions are explained in Section 5.3, “Filter Expressions”.

The example above assigned the tags spike and error to the events in the pattern. The tags are important since
the engine only places tagged events into the output event(s) that a pattern generates, and that the engine sup-
plies to listeners of the pattern statement. The tags can further be selected in the select-clause of an EQL state-
ment as discussed in Section 6.4.2, “Pattern-based event streams”.

Pattern statements are created via the EPAdministrator interface. The EPAdministrator interface allows to
create pattern statements in two ways: Pattern statements that want to make use of the EQL select clause or
any other EQL constructs use the createEQL method to create a statement that specifies one or more pattern ex-
pressions. EQL statements that use patterns are described in more detail in Section 6.4.2, “Pattern-based event
streams”. Use the syntax as shown in below example.

EPAdministrator admin = EPServiceProviderManager.getDefaultProvider().getEPAdministrator();

String eventName = ServiceMeasurement.class.getName();

EPStatement myTrigger = admin.createEQL("select * from pattern [" +

Esper 1.3.0 21

"every (spike=" + eventName + "(latency>20000) or error=" + eventName + "(success=false))]");

Pattern statements that do not need to make use of the EQL select clause or any other EQL constructs can use
the createPattern method, as in below example.

EPStatement myTrigger = admin.createPattern(
"every (spike=" + eventName + "(latency>20000) or error=" + eventName + "(success=false))");

5.2.2. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The listener inter-
face is the net.esper.client.UpdateListener interface.

The example below shows an anonymous implementation of the net.esper.client.UpdateListener inter-
face. We add the anonymous listener implementation to the myPattern statement created earlier. The listener
code simply extracts the underlying event class.

myPattern.addListener(new UpdateListener()
{

public void update(EventBean[] newEvents, EventBean[] oldEvents)
{
ServiceMeasurement spike = (ServiceMeasurement) newEvents[0].get("spike");
ServiceMeasurement error = (ServiceMeasurement) newEvents[0].get("error");
... // either spike or error can be null, depending on which occurred
... // add more logic here

}
});

Listeners receive an array of EventBean instances in the newEvents parameter. There is one EventBean instance
passed to the listener for each combination of events that matches the pattern expression. At least one Event-

Bean instance is always passed to the listener.

The properties of each EventBean instance contain the underlying events that caused the pattern to fire, if
events have been named in the filter expression via the name=eventType syntax. The property name is thus the
name supplied in the pattern expression, while the property type is the type of the underlying class, in this ex-
ample ServiceMeasurement.

5.2.3. Pulling Data from Patterns

Data can also be pulled from pattern statements via the iterator() method. If the pattern had fired at least
once, then the iterator returns the last event for which it fired. The hasNext() method can be used to determine
if the pattern had fired.

if (myPattern.iterator().hasNext())
{

ServiceMeasurement event = (ServiceMeasurement) view.iterator().next().get("alert");
... // some more code here to process the event

}
else
{

... // no matching events at this time
}

5.3. Filter Expressions

Event Pattern Reference

Esper 1.3.0 22

This chapter outines how to filter events based on their properties.

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardless of the event's properties. The example below is
such a filter. Note that this event pattern would stop firing as soon as the first RfidEvent is encountered.

com.mypackage.myevents.RfidEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the every keyword.

every com.mypackage.myevents.RfidEvent

The example above specifies the fully-qualified Java class name as the event type. Via configuration, the event
pattern above can be simplified by using the alias that has been defined for the event type. Interfaces and ab-
stract classes are also supported as event types.

every RfidEvent

Interfaces and superclasses are also supported as event types. In the below example IRfidReadable is an inter-
face class.

every org.myorg.rfid.IRfidReadable

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name.

mypackage.RfidEvent(category="Perishable")

The supported filter operators are

• equals =
• not equals !=
• comparison operators < , > , >=, <=

• ranges use the keyword in and round (...) or square brackets []

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates whether an end-
point is included or excluded.

• Open ranges that contain neither endpoint (low:high)
• Closed ranges that contain both endpoints [low:high]
• Half-open ranges that contain the low endpoint but not the high endpoint [low:high)
• Half-closed ranges that contain the high endpoint but not the low endpoint (low:high]

Filter criteria are listed in a comma-separated format. In the example below we look for RfidEvent events with
a grade property between 1 and 2 (endpoints included), a price less then 1, and a category of "Perishable".

mypackage.RfidEvent(category="Perishable", price<1.00, grade in [1:2])

Filter criteria can also refer to events matching prior named events in the same expression. Below pattern is an
example in which the pattern matches once for every RfidEvent that is preceded by an RfidEvent with the same
item id.

every A=mypackage.RfidEvent -> B=mypackage.RfidEvent(itemId=A.itemId)

Event Pattern Reference

Esper 1.3.0 23

The syntax shown above allows filter criteria to reference prior results by specifying the event name and event
property. This syntax can be used with all filter operators.

Some limitations of filters are:

• Range and comparison operators require the event property to be of a numeric type.
• Null values in filter criteria are currently not allowed.
• Filter criteria can list the same event property only once.
• Events that have null values for event properties listed in the filter criteria do not match the criteria.

5.4. Pattern Operators

5.4.1. Every

The every operator indicates that the pattern expression should restart when the pattern matches. Without the
every operator the pattern expressions matcher stops when the pattern matches once.

Thus the every operator works like a factory for the pattern expression contained within. When the pattern ex-
pression within it fires and thus quits checking for events, the every causes the start of a new pattern matcher
listening for more occurances of the same event or set of events.

Every time a pattern expression within an every operator turns true a new active pattern matcher is started
looking for more event(s) or timing conditions that match the pattern expression. If the every operator is not
specified for an expression, the expression stops after the first match was found.

This pattern fires when encountering event A and then stops looking.

A

This pattern keeps firing when encountering event A, and doesn't stop looking.

every A

Let's consider an example event sequence as follows.

A
1

B
1

C
1

B
2

A
2

D
1

A
3

B
3

E
1

A
4

F
1

B
4

Table 5.1. 'Every' operator examples

Example Description

every (A -> B) Detect event A followed by event B. At the time when B occurs the pattern
matches, then the pattern matcher restarts and looks for event A again.

1. Matches on B
1

for combination {A
1
, B

1
}

2. Matches on B
3

for combination {A
2
, B

3
}

3. Matches on B
4

for combination {A
4
, B

4
}

every A -> B The pattern fires for every event A followed by an event B.

1. Matches on B
1

for combination {A
1
, B

1
}

2. Matches on B
3

for combination {A
2
, B

3
} and {A

3
, B

3
}

Event Pattern Reference

Esper 1.3.0 24

Example Description

3. Matches on B
4

for combination {A
4
, B

4
}

A -> every B The pattern fires for an event A followed by every event B.

1. Matches on B
1

for combination {A
1
, B

1
}.

2. Matches on B
2

for combination {A
1
, B

2
}.

3. Matches on B
3

for combination {A
1
, B

3
}

4. Matches on B
4

for combination {A
1
, B

4
}

every A -> every B The pattern fires for every event A followed by every event B.

1. Matches on B
1

for combination {A
1
, B

1
}.

2. Matches on B
2

for combination {A
1
, B

2
}.

3. Matches on B
3

for combination {A
1
, B

3
} and {A

2
, B

3
} and {A

3
, B

3
}

4. Matches on B
4

for combination {A
1
, B

4
} and {A

2
, B

4
} and {A

3
, B

4
} and

{A
4
, B

4
}

The examples show that it is possible that a pattern fires for multiple combinations of events that match a pat-
tern expression. Each combination is posted as an EventBean instance to the update method in the UpdateL-

istener implementation.

5.4.2. And

Similar to the Java && operator the and operator requires both nested pattern expressions to turn true before the
whole expression turns true (a join pattern).

Pattern matches when both event A and event B are found.

A and B

Pattern matches on any sequence A followed by B and C followed by D, or C followed by D and A followed by
B

(A -> B) and (C -> D)

5.4.3. Or

Similar to the Java “||” operator the or operator requires either one of the expressions to turn true before the
whole expression turns true.

Look for either event A or event B. As always, A and B can itself be nested expressions as well.

A or B

Detect all stock ticks that are either above or below a threshold.

every (StockTick(symbol='IBM', price < 100) or StockTick(symbol='IBM', price > 105)

5.4.4. Not

Event Pattern Reference

Esper 1.3.0 25

The not operator negates the truth value of an expression. Pattern expressions prefixed with not are automatic-
ally defaulted to true.

This pattern matches only when an event A is encountered followed by event B but only if no event C was en-
countered before event B.

(A -> B) and not C

5.4.5. Followed-by

The followed by -> operator specifies that first the left hand expression must turn true and only then is the right
hand expression evaluated for matching events.

Look for event A and if encountered, look for event B. As always, A and B can itself be nested event pattern
expressions.

A -> B

This is a pattern that fires when 2 status events indicating an error occur one after the other.

StatusEvent(status='ERROR') -> StatusEvent(status='ERROR')

5.5. Pattern Guards

5.5.1. timer:within

The timer:within guard acts like a stopwatch. If the associated pattern expression does not turn true within the
specified time period it is stopped and permanently false. The timer:within guard takes a time period (see
Section 6.2.1, “Specifying Time Periods”) or a number of seconds as a parameter.

This pattern fires if an A event arrives within 5 seconds after statement creation.

A where timer:within (5 seconds)

This pattern fires for all A events that arrive within 5 seconds. After 5 seconds, this pattern stops matching even
if more A events arrive.

(every A) where timer:within (5 seconds)

This pattern is similar to the first pattern but here every time A arrives within 5 seconds, the pattern begins
looking for A for another 5 seconds. As long as A events arrive within 5 seconds after the last A, the pattern
does not stop matching.

every (A where timer:within (5 sec))

This pattern matches for any one A or B event in the next 5 seconds.

(A or B) where timer:within (5 sec)

This pattern matches for any 2 errors that happen 10 seconds within each other.

Event Pattern Reference

Esper 1.3.0 26

every (StatusEvent(status='ERROR') -> StatusEvent(status='ERROR') where timer:within (10 sec))

The following guards are equivalent:

timer:within(2 minutes 5 seconds)
timer:within(125 sec)
timer:within(125)

5.6. Pattern Observers

5.6.1. timer:interval

The timer:interval observer waits for the defined time before the truth value of the observer turns true. The
observer takes a time period (see Section 6.2.1, “Specifying Time Periods”) or a number of seconds as a para-
meter.

After event A arrived wait 10 seconds then indicate that the pattern matches.

A -> timer:interval(10 seconds)

The pattern below fires every 20 seconds.

every timer:interval(20 sec)

The next example pattern fires for every event A that is not followed by an event B within 60 seconds after
event A arrived. B must have the same "id" property value as A.

every a=A -> (timer:interval(60 sec) and not B(id=a.id))

5.6.2. timer:at

The timer:at observer is similar in function to the Unix “crontab” command. At a specified time the expres-
sion turns true. The at operator can also be made to pattern match at regular intervals by using an every operat-
or in front of the timer:at operator.

The syntax is: timer:at (minutes, hours, days of month, months, days of week [, seconds]).

The value for seconds is optional. Each element allows wildcard * values. Ranges can be specified by means of
lower bounds then a colon ‘:’ then the upper bound. The division operator */x can be used to specify that every
x

th
value is valid. Combinations of these operators can be used by placing these into square brackets([]).

This expression pattern matches every 5 minutes past the hour.

every timer:at(5, *, *, *, *)

The below at operator pattern matches every 15 minutes from 8am to 5pm on even numbered days of the month
as well as on the first day of the month.

timer:at (*/15, 8:17, [*/2, 1], *, *)

Event Pattern Reference

Esper 1.3.0 27

Chapter 6. EQL Reference

6.1. EQL Introduction

EQL statements are used to derive and aggregate information from one or more streams of events, and to join
or merge event streams. This section outlines EQL syntax. It also outlines the built-in views, which are the
building blocks for deriving and aggregating information from event streams.

EQL is similar to SQL in its use of the select clause and the where clause. Where EQL differs most from SQL
is in the use of tables. EQL replaces tables with the concept of event streams.

EQL statements contain definitions of one or more views. Similar to tables in an SQL statement, views define
the data available for querying and filtering. Some views represent windows over a stream of events. Other
views derive statistics from event properties, group events or handle unique event property values. Views can
be staggered onto each other to build a chain of views. The Esper engine makes sure that views are reused
among EQL statements for efficiency.

The built-in set of views is:

1. Views that represent moving event windows: win:length, win:time, win:time_batch, win:ext_time,
ext:sort_window

2. Views for aggregation: std:unique, std:groupby, std:lastevent (note: the group-by clause and the
std:groupby view are very similar in function, see view description for differences)

3. Views that derive statistics: std:size, stat:uni, stat:linest, stat:correl, stat:weighted_avg,
stat:multidim_stat

Esper can be extended by plugging-in custom developed views.

6.2. EQL Syntax

EQL queries are created and stored in the engine, and publish results as events are received by the engine or
timer events occur that match the criteria specified in the query. Events can also be pulled from running EQL
queries.

The select clause in an EQL query specifies the event properties or events to retrieve. The from clause in an
EQL query specifies the event stream definitions and stream names to use. The where clause in an EQL query
specifies search conditions that specify which event or event combination to search for. For example, the fol-
lowing statement returns the average price for IBM stock ticks in the last 30 seconds.

select avg(price) from StockTick.win:time(30 sec) where symbol='IBM'

EQL queries follow the below syntax. EQL queries can be simple queries or more complex queries. A simple
select contains only a select clause and a single stream definition. Complex EQL queries can be build that fea-
ture a more elaborate select list utilizing expressions, may join multiple streams, may contain a where clause
with search conditions and so on.

[insert into insert_into_def]
select select_list
from stream_def [as name] [, stream_def [as name]] [,...]
[where search_conditions]
[group by grouping_expression_list]
[having grouping_search_conditions]

Esper 1.3.0 28

[output output_specification]
[order by order_by_expression_list]

6.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter. Time periods
follow the syntax below.

time-period : [day-part] [hour-part] [minute-part] [seconds-part] [milliseconds-part]

day-part : number ("days" | "day")
hour-part : number ("hours" | "hour")
minute-part : number ("minutes" | "minute" | "min")
seconds-part : number ("seconds" | "second" | "sec")
milliseconds-part : number ("milliseconds" | "millisecond" | "msec")

Some examples of time periods are:

10 seconds
10 minutes 30 seconds
20 sec 100 msec
1 day 2 hours 20 minutes 15 seconds 110 milliseconds
0.5 minutes

6.3. Choosing Event Properties And Events: the Select Clause

The select clause is required in all EQL statements. The select clause can be used to select all properties via the
wildcard *, or to specify a list of event properties and expressions. The select clause defines the event type
(event property names and types) of the resulting events published by the statement, or pulled from the state-
ment.

The select clause also offers optional istream and rstream keywords to control how events are posted to Up-

dateListener instances listening to the statement.

The syntax for the select clause is summarized below.

select [rstream | istream] * | expression_list ...

6.3.1. Choosing all event properties: select *

The syntax for selecting all event properties in a stream is:

select * from stream_def

The following statement selects all univariate statistics properties for the last 30 seconds of IBM stock ticks for
price.

select * from StockTick(symbol='IBM').win:time(30 sec).stat:uni('price')

In a join statement, using the select * syntax selects event properties that contain the events representing the
joined streams themselves.

6.3.2. Choosing specific event properties

EQL Reference

Esper 1.3.0 29

To chose the particular event properties to return:

select event_property [, event_property] [, ...] from stream_def

The following statement selects the count and standard deviation properties for the last 100 events of IBM
stock ticks for volume.

select count, stdev from StockTick(symbol='IBM').win:length(100).stat:uni('volume')

6.3.3. Expressions

The select clause can contain one or more expressions.

select expression [, expression] [, ...] from stream_def

The following statement selects the volume multiplied by price for a time batch of the last 30 seconds of stock
tick events.

select volume * price from StockTick.win:time_batch(30 sec)

6.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

select [event property | expression] as identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for the event prop-
erty.

select volume * price as volPrice from StockTick.win:length(100)

6.3.5. Selecting istream and rstream events

The optional istream and rstream keywords in the select clause define the event stream posted to listeners to
the statement.

If neither keyword is specified, the engine posts insert stream events via the newEvents parameter to the update

method of UpdateListener instances listening to the statement. The engine posts remove stream events to the
oldEvents parameter of the update method. The insert stream consists of the events entering the respective
window(s) or stream(s), while the remove stream consists of the events leaving the respective window(s).

By specifying the istream keyword you can instruct the engine to only post insert stream events via the
newEvents parameter to the update method on listeners. The engine will then not post any remove stream
events, and the oldEvents parameter is always a null value.

By specifying the rstream keyword you can instruct the engine to only post remove stream events via the
newEvents parameter to the update method on listeners. The engine will then not post any insert stream events,
and the oldEvents parameter is also always a null value.

The following statement selects only the events that are leaving the 30 second time window.

select rstream * from StockTick.win:time(30 sec)

EQL Reference

Esper 1.3.0 30

The istream and rstream keywords in the select clause are matched by same-name keywords available in the
insert into clause. While the keywords in the select clause control the event stream posted to listeners to the
statement, the same keywords in the insert into clause specify the event stream that the engine makes available
to other statements.

6.4. Specifying Event Streams : the From Clause

The from clause is required in all EQL statements. It specifies one or more event streams. Each event stream
can optionally be given a name by means of the as syntax.

from stream_def [as name] [, stream_def [as name]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either a filter-based event
stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based and filter-based event
streams are also supported.

Esper supports joins against relational databases for access to historical or reference data as explained in Sec-
tion 6.12, “Joining Relational Data via SQL”.

6.4.1. Filter-based event streams

For filter-based event streams, the event stream definition stream_def as shown in the syntax above consists of
an event type, an optional filter property list and an optional list of views that derive data from a stream. The
syntax for a filter-based event stream is as below:

event_type ([filter_criteria]) [.view_spec] [.view_spec] [...]

The following EQL statement selects all event properties for the last 100 events of IBM stock ticks for volume.
In the example, the event type is the fully qualified Java class name org.esper.example.StockTick. The ex-
pression filters for events where the property symbol has a value of "IBM". The optional view specifications for
deriving data from the StockTick events are a length window and a view for computing statistics on volume.
The name for the event stream is "volumeStats".

select * from
org.esper.example.StockTick(symbol='IBM').win:length(100).stat:uni('volume') as volumeStats

Instead of the fully-qualified Java class name any other event name can be mapped via Configuration to a Java
class, making the resulting statement more readable.

select * from StockTick(symbol='IBM').win:length(100).stat:uni('volume') as volumeStats

Specifying an event type

In the example above the event type was org.esper.example.StockTick. The event type is simply the fully
qualified Java class name. Interfaces and abstract classes are also supported. Alternatively, via configuration an
alias for an event type can be defined and used instead of the fully qualified class name. The below example
shows one way to obtain the fully qualified class name of a given Java class StockTick.

String eventName = StockTick.class.getName();
String stmt = "from " + eventName + ".win:length(100)"

EQL Reference

Esper 1.3.0 31

Specifying event filter criteria

Filter criteria follow the same syntax as outlined in the event pattern section on filters; see Section 5.3, “Filter
Expressions”. Filter criteria operators are: =, < , > , >=, <=. Ranges use the in keyword and round (...)

or square brackets [].

Esper filters out events in an event stream as defined by filter criteria before it sends events to subsequent
views. Thus, compared to search conditions in a where-clause, filter criteria remove unneeded events early.

The below example is a filter criteria list that removes events based on category, price and grade.

from mypackage.RfidEvent(category="Perishable", price<1.00, grade in [1, 2])

6.4.2. Pattern-based event streams

Event pattern expressions can also be used to specify one or more event streams in an EQL statement. For pat-
tern-based event streams, the event stream definition stream_def consists of the keyword pattern and a pattern
expression in brackets []. The syntax for an event stream definition using a pattern expression is below. As in
filter-based event streams, an optional list of views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view_spec] [.view_spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade events. The ex-
ample tags stock tick events with the name "tick" and trade events with the name "trade".

select * from pattern [every tick=StockTickEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types. The generated
events resemble a map with "tick" and "trade" keys. For stock tick events, the "tick" key value is the underlying
stock tick event, and the "trade" key value is a null value. For trade events, the "trade" key value is the underly-
ing trade event, and the "tick" key value is a null value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock tick or trade
events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sum(tick.price) + sum(trade.price) as total

from pattern [every tick=StockTickEvent or every trade=TradeEvent].win:time(30 sec)

Note that in the statement above tickPrice and tradePrice can each be null values depending on the event
processed. Therefore, an aggregation function such as sum(tick.price + trade.price)) would always return
null values as either of the two price properties are always a null value for any event matching the pattern. Use
the coalesce function to handle null values, for example: sum(coalesce(tick.price, 0) + co-

alesce(trade.price, 0)).

6.4.3. Specifying views

Views are used to derive or aggregate data. Views can be staggered onto each other. See the section Sec-
tion 6.15, “Build-in views” on the views available.

EQL Reference

Esper 1.3.0 32

Views can optionally take one or more parameters. These parameters can consist of primitive constants such as
String, boolean or numeric types. Arrays are also supported as a view parameter types.

The below example serves to show views and staggering of views. It uses a car location event that contains in-
formation about the location of a car on a highway.

The first view std:groupby('carId') groups car location events by car id. The second view win:length(4)

keeps a length window of the 4 last events, with one length window for each car id. The next view
std:groupby({'expressway', 'direction', 'segment'}) groups each event by it's expressway, direction
and segment property values. Again, the grouping is done for each car id considering the last 4 events only. The
last view std:size() is used to report the number of events. Thus the below example reports the number of
events per car id and per expressway, direction and segment considering the last 4 events for each car id only.

select * from CarLocEvent.std:groupby('carId').win:length(4).
std:groupby({'expressway', 'direction', 'segment'}).std:size()

6.5. Specifying Search Conditions: the Where Clause

The where clause is an optional clause in EQL statements. Via the where clause event streams can be joined
and events can be filtered.

Comparison operators =, < , > , >=, <=, !=, <>, is null, is not null and logical combinations via
and and or are supported in the where clause. The where clause can also introduce join conditions as outlined in
Section 6.10, “Joining Event Streams”. Where-clauses can also contain expressions. Some examples are listed
below.

...where fraud.severity = 5 and amount > 500

...where (orderItem.orderId is null) or (orderItem.class != 10)

...where (orderItem.orderId = null) or (orderItem.class <> 10)

...where itemCount / packageCount > 10

6.6. Aggregates and grouping: the Group-by Clause and the
Having Clause

6.6.1. Using aggregate functions

The aggregate functions are sum, avg, count, max, min, median, stddev, avedev. You can use aggregate
functions to calculate and summarize data from event properties. For example, to find out the total price for all
stock tick events in the last 30 seconds, type:

select sum(price) from StockTickEvent.win:time(30 sec)

Here is the syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to all events in an event stream window or other view, or to one or more
groups of events. From each set of events to which an aggregate function is applied, Esper generates a single
value.

EQL Reference

Esper 1.3.0 33

Expression is usually an event property name. However it can also be a constant, function, or any combination
of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the price was
doubled:

select avg(price * 2) from StockTickEvent.win:time(30 seconds)

You can use the optional keyword distinct with all aggregate functions to eliminate duplicate values before
the aggregate function is applied. The optional keyword all which performs the operation on all events is the
default.

The syntax of the aggregation functions and the results they produce are shown in below table.

Table 6.1. Syntax and results of aggregate functions

Aggregate Function Result

sum([all|distinct] expression)
Totals the (distinct) values in the expression, returning a value of long,
double, float or integer type depending on the expression

avg([all|distinct] expression)
Average of the (distinct) values in the expression, returning a value of
double type

count([all|distinct] expression)
Number of the (distinct) non-null values in the expression, returning a
value of long type

count(*)
Number of events, returning a value of long type

max([all|distinct] expression)
Highest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

min([all|distinct] expression)
Lowest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

median([all|distinct] expression)
Median (distinct) value in the expression, returning a value of double

type

stddev([all|distinct] expression)
Standard deviation of the (distinct) values in the expression, returning a
value of double type

avedev([all|distinct] expression)
Mean deviation of the (distinct) values in the expression, returning a
value of double type

You can use aggregation functions in a select clause and in a having clause. You cannot use aggregate func-
tions in a where clause, but you can use the where clause to restrict the events to which the aggregate is applied.
The next query computes the average and sum of the price of stock tick events for the symbol IBM only, for the
last 10 stock tick events regardless of their symbol.

EQL Reference

Esper 1.3.0 34

select 'IBM stats' as title, avg(price) as avgPrice, sum(price) as sumPrice
from StockTickEvent.win:length(10)
where symbol='IBM'

In the above example the length window of 10 elements is not affected by the where-clause, i.e. all events enter
and leave the length window regardless of their symbol. If we only care about the last 10 IBM events, we need
to add filter criteria as below.

select 'IBM stats' as title, avg(price) as avgPrice, sum(price) as sumPrice
from StockTickEvent(symbol='IBM').win:length(10)
where symbol='IBM'

You can use aggregate functions with any type of event property or expression, with the following exceptions:

1. You can use sum, avg, median, stddev, avedev with numeric event properties only

Esper ignores any null values returned by the event property or expression on which the aggregate function is
operating, except for the count(*) function, which counts null values as well. All aggregate functions return
null if the data set contains no events, or if all events in the data set contain only null values for the aggregated
expression.

6.6.2. Organizing statement results into groups: the Group-by clause

The group by clause is optional in all EQL statements. The group by clause divides the output of an EQL
statement into groups. You can group by one or more event property names, or by the result of computed ex-
pressions. When used with aggregate functions, group by retrieves the calculations in each subgroup. You can
use group by without aggregate functions, but generally that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in the last 30
seconds:

select symbol, sum(price) from StockTickEvent.win:time(30 sec) group by symbol

The syntax of the group by clause is:

group by arregate_free_expression [, arregate_free_expression] [, ...]

Esper places the following restrictions on expressions in the group by clause:

1. Expressions in the group by cannot contain aggregate functions
2. Event properties that are used within aggregate functions in the select clause cannot also be used in a

group by expression

You can list more then one expression in the group by clause to nest groups. Once the sets are established with
group by the aggregation functions are applied. This statement posts the median volume for all stock tick
events in the last 30 seconds per symbol and tick data feed. Esper posts one event for each group to statement
listeners:

select symbol, tickDataFeed, median(volume)
from StockTickEvent.win:time(30 sec)
group by symbol, tickDataFeed

In the statement above the event properties in the select list (symbol, tickDataFeed) are also listed in the
group by clause. The statement thus follows the SQL standard which prescribes that non-aggregated event
properties in the select list must match the group by columns.

EQL Reference

Esper 1.3.0 35

Esper also supports statements in which one or more event properties in the select list are not listed in the
group by clause. The statement below demonstrates this case. It calculates the standard deviation for the last 30
seconds of stock ticks aggregating by symbol and posting for each event the symbol, tickDataFeed and the
standard deviation on price.

select symbol, tickDataFeed, stddev(price) from StockTickEvent.win:time(30 sec) group by symbol

The above example still aggregates the price event property based on the symbol, but produces one event per
incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the group by clause are not
listed in the select list. This is an example that calculates the mean deviation per symbol and tickDataFeed

and posts one event per group with symbol and mean deviation of price in the generated events. Since tick-
DataFeed is not in the posted results, this can potentially be confusing.

select symbol, avedev(price)
from StockTickEvent.win:time(30 sec)
group by symbol, tickDataFeed

Expressions are also allowed in the group by list:

select symbol * price, count(*) from StockTickEvent.win:time(30 sec) group by symbol * price

If the group by expression resulted in a null value, the null value becomes its own group. All null values are
aggregated into the same group. If you are using the count(expression) aggregate function which does not
count null values, the count returns zero if only null values are encountered.

You can use a where clause in a statement with group by. Events that do not satisfy the conditions in the where

clause are eliminated before any grouping is done. For example, the statement below posts the number of stock
ticks in the last 30 seconds with a volume larger then 100, posting one event per group (symbol).

select symbol, count(*) from StockTickEvent.win:time(30 sec) where volume > 100 group by symbol

6.6.3. Selecting groups of events: the Having clause

Use the having clause to pass or reject events defined by the group-by clause. The having clause sets condi-
tions for the group by clause in the same way where sets conditions for the select clause, except where cannot
include aggregate functions, while having often does.

This statement is an example of a having clause with an aggregate function. It posts the total price per symbol
for the last 30 seconds of stock tick events for only those symbols in which the total price exceeds 1000. The
having clause eliminates all symbols where the total price is equal or less then 1000.

select symbol, sum(price)
from StockTickEvent.win:time(30 sec)
group by symbol
having sum(price) > 1000

To include more then one condition in the having clause combine the conditions with and, or or not. This is
shown in the statement below which selects only groups with a total price greater then 1000 and an average
volume less then 500.

select symbol, sum(price), avg(volume)
from StockTickEvent.win:time(30 sec)
group by symbol

EQL Reference

Esper 1.3.0 36

having sum(price) > 1000 and avg(volume) < 500

Esper places the following restrictions on expressions in the having clause:

1. Any expressions that contain aggregate functions must also occur in the select clause

A statement with the having clause should also have a group by clause. If you omit group-by, all the events
not excluded by the where clause return as a single group. In that case having acts like a where except that hav-
ing can have aggregate functions.

The having clause can also be used without group by clause as the below example shows. The example below
posts events where the price is less then the current running average price of all stock tick events in the last 30
seconds.

select symbol, price, avg(price)
from StockTickEvent.win:time(30 sec)
having price < avg(price)

6.6.4. How the stream filter, Where, Group By and Having clauses interact

When you include filters, the where condition, the group by clause and the having condition in an EQL state-
ment the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is used). The
filter discards any events not meeting filter criteria.

2. The where clause excludes events that do not meet its search condition.
3. Aggregate functions in the select list calculate summary values for each group.
4. The having clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and having clauses in one statement with a
select clause containing an aggregate function.

select tickDataFeed, stddev(price)
from StockTickEvent(symbol='IBM').win:length(10)
where volume > 1000
group by tickDataFeed
having stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream StockTickEvent. In the example above only
events with symbol IBM enter the length window over the last 10 events, all other events are simply discarded.
The where clause removes any events posted by the length window (events entering the window and event
leaving the window) that do not match the condition of volume greater then 1000. Remaining events are ap-
plied to the stddev standard deviation aggregate function for each tick data feed as specified in the group by

clause. Each tickDataFeed value generates one event. Esper applies the having clause and only lets events
pass for tickDataFeed groups with a standard deviation of price greater then 0.8.

6.7. Stabilizing and Limiting Output: the Output Clause

6.7.1. Output Clause Options

The output clause is optional in Esper and is used to control or stabilize the rate at which events are output. For
example, the following statement batches old and new events and outputs them at the end of every 90 second

EQL Reference

Esper 1.3.0 37

interval.

select * from StockTickEvent.win:length(5) output every 90 seconds

Here is the syntax for output rate limiting:

output [all | first | last] every number [minutes | seconds | events]

The all keyword is the default and specifies that all events in a batch should be output. The batch size can be
specified in terms of time or number of events.

The first keyword specifies that only the first event in an output batch is to be output. Using the first

keyword instructs the engine to output the first matching event as soon as it arrives, and then ignore matching
events for the time interval or number of events specified. After the time interval elapsed, or the number of
matching events has been reached, the next first matching event is output again and the following interval the
engine again ignores matching events.

The last keyword specifies to only output the last event at the end of the given time interval or after the given
number of matching events have been accumulated.

The time interval can also be specified in terms of minutes; the following statement is identical to the first one.

select * from StockTickEvent.win:length(5) output every 1.5 minutes

A second way that output can be stabilized is by batching events until a certain number of events have been col-
lected. The next statement only outputs when either 5 (or more) new or 5 (or more) old events have been
batched.

select * from StockTickEvent.win:time(30 sec) output every 5 events

Additionally, event output can be further modified by the optional last keyword, which causes output of only
the last event to arrive into an output batch.

select * from StockTickEvent.win:time(30 sec) output last every 5 events

Using the first keyword you can be notified at the start of the interval. The allows to watch for situations such
as a rate falling below a threshold and only be informed every now and again after the specified output interval,
but be informed the moment it first happens.

select * from TickRate.win:time(30 seconds) output first every 60 seconds where rate<100

6.7.2. Group By, Having and Output clause interaction

The output clause interacts in two ways with the group by and having clauses. First, in the output every n

events case, the number n refers to the number of events arriving into the group by clause. That is, if the
group by clause outputs only 1 event per group, or if the arriving events don't satisfy the having clause, then
the actual number of events output by the statement could be fewer than n.

Second, the last and all keywords have special meanings when used in a statement with aggregate functions
and the group by clause. The last keyword specifies that only groups whose aggregate values have been up-
dated with the most recent batch of events should be output. The all keyword (the default) specifies that the
most recent data for all groups seen so far should be output, whether or not these groups' aggregate values have
just been updated.

EQL Reference

Esper 1.3.0 38

6.8. Sorting Output: the Order By Clause

The order by clause is optional in Esper. It is used for ordering output events by their properties, or by expres-
sions involving those properties. For example, the following statement outputs batches of 5 or more stock tick
events that are sorted first by price and then by volume.

select symbol from StockTickEvent.win:time(60 sec)
output every 5 events
order by price, volume

Here is the syntax for the order by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

Esper places the following restrictions on the expressions in the order by clause:

1. All aggregate functions that appear in the order by clause must also appear in the select expression.

Otherwise, any kind of expression that can appear in the select clause, as well as any alias defined in the se-

lect clause, is also valid in the order by clause.

6.9. Merging Streams and Continuous Insertion: the Insert Into
Clause

The insert into clause is optional in Esper. This clause can be specified to make the results of a statement
available as an event stream for use in further statements. The clause can also be used to merge multiple event
streams to form a single stream of events.

insert into CombinedEvent
select A.customerId as custId, A.timestamp - B.timestamp as latency

from EventA.win:time(30 min) A, EventB.win:time(30 min) B
where A.txnId = B.txnId

The insert into clause in above statement generates events of type CombinedEvent. Each generated Combine-

dEvent event has 2 event properties named "custId" and "latency". The events generated by above statement
can be used in further statements. The below statement uses the generated events.

select custId, sum(latency)
from CombinedEvent.win:time(30 min)
group by custId

The insert into clause can consist of just an event type alias, or of an event type alias and 1 or more event
property names. The syntax for the insert into clause is as follows:

insert [istream | rstream] into event_type_alias [(property_name [, property_name])]

The istream (default) and rstream keywords are optional. If neither keyword or the istream keyword is spe-
cified, the engine supplies the insert stream events generated by the statement. The insert stream consists of the
events entering the respective window(s) or stream(s). If the rstream keyword is specified, the engine supplies
the remove stream events generated by the statement. The remove stream consists of the events leaving the re-
spective window(s).

The event_type_alias is an identifier that names the events generated by the engine. The identifier can be

EQL Reference

Esper 1.3.0 39

used in statements to filter and process events of the given name.

The engine also allows listeners to be attached to a statement that contain an insert into clause.

To merge event streams, simply use the same event_type_alias identifier in all EQL statements that merge
their result event streams. Make sure to use the same number and names of event properties and event property
types match up.

Esper places the following restrictions on the insert into clause:

1. The number of elements in the select clause must match the number of elements in the insert into

clause if the clause specifies a list of event property names
2. If the event type alias has already been defined by a prior statement or configuration, and the event prop-

erty names and types do not match, an exception is thrown at statement creation time.

The example statement below shows the alternative form of the insert into clause that explicitly defines the
property names to use.

insert into CombinedEvent (custId, latency)
select A.customerId, A.timestamp - B.timestamp
...

The rstream keyword can be useful to indicate to the engine to generate only remove stream events. This can
be useful if we want to trigger actions when events leave a window rather then when events enter a window.
The statement below generates CombinedEvent events when EventA and EventB leave the window after 30
minutes (1800 seconds).

insert rstream into CombinedEvent
select A.customerId as custId, A.timestamp - B.timestamp as latency

from EventA.win:time(30 min) A, EventB.win:time(30 min) B
where A.txnId = B.txnId

6.10. Joining Event Streams

Two or more event streams can be part of the from clause and thus both streams determine the resulting events.
The where-clause lists the join conditions that Esper uses to relate events in the two or more streams. Reference
and historical data such as stored in your relational database can also be included in joins. Please see Sec-
tion 6.12, “Joining Relational Data via SQL” for details.

Each point in time that an event arrives to one of the event streams, the two event streams are joined and output
events are produced according to the where-clause.

This example joins 2 event streams. The first event stream consists of fraud warning events for which we keep
the last 30 minutes (1800 seconds). The second stream is withdrawal events for which we consider the last 30
seconds. The streams are joined on account number.

select fraud.accountNumber as accntNum, fraud.warning as warn, withdraw.amount as amount,
max(fraud.timestamp, withdraw.timestamp) as timestamp, 'withdrawlFraud' as desc

from net.esper.example.atm.FraudWarningEvent.win:time(30 min) as fraud,
net.esper.example.atm.WithdrawalEvent.win:time(30 sec) as withdraw

where fraud.accountNumber = withdraw.accountNumber

6.11. Outer Joins

EQL Reference

Esper 1.3.0 40

Esper supports left outer joins, right outer joins and full outer joins between an unlimited number of event
streams. Outer joins can also join reference and historical data as explained in Section 6.12, “Joining Relational
Data via SQL”.

If the outer join is a left outer join, there will be an output event for each event of the stream on the left-hand
side of the clause. For example, in the left outer join shown below we will get output for each event in the
stream RfidEvent, even if the event does not match any event in the event stream OrderList.

select * from net.esper.example.rfid.RfidEvent.win:time(30 sec) as rfid
left outer join
net.esper.example.rfid.OrderList.win:length(10000) as orderlist

on rfid.itemId = orderList.itemId

Similarly, if the join is a Right Outer Join, then there will be an output event for each event of the stream on the
right-hand side of the clause. For example, in the right outer join shown below we will get output for each event
in the stream OrderList, even if the event does not match any event in the event stream RfidEvent.

select * from net.esper.example.rfid.RfidEvent.win:time(30 sec) as rfid
right outer join
net.esper.example.rfid.OrderList.win:length(10000) as orderlist

on rfid.itemId = orderList.itemId

For all types of outer joins, if the join condition is not met, the select list is computed with the event properties
of the arrived event while all other event properties are considered to be null.

select * from net.esper.example.rfid.RfidEvent.win:time(30 sec) as rfid
full outer join
net.esper.example.rfid.OrderList.win:length(10000) as orderlist

on rfid.itemId = orderList.itemId

The last type of outer join is a full outer join. In a full outer join, each point in time that an event arrives to one
of the event streams, one or more output events are produced. In the example below, when either an RfidEvent
or an OrderList event arrive, one or more output event is produced.

6.12. Joining Relational Data via SQL

This chapter outlines how reference data and historical data that are stored in a relational database can be quer-
ied via SQL within EQL statements.

Esper can join and outer join all types of event streams to stored data. In order for such data sources to become
accessible to Esper, some configuration is required. The Section 2.4.5, “Relational Database Access” explains
the required configuration for database access in greater detail, and includes information of configuring a query
result cache.

The following restrictions currently apply:

• Only one event stream and one SQL query can be joined; Joins of two or more event streams with an SQL
query are not yet supported.

• Sub-views on an SQL query are not allowed; That is, one cannot create a time or length window on an SQL
query. However one can use the insert into syntax to make join results available to a further statement.

• Your database software must support JDBC prepared statements that provide statement meta data at com-
pilation time. Most major databases provide this function.

The next sections assume basic knowledge of SQL (Structured Query Language).

EQL Reference

Esper 1.3.0 41

6.12.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of the database and
a parameterized SQL query. The syntax to use in the from-clause of an EQL statement is:

sql:database_name [" parameterized_sql_query "]

The engine uses the database_name identifier to obtain configuration information in order to establish a data-
base connection, as well as settings that control connection creation and removal. Please see Section 2.4.5,
“Relational Database Access” to configure an engine for database access.

Following the database name is the SQL query to execute. The SQL query can contain one or more substitution
parameters. The SQL query string is placed in single brackets [and]. The SQL query can be placed in either
single quotes (') or double quotes ("). The SQL query grammer is passed to your database software unchanged,
allowing you to write any SQL query syntax that your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${event_property_name}. The engine resolves
event_property_name at statement execution time to the actual event property value supplied by the events in
the joined event stream.

The engine determines the type of the SQL query output columns by means of the result set metadata that your
database software returns for the statement. The actual query results are obtained via the getObject on
java.sql.ResultSet.

The sample EQL statement below joins an event stream consisting of CustomerCallEvent events with the res-
ults of an SQL query against the database named MyCustomerDB and table Customer:

select custId, cust_name from CustomerCallEvent,
sql:MyCustomerDB [' select cust_name from Customer where cust_id = ${custId} ']

The example above assumes that CustomerCallEvent supplies an event property named custId. The SQL
query selects the customer name from the Customer table. The where-clause in the SQL matches the Customer
table column cust_id with the value of custId in each CustomerCallEvent event. The engine executes the
SQL query for each new CustomerCallEvent encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event. Else the engine
generates one output event for each row returned by the SQL query. An outer join as described in the next sec-
tion can be used to control whether the engine should generate output events even when the SQL query returns
no rows.

The next example adds a time window of 30 seconds to the event stream CustomerCallEvent. It also renames
the selected properties to customerName and customerId to demonstrate how the naming of columns in an SQL
query can be used in the select clause in the EQL query. And the example uses explicit stream names via the as

keyword.

select customerId, customerName from
CustomerCallEvent.win:time(30 sec) as cce,
sql:MyCustomerDB ["select cust_id as customerId, cust_name as customerName from Customer

where cust_id = ${cce.custId}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events enter the window,
and remove stream (rstream) events as events leave the window. The engine executes the given SQL query for
each CustomerCallEvent in both the insert stream and the remove stream. As a performance optimization, the
istream or rstream keywords in the select-clause can be used to instruct the engine to only join insert stream
or remove stream events, reducing the number of SQL query executions.

EQL Reference

Esper 1.3.0 42

6.12.2. Outer Joins With SQL Queries

You can use outer joins to join data obtained from an SQL query and control when an event is produced. Use a
left outer join, such as in the next statement, if you need an output event for each event regardless of whether or
not the SQL query returns rows. If the SQL query returns no rows, the join result populates null values into the
selected properties.

select custId, custName from
CustomerCallEvent as cce
left outer join
sql:MyCustomerDB ["select cust_id, cust_name as custName

from Customer where cust_id = ${cce.custId}"] as cq
on cce.custId = cq.cust_id

The statement above always generates at least one output event for each CustomerCallEvent, containing all
columns selected by the SQL query, even if the SQL query does not return any rows. Note the on expression
that is required for outer joins. The on acts as an additional filter to rows returned by the SQL query.

6.12.3. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use is to poll or re-
quest data from a database at regular intervals. The next statement is an example that shows a pattern that fires
every 5 seconds to query the NewOrder table for new orders:

insert into NewOrders
select orderId, orderAmount from

pattern [every timer:interval(5 sec)],
sql:MyCustomerDB ['select orderId, orderAmount from NewOrders']

6.12.4. JDBC Implementation Overview

The engine translates SQL queries into JDBC java.sql.PreparedStatement statements by replacing ${name}
parameters with '?' placeholders. It obtains name and type of result columns from the compiled Prepared-

Statement meta data when the EQL statement is created.

The engine supplies parameters to the compiled statement via the setObject method on PreparedStatement.
The engine uses the getObject method on the compiled statement PreparedStatement to obtain column val-
ues.

6.13. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement. These func-
tions can appear anywhere where expressions are allowed.

Esper allows static Java library methods as single-row functions, and also features built-in single-row functions.

Esper auto-imports the following Java library packages:

• java.lang.*
• java.math.*
• java.text.*
• java.util.*

EQL Reference

Esper 1.3.0 43

Thus Java static library methods can be used in all expressions as shown in below example:

select symbol, Math.round(volume/1000)
from StockTickEvent.win:time(30 sec)

In general, arbitrary Java class names have to be fully qualified (e.g. java.lang.Math) but Esper provides a
mechanism for user-controlled imports of classes and packages as outlined in Chapter 2, Configuration.

The below table outlines the built-in single-row functions available.

Table 6.2. Syntax and results of single-row functions

Single-row Function Result

max(expression, expression [, expression ...]) Returns the highest numeric value among the
2 or more comma-separated expressions.

min(expression, expression [, expression ...]) Returns the lowest numeric value among the
2 or more comma-separated expressions.

coalesce(expression, expression [, expression ...]) Returns the first non-null value in the list, or
null if there are no non-null values.

case value
when compare_value then result
[when compare_value then result ...]
[else result]
end

Returns result where the first value equals
compare_value.

case
when condition then result
[when condition then result ...]
[else result]
end

Returns the result for the first condition that
is true.

6.13.1. The Min and Max Functions

The min and max function take two or more parameters that itself can be expressions. The min function returns
the lowest numeric value among the 2 or more comma-separated expressions, while the max function returns the
highest numeric value. The return type is the compatible aggregated type of all return values.

The next example shows the max function that has a Double return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from ...

The min function returns the lowest value. The statement below uses the function to determine the smaller of
two timestamp values.

select symbol, min(ticks.timestamp, news.timestamp) as minT
from StockTickEvent.win:time(30 sec) as ticks, NewsEvent.win:time(30 sec) as news
where ticks.symbol = news.symbol

EQL Reference

Esper 1.3.0 44

6.13.2. The Coalesce Function

The result of the coalesce function is the first expression in a list of expressions that returns a non-null value.
The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo'.

select coalesce(null, 'foo') from ...

6.13.3. The Case Control Flow Function

The case control flow function has two versions. The first version takes a value and a list of compare values to
compare against, and returns the result where the first value equals the compare value. The second version
takes a list of conditions and returns the result for the first condition that is true.

The return type of a case expression is the compatible aggregated type of all return values.

The example below shows the first version of a case statement. It has a String return type and returns the
value 'one'.

select case 1 when 1 then 'one' when 2 then 'two' else 'more' end from ...

The second version of the case function takes a list of conditions. The next example has a Boolean return type
and returns the boolean value true.

select case when 1>0 then true else false end from ...

6.14. Operator Reference

Esper arithmatic and logical operator precedence follows Java standard arithmatic and logical operator preced-
ence.

6.14.1. Arithmatic Operators

The below table outlines the arithmatic operators available.

Table 6.3. Syntax and results of arithmatic operators

Operator Description

+, -
As unary operators they denote a positive or
negative expression. As binary operators they
add or subtract.

*, /
Multiplication and division are binary operat-
ors.

%
Modulo binary operator.

EQL Reference

Esper 1.3.0 45

6.14.2. Logical And Comparsion Operators

The below table outlines the logical and comparison operators available.

Table 6.4. Syntax and results of logical and comparison operators

Operator Description

NOT
Returns true if the following condition is
false, returns false if it is true.

OR
Returns true if either component condition is
true, returns false if both are false.

AND
Returns true if both component conditions are
true, returns false if either is false.

=, !=, <, > <=, >=,
Comparison.

6.14.3. Concatenation Operators

The below table outlines the concatenation operators available.

Table 6.5. Syntax and results of concatenation operators

Operator Description

||
Concatenates character strings

6.14.4. Binary Operators

The below table outlines the binary operators available.

Table 6.6. Syntax and results of binary operators

Operator Description

&
Bitwise AND if both operands are numbers;
conditional AND if both operands are
boolean

|
Bitwise OR if both operands are numbers;
conditional OR if both operands are boolean

^
Bitwise exclusive OR (XOR)

EQL Reference

Esper 1.3.0 46

6.14.5. The 'in' Keyword

The in keyword determines if a given value matches any value in a list. The syntax of the keyword is:

test_expression [not] in (expression [,expression...])

The test_expression is any valid expression. The keyword is followed by a list of expressions to test for a
match. The optional not keyword specifies that the result of the predicate be negated.

The result of an in expression is of type Boolean. If the value of test_expression is equal to any expression
from the comma-separated list, the result value is true. Otherwise, the result value is false. All expressions
must be of the same type as or a compatible type to test_expression.

The next example shows how the in keyword can be applied to select certain command types of RFID events:

select * from RFIDEvent where command in ('OBSERVATION', 'SIGNAL')

The statement is equivalent to:

select * from RFIDEvent where command = 'OBSERVATION' or symbol = 'SIGNAL'

6.14.6. The 'between' Keyword

The between keyword specifies a range to test. The syntax of the keyword is:

test_expression [not] between begin_expression and end_expression

The test_expression is any valid expression and is the expression to test for in the range defined by be-
gin_expression and end_expression. The not keyword specifies that the result of the predicate be negated.

The result of a between expression is of type Boolean. If the value of test_expression is greater then or equal to
the value of begin_expression and less than or equal to the value of end_expression, the result is true.

The next example shows how the between keyword can be used to select events with a price between 55 and 60
(inclusive).

select * from StockTickEvent where price between 55 and 60

The equivalent expression without between is:

select * from StockTickEvent where price >= 55 and price <= 60

And also equivalent to:

select * from StockTickEvent where price between 60 and 55

6.14.7. The 'like' Keyword

The like keyword provides standard SQL pattern matching. SQL pattern matching allows you to use '_' to
match any single character and '%' to match an arbitrary number of characters (including zero characters). In
Esper, SQL patterns are case-sensitive by default. The syntax of like is:

test_expression [not] like pattern_expression [escape string_literal]

EQL Reference

Esper 1.3.0 47

The test_expression is any valid expression yielding a String-type or a numeric result. The optional not

keyword specifies that the result of the predicate be negated. The like keyword is followed by any valid stand-
ard SQL pattern_expression yielding a String-typed result. The optional escape keyword signals the escape
character to escape '_' and '%' values in the pattern.

The result of a like expression is of type Boolean. If the value of test_expression matches the pat-
tern_expression, the result value is true. Otherwise, the result value is false.

An example for the like keyword is below.

select * from PersonLocationEvent where name like '%Jack%'

The escape character can be defined as follows. In this example the where-clause matches events where the suf-
fix property is a single '_' character.

select * from PersonLocationEvent where suffix like '!_' escape '!'

6.14.8. The 'regexp' Keyword

The regexp keyword is a form of pattern matching based on regular expressions implemented through the Java
java.util.regex package. The syntax of regexp is:

test_expression [not] regexp pattern_expression

The test_expression is any valid expression yielding a String-type or a numeric result. The optional not

keyword specifies that the result of the predicate be negated. The regexp keyword is followed by any valid reg-
ular expression pattern_expression yielding a String-typed result.

The result of a regexp expression is of type Boolean. If the value of test_expression matches the regular ex-
pression pattern_expression, the result value is true. Otherwise, the result value is false.

An example for the regexp keyword is below.

select * from PersonLocationEvent where name regexp '*Jack*'

6.15. Build-in views

This chapter outlines the views that are built into Esper.

6.15.1. Window views

Length window

Creates a moving window extending the specified number of elements into the past.

The below example calculates basic univariate statistics for the last 5 stock ticks for symbol IBM.

StockTickEvent(symbol='IBM').win:length(5).stat:uni('price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. The statistics on price is calculated only for the last 10 events for each symbol.

EQL Reference

Esper 1.3.0 48

StockTickEvent.std:groupby('symbol').win:length(10).stat:uni('price')

Time window

Creates a moving time window extending from the specified time interval into the past based on the system
time. This view takes a time period (see Section 6.2.1, “Specifying Time Periods”) or a number of seconds as a
parameter.

For the IBM stock tick events in the last 1 second, calculate statistics on price.

StockTickEvent(symbol='IBM').win:time(1 sec).stat:uni('price')

The following time windows are equivalent specifications:

win:time(2 minutes 5 seconds)
win:time(125 sec)
win:time(125)

Externally-timed window

Similar to the time window this view moving time window extending from the specified time interval into the
past, but based on the millisecond time value supplied by an event property. The view also takes a time period
or a number of seconds as a parameter.

This view holds stock tick events of the last 10 seconds based on the timestamp property in StockTickEvent.

StockTickEvent.win:ext_timed('timestamp', 10 seconds)

Time window buffer

This window view buffers events and releases them every specified time interval in one update. The view takes
a time period or a number of seconds as a parameter.

The below example batches events into a 5 second window releasing new batches every 5 seconds. Listeners to
updates posted by this view receive updated information only every 5 seconds.

StockTickEvent.win:time_batch(5 sec)

6.15.2. Standard view set

Unique

The uniqueview is a view that includes only the most recent among events having the same value for the spe-
cified field.

The below example creates a view that retains only the last event per symbol.

StockTickEvent.std:unique('symbol')

Group By

This view groups events into sub-views by the value of the specified field.

EQL Reference

Esper 1.3.0 49

This example calculates statistics on price separately for each symbol.

StockTickEvent.std:groupby('symbol').stat:uni('price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. Now the statistics on price is calculated only for the last 10 events for each symbol.

StockTickEvent.std:groupby('symbol').win:length(10).stat:uni('price')

Size

This view returns the number of elements in view.

This example view reports the number of events within the last 1 minute.

StockTickEvent.win:time(1 min).std:size()

Last

This view exposes the last element of its parent view.

This example view retains statistics calculated on stock tick price for the symbol IBM.

StockTickEvent(symbol='IBM').stat:uni('price').std:lastevent()

6.15.3. Statistics views

Univariate statistics

This view calculated basic univariate statistics on an event property.

Table 6.7. Univariate statistics derived properties

Property Name Description

count Number of values

sum Sum of values

average Average of values

variance Variance

stdev Sample standard deviation (square root of variance)

stdevpa Population standard deviation

The below example calculates price statistics on stock tick events for the last 10 events.

StockTickEvent.win:length(10).stat:uni('price')

Regression

EQL Reference

Esper 1.3.0 50

This view calculates regression on two event properties.

Table 6.8. Regression derived properties

Property Name Description

slope Slope

yintercept Y Intercept

Calculate slope and y-intercept on price and offer for all events in the last 10 seconds.

StockTickEvent.win:time(10 seconds).stat:linest('price', 'offer')

Correlation

This view calculates the correlation value on two event properties.

Table 6.9. Correlation derived properties

Property Name Description

correl Correlation between two event properties

Calculate correlation on price and offer over all stock tick events for IBM.

StockTickEvent(symbol='IBM').stat:correl('price', 'offer')

Weighted average

This view returns the weighted average given a weight field and a field to compute the average for. Syntax:
weighted_avg(field, weightField)

Table 6.10. Weighted average derived properties

Property Name Description

average Weighted average

Views that derive the volume-weighted average price for the last 3 seconds.

StockTickEvent(symbol='IBM').win:time(3 seconds).stat:weighted_avg('price', 'volume')

Multi-dimensional statistics

This view works similar to the std:groupby views in that it groups information by one or more event proper-
ties. The view accepts 3 or more parameters: The first parameter to the view defines the univariate statistics
values to derive. The second parameter is the property name to derive data from. The remaining parameters
supply the event property names to use to derive dimensions.

EQL Reference

Esper 1.3.0 51

Table 6.11. Multi-dim derived properties

Property Name Description

cube The cube following the interface

The example below derives the count, average and standard deviation latency of service measurement events
per customer.

ServiceMeasurement.stat:multidim_stats({‘count’, ‘average’, ‘stdev’},
'latency', 'customer')

This example derives the average latency of service measurement events per customer, service and error status
for events in the last 30 seconds.

ServiceMeasurement.win:length(30000).stat:multidim_stats({‘average’},
'latency', 'customer', 'service', 'status')

6.15.4. Extension View Set

Sorted Window View

This view sorts by values of the specified event properties and keeps only the top events up to the given size.

The syntax to sort on a single event property is as follows.

sort(propertyName, isDescending, size)

To sort on a multiple event properties the syntax is as follows.

sort({ propertyName, isDescending [, propertyName, isDescending ...] }, size)

The view below sorts on price descending keeping the lowest 10 prices and reporting statistics on price.

StockTickEvent.ext:sort('price', false, 10).stat:uni('price')

The following example sorts events first by price in descending order, and then by symbol name in ascending
(alphabetical) order, keeping only the 10 events with the highest price (with ties resolved by alphabetical order
of symbol).

StockTickEvent.ext:sort({'price', true, 'symbol', false}, 10)

6.16. User-Defined Functions

A user-defined function can be invoked anywhere as an expression itself or within an expresson. The function
must simply be a public static method that the classloader can resolve at statement creation time. The engine re-
solves the function reference at statement creation time and verifies parameter types.

The example below assumes a class MyClass that exposes a public static method myFunction accepting 2 para-
meters, and returing a numeric type such as double.

EQL Reference

Esper 1.3.0 52

select 3 * MyClass.myFunction(price, volume) as myValue
from StockTick.win:time(30 sec)

EQL Reference

Esper 1.3.0 53

Chapter 7. Adapters
This chapter discusses adapters (TODO)

7.1. Adapter

Adapters adapt event executions in the outside world into a format for processing by Esper, and feed events to
Esper.

Currently there are no pre-build adapters available for Esper.

Esper 1.3.0 54

Chapter 8. Indicators

8.1. Intro

Indicators are pluggable modules that communicate the results of event stream processing to the external world.
Indicators can act as visualizers that present a graphical view of their event inputs. They can also be warning
agents (monitors) that send alerts, warnings or other control events to the outside world.

In their implementation indicators can be classes that implement the UpdateListener interface and that can
thus be attached directly to one or more statements. Indicactors can also be attached to one or more EPState-

ment instances. This makes is possible for indicators to merge data as well as pull data from trigger and state-
ment views.

Indicators may be integration components that plug together with other software, an some indicators will be
supplied by Esper. Esper currently only has one indicator module as described below.

8.2. JMX Indicator

The net.esper.indicator.jmx.JMXLastEventIndicator displays the last event in a JMX MBean it registers
with the MBeanServer obtained via ManagementFactory.getPlatformMBeanServer();

Esper 1.3.0 55

Chapter 9. Architecture

9.1. Overview

A (very) high-level view of the architecture: TODO

9.2. Building and Testing

The Esper code base consists of about 300 source code and 270 unit test (as of release 0.7.0) or test support
classes, excluding examples. After build there are over 500 unit test methods that are automatically run to veri-
fy the build. Some of the unit tests assert against performance data taken during the test. These tests are de-
signed to run on a single 2.8 GHz Pentium 4 processor with 512MB memory.

Esper requires the following 3rd-party libraries:

• ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EQL syntax.
Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license is in the lib directory. The library
is required for compile-time only.

• CGLIB is the code generation library for fast method calls. This open source software is under the Apache
license. The Apache 2.0 license is in the lib directory.

• LOG4J and Apache commons logging are logging components. This open source software is under the
Apache license. The Apache 2.0 license is in the lib directory.

• BeanUtils is a JavaBean manipulation library. This open source software is under the Apache license. The
Apache 2.0 license is in the lib directory.

• JUnit is a great unit testing framework. Its license has also been placed in the lib directory. The library is re-
quired for build-time only.

Esper 1.3.0 56

Chapter 10. Examples, Tutorials, Case Studies
The tutorial and case studies are available on the public web site at ht-

tp://esper.codehaus.org/evaluating/evaluating.html.

10.1. Examples Overview

This chapter outlines the examples that come with Esper in the eg/src folder of the distribution. The code for
examples can be found in the net.esper.example packages.

In order to compile and run the samples please follow the below instructions:

1. Make sure Java 1.5 or greater is installed and the JAVA_HOME environment variable is set.

2. Open a console window and change directory to esper/eg/etc.

3. Run "setenv.bat" (Windows) or "setenv.sh" (Unix) to verify your environment settings.

4. Run "compile.bat" (Windows) or "compile.sh" (Unix) to compile the examples.

5. Now you are ready to run the examples. Some examples require mandatory parameters. Further informa-
tion to running each example can be found in the "eg" folder in file "readme.txt".

6. Modify the logger logging level in the "log4j.xml" configuration file changing DEBUG to INFO on a class
or package level to reduce the volume of text output.

JUnit tests exist for the example code. The JUnit test source code for the examples can be found in the eg/test

folder. To build and run the example JUnit tests, use the Maven 2 goal test. The JUnit test source code can
also be helpful in understanding the example and in the use of Esper APIs.

10.2. Market Data Feed Monitor

This example processes a raw market data feed. It reports throughput statistics and detects when the data rate of
a feed falls off unexpectedly. A rate fall-off may mean that the data is stale and we want to alert when there is a
possible problem with the feed.

The classes for this example live in package net.esper.example.marketdatafeed. Run "run_mktdatafeed.bat"
(Windows) or "run_mktdatafeed.sh" (Unix) in the eg/etc folder to start the market data feed simulator.

10.2.1. Input Events

The input stream consists of 1 event stream that contains 2 simulated market data feeds. Each individual event
in the stream indicates the feed that supplies the market data, the security symbol and some pricing information:

String symbol;
FeedEnum feed;
double bidPrice;
double askPrice;

10.2.2. Computing Rates Per Feed

Esper 1.3.0 57

For the throughput statistics and to detect rapid fall-off we calculate a ticks per second rate for each market data
feed.

We can use an EQL statement that specifies a view onto the market data event stream that batches together 1
second of events. We specify the feed and a count of events per feed as output values. To make this data avail-
able for further processing, we insert output events into the TicksPerSecond event stream:

insert into TicksPerSecond
select feed, count(*) as cnt

from MarketDataEvent.win:time_batch(1 second)
group by feed

10.2.3. Detecting a Fall-off

We define a rapid fall-off by alerting when the number of ticks per second for any second falls below 75% of
the average number of ticks per second over the last 10 seconds.

We can compute the average number of ticks per second over the last 10 seconds simply by using the TicksPer-
Second events computed by the prior statement and averaging the last 10 seconds. Next, we compare the cur-
rent rate with the moving average and filter out any rates that fall below 75% of the average:

select feed, avg(cnt) as avgCnt, cnt as feedCnt
from TicksPerSecond.win:time(10 seconds)
group by feed

having cnt < avg(cnt) * 0.75

10.2.4. Event generator

The simulator generates market data events for 2 feeds, feed A and feed B. A target rate parameter defines how
many events for each feed the simulator sends to the engine in each second. Depending on your system, a large
target rate may result in more events to be sent to the engine then your system can handle in one second. In that
case, the target rate will not be achieved. After reaching the target number of events for a given second, the
simulator sleeps the thread for an approximate remainder of the current second.

The simulator generates a number of events per second following the formula target rate * 0.9 + target

rate * 0.2 * random.nextDouble(). This generates a random rate for each feed in a +-10% range within the
target rate.

The rate drop probability parameter specifies the probability in percent that the engine drops the rate for a ran-
domly chosen feed to 60% of the target rate for that second. Thus rate fall-off alerts can be generated.

10.3. Transaction 3-Event Challenge

The classes for this example live in package net.esper.example.transaction. Run "run_txnsim.bat"
(Windows) or "run_txnsim.sh" (Unix) to start the transaction simulator. Please see the readme file in the same
folder for build instructions and command line parameters.

10.3.1. The Events

The use case involves tracking three components of a transaction. It‘s important that we use at least three com-
ponents, since some engines have different performance or coding for only two events per transaction. Each

Examples, Tutorials, Case Studies

Esper 1.3.0 58

component comes to the engine as an event with the following fields:

• Transaction ID
• Time stamp

In addition, we have the following extra fields:

In event A:

• Customer ID

In event C:

• Supplier ID (the ID of the supplier that the order was filled through)

10.3.2. Combined event

We need to take in events A, B and C and produce a single, combined event with the following fields:

• Transaction ID
• Customer ID
• Time stamp from event A
• Time stamp from event B
• Time stamp from event C

What we‘re doing here is matching the transaction IDs on each event, to form an aggregate event. If all these
events were in a relational database, this could be done as a simple SQL join… except that with 10,000 events
per second, you will need some serious database hardware to do it.

10.3.3. Real time summary data

Further, we need to produce the following:

• Min,Max,Average total latency from the events (difference in time between A and C) over the past 30
minutes.

• Min,Max,Average latency grouped by (a) customer ID and (b) supplier ID. In other words, metrics on the
the latency of the orders coming from each customer and going to each supplier.

• Min,Max,Average latency between events A/B (time stamp of B minus A) and B/C (time stamp of C minus
B).

10.3.4. Find problems

We need to detect a transaction that did not make it through all three events. In other words, a transaction with
events A or B, but not C. Note that, in this case, what we care about is event C. The lack of events A or B could
indicate a failure in the event transport and should be ignored. Although the lack of an event C could also be a
transport failure, it merits looking into.

10.3.5. Event generator

To make testing easier, standard and to demonstrate how the example works, the example is including an event
generator. The generator generates events for a given number of transactions, using the following rules:

Examples, Tutorials, Case Studies

Esper 1.3.0 59

• One in 5,000 transactions will skip event A
• One in 1,000 transactions will skip event B
• One in 10,000 transactions will skip event C.
• Transaction identifiers are randomly generated
• Customer and supplier identifiers are randomly chosen from two lists
• The time stamp on each event is based on the system time. Between events A and B as well as B and C,

between 0 and 999 is added to the time. So, we have an expected time difference of around 500 milli-
seconds between each event

• Events are randomly shuffled as described below

To make things harder, we don‘t want transaction events coming in order. This code ensures that they come
completely out of order. To do this, we fill in a bucket with events and, when the bucket is full, we shuffle it.
The buckets are sized so that some transactions‘ events will be split between buckets. So, you have a fairly ran-
domized flow of events, representing the worst case from a big, distributed infrastructure.

The generator lets you change the size of the bucket (small, medium, large, larger, largerer). The larger the
bucket size, the more events potentially come in between two events in a given transaction and so, the more the
performance characteristics like buffers, hashes/indexes and other structures are put to the test as the bucket
size increases.

10.4. J2EE Self-Service Terminal Management

The example is about a J2EE-based self-service terminal managing system in an airport that gets a lot of events
from connected terminals. The event rate is around 500 events per second. Some events indicate abnormal situ-
ations such as 'paper low' or 'terminal out of order'. Other events observe activity as customers use a terminal to
check in and print boarding tickets.

10.4.1. Events

Each self-service terminal can publish any of the 6 events below.

• Checkin - Indicates a customer started a check-in dialog
• Cancelled - Indicates a customer cancelled a check-in dialog
• Completed - Indicates a customer completed a check-in dialog
• OutOfOrder - Indicates the terminal detected a hardware problem
• LowPaper - Indicates the terminal is low on paper
• Status - Indicates terminal status, published every 1 minute regardless of activity as a terminal heartbeat

All events provide information about the terminal that published the event, and a timestamp. The terminal in-
formation is held in a property named "term" and provides a terminal id. Since all events carry similar informa-
tion, we model each event as a subtype to a base class BaseTerminalEvent, which will provide the terminal in-
formation that all events share. This enables us to treat all terminal events polymorphically, that is we can treat
derived event types just like their parent event types. This helps simplify our queries.

All terminals publish Status events every 1 minute. In normal cases, the Status events indicate that a terminal is
alive and online. The absence of status events may indicate that a terminal went offline for some reason and
that may need to be investigated.

10.4.2. Detecting Customer Check-in Issues

A customer may be in the middle of a check-in when the terminal detects a hardware problem or when the net-

Examples, Tutorials, Case Studies

Esper 1.3.0 60

work goes down. In that situation we want to alert a team member to help the customer. When the terminal de-
tects a problem, it issues an OutOfOrder event. A pattern can find situations where the terminal indicates out-
of-order and the customer is in the middle of the check-in process:

select * from pattern [every a=Checkin ->
(OutOfOrder(term.id=a.term.id) and not

(Cancelled(term.id=a.term.id) or Completed(term.id=a.term.id)))]

10.4.3. Absence of Status Events

Since Status events arrive in regular intervals of 60 seconds, we can make us of temporal pattern matching us-
ing timer to find events that didn't arrive. We can use the every operator and timer:interval() to repeat an action
every 60 seconds. Then we combine this with a not operator to check for absence of Status events. A 65 second
interval during which we look for Status events allows 5 seconds to account for a possible delay in transmission
or processing:

select 'terminal 1 is offline' from pattern
[every timer:interval(60 sec) -> (timer:interval(65 sec) and not Status(term.id = 'T1'))]

output first every 5 minutes

10.4.4. Activity Summary Data

By presenting statistical information about terminal activity to our staff in real-time we enable them to monitor
the system and spot problems. The next example query simply gives us a count per event type every 1 minute.
We could further use this data, available through the CountPerType event stream, to join and compare against a
recorded usage pattern, or to just summarize activity in real-time.

insert into CountPerType
select type, count(*) as countPerType
from BaseTerminalEvent.win:time(10 minutes)
group by type
output all every 1 minutes

10.4.5. Sample Application for J2EE Application Server

The example code in the distribution package implements a message-driven enterprise java bean (MDB EJB).
We used an MDB as a convenient place for processing incoming events via a JMS message queue or topic. The
example uses 2 JMS queues: One queue to receive events published by terminals, and a second queue to indic-
ate situations detected via EQL statement and listener back to a receiving process.

This example has been packaged for deployment into a JBoss Java application server (see ht-
tp://www.jboss.org) with default deployment configuration. JBoss is an open-source application server avail-
able under LGPL license. Of course the choice of application server does not indicate a requirement or prefer-
ence for the use of Esper in a J2EE container. Other quality J2EE application servers are available and perhaps
more suitable to run this example or a similar application.

The complete example code can be found in the "eg/terminalsvc" folder of the distribution. The Java package
name is net.esper.example.terminalsvc.

Running the Example

The pre-build EAR file contains the MDB for deployment to a JBoss application server with default deploy-
ment options. The JBoss default configuration provides 2 queues that this example utilizes: queue/A and queue/

Examples, Tutorials, Case Studies

Esper 1.3.0 61

B. The queue/B is used to send events into the MDB, while queue/A is used to indicate back the any data re-
ceived by listeners to EQL statements.

The application can be deployed by copying the ear file in the "eg/terminalsvc/terminalsvc-ear" folder to your
JBoss deployment directory located under the JBoss home directory under "server/default/deploy".

The example contains an event simulator and an event receiver that can be invoked from the command line. See
the folder "eg/terminalsvc/etc" folder readme file and start scripts for Windows and Unix, and the documenta-
tion set for further information on the simulator.

Building the Example

This example requires Maven 2 to build. To build the example, change directory to the folder "eg/terminalsvc"
and type "mvn package". The instructions have been tested with JBoss AS 4.0.4.GA and Maven 2.0.4.

The Maven build packages the EAR file for deployment to a JBoss application server with default deployment
options.

Running the Event Simulator and Receiver

The example also contains an event simulator that generates meaningful events. The simulator can be run from
the directory "eg/terminalsvc/etc" via the command "run_terminalsvc_sender.bat" (Windows) and
"run_terminalsvc_sender.sh" (Linux). The event simulator generates a batch of at least 200 events every 1
second. Randomly, with a chance of 1 in 10 for each batch of events, the simulator generates either an OutO-
fOrder or a LowPaper event for a random terminal. Each batch the simulator generates 100 random terminal ids
and generates a Checkin event for each. It then generates either a Cancelled or a Completed event for each.
With a chance of 1 in 1000, it generates an OutOfOrder event instead of the Cancelled or Completed event for a
terminal.

The event receiver listens to the MDB-outcoming queue for alerts and prints these out to console. The receiver
can be run from the directory "eg/terminalsvc/etc" via the command "run_terminalsvc_receiver.bat" (Windows)
and "run_terminalsvc_receiver.sh" (Linux).

10.5. AutoID RFID Reader

In this example an array of RFID readers sense RFID tags as pallets are coming within the range of one of the
readers. A reader generates XML documents with observation information such as reader sensor ID, observa-
tion time and tags observed. A statement computes the total number of tags per reader sensor ID within the last
60 seconds.

This example demonstrates how XML documents unmarshalled to org.w3c.dom.Node DOM document nodes
can natively be processed by the engine without requiring Java object event representations. The example uses
an XPath expression for an event property counting the number of tags observed by a sensor. The XML docu-
ments follow the AutoID (http://www.autoid.org/) organization standard.

The classes for this example can be found in package net.esper.example.autoid. As events are XML docu-
ments with no Java object representation, the example does not have event classes.

A simulator that can be run from the command line is also available for this example. The simulator generates a
number of XML documents as specified by a command line argument and prints out the totals per sensor. Run
"run_autoid.bat" (Windows) or "run_autoid.sh" (Unix) to start the autoid simulator. Please see the readme file
in the same folder for build instructions and command line parameters.

Examples, Tutorials, Case Studies

Esper 1.3.0 62

The code snippet below shows the simple statement to compute the total number of tags per sensor. The state-
ment is created by class net.esper.example.autoid.RFIDTagsPerSensorStmt.

select ID as sensorId, sum(countTags) as numTagsPerSensor
from AutoIdRFIDExample.win:time(60 seconds)
where Observation[0].Command = 'READ_PALLET_TAGS_ONLY'
group by ID

10.6. StockTicker

The StockTicker example comes from the stock trading domain. The example creates event patterns to filter
stock tick events based on price and symbol. When a stock tick event is encountered that falls outside the lower
or upper price limit, the example simply displays that stock tick event. The price range itself is dynamically cre-
ated and changed. This is accomplished by an event patterns that searches for another event class, the price lim-
it event.

The classes net.esper.example.stockticker.event.StockTick and PriceLimit represent our events. The
event patterns are created by the class net.esper.example.stockticker.monitor.StockTickerMonitor.

Summary:

• Good example to learn the API and get started with event patterns
• Dynamically creates and removes event patterns based on price limit events received
• Simple, highly-performant filter expressions for event properties in the stock tick event such as symbol and

price

10.7. MatchMaker

In the MatchMaker example every mobile user has an X and Y location, a set of properties (gender, hair color,
age range) and a set of preferences (one for each property) to match. The task of the event patterns created by
this example is to detect mobile users that are within proximity given a certain range, and for which the proper-
ties match preferences.

The event class representing mobile users is net.esper.example.matchmaker.event.MobileUserBean. The
net.esper.example.matchmaker.monitor.MatchMakingMonitor class contains the patterns for detecing
matches.

Summary:

• Dynamically creates and removes event patterns based on mobile user events received
• Uses range matching for X and Y properties of mobile user events

10.8. QualityOfService

This example develops some code for measuring quality-of-service levels such as for a service-level agreement
(SLA). A SLA is a contract between 2 parties that defines service constraints such as maximum latency for ser-
vice operations or error rates.

The example measures and monitors operation latency and error counts per customer and operation. When one
of our operations oversteps these constraints, we want to be alerted right away. Additionally, we would like to
have some monitoring in place that checks the health of our service and provides some information on how the

Examples, Tutorials, Case Studies

Esper 1.3.0 63

operations are used.

Some of the constraints we need to check are:

• That the latency (time to finish) of some of the operations is always less then X seconds.
• That the latency average is always less then Y seconds over Z operation invocations.

The net.esper.example.qos_sla.events.OperationMeasurement event class with its latency and status
properties is the main event used for the SLA analysis. The other event LatencyLimit serves to set latency lim-
its on the fly.

The net.esper.example.qos_sla.monitor.AverageLatencyMonitor creates an EQL statement that computes
latency statistics per customer and operation for the last 100 events. The DynaLatencySpikeMonitor uses an
event pattern to listen to spikes in latency with dynamically set limits. The ErrorRateMonitor uses the timer
'at' operator in an event pattern that wakes up periodically and polls the error rate within the last 10 minutes.
The ServiceHealthMonitor simply alerts when 3 errors occur, and the SpikeAndErrorMonitor alerts when a
fixed latency is overstepped or an error status is reported.

Summary:

• This example combines event patterns with EQL statements for event stream analysis.
• Shows the use of the timer 'at' operator and followed-by operator -> in event patterns
• Outlines basic EQL statements
• Shows how to pull data out of EQL statements rather then subscribing to events a statement publishes

10.9. LinearRoad

The Linear Road example is a very incomplete implementation of the Stream Data Management Benchmark [3]
by Standford University.

Linear Road simulates a toll system for the motor vehicle expressways of a large metropolitan area. The main
event in this example is a car location report which the class net.esper.example.linearroad.CarLocEvent

represents. Currently the event stream joins are performed by JUnit test classes in the eg/test folder. See the
net.esper.example.linearroad.TestAccidentNotify and the TestCarSegmentCount classes. Please consider
this a work in progress.

Summary:

• Shows more complex joins between event streams.

10.10. StockTick RSI

The RSI gives you the trend for a stock and for more complete explanation, you can visit the link: ht-
tp://www.stockcharts.com/education/IndicatorAnalysis/indic_RSI.html.

After a definite number of stock events, or accumulation period, the first RSI is computed. Then for each sub-
sequent stock event, the RSI calculations use the previous period’s Average Gain and Loss to determine the
“smoothed RSI”.

Summary:

• Uses a simple event pattern with a filter which feeds a listener that computes the RSI, which publishes
events containing the computed RSI.

Examples, Tutorials, Case Studies

Esper 1.3.0 64

Chapter 11. References

11.1. Reference List

• Luckham, David. 2002. The Power of Events. Addison-Wesley.
• The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide.
• Arasu, Arvind, et.al.. 2004. Linear Road: A Stream Data Management Benchmark, Stanford University ht-

tp://www.cs.brown.edu/research/aurora/Linear_Road_Benchmark_Homepage.html.

Esper 1.3.0 65

	Esper - Java Event Stream Processor
	Table of Contents
	Preface
	Chapter 1. Technology Overview
	1.1. Introduction to CEP and event stream analysis
	1.2. CEP and relational databases
	1.3. The Esper engine for CEP

	Chapter 2. Configuration
	2.1. Programmatic Configuration
	2.2. Configuration via XML File
	2.3. XML Configuration File
	2.4. Configuration Items
	2.4.1. Events represented by Java Classes
	Event type alias to Java class mapping
	Non-JavaBean and Legacy Java Event Classes
	Specifying Event Properties for Java Classes
	Turning off Code Generation

	2.4.2. Events represented by java.util.Map
	2.4.3. Events represented by org.w3c.dom.Node
	Schema Resource
	XPath Property

	2.4.4. Class and package imports
	2.4.5. Relational Database Access
	Connections obtained via DataSource
	Connections obtained via DriverManager
	Connections-level settings
	Connections lifecycle settings
	Cache settings
	LRU Cache
	Expiry-time Cache

	Chapter 3. API Reference
	3.1. API Overview
	3.2. Engine Instances
	3.3. The Administrative Interface
	3.4. The Runtime Interface
	3.5. Time-Keeping Events
	3.6. Events Received from the Engine

	Chapter 4. Event Representations
	4.1. Event Underlying Java Objects
	4.2. Event Properties
	4.3. Plain Java Object Events
	4.3.1. Java Object Event Properties

	4.4. java.util.Map Events
	4.5. org.w3c.dom.Node XML Events

	Chapter 5. Event Pattern Reference
	5.1. Event Pattern Overview
	5.2. How to use Patterns
	5.2.1. Pattern Syntax
	5.2.2. Subscribing to Pattern Events
	5.2.3. Pulling Data from Patterns

	5.3. Filter Expressions
	5.4. Pattern Operators
	5.4.1. Every
	5.4.2. And
	5.4.3. Or
	5.4.4. Not
	5.4.5. Followed-by

	5.5. Pattern Guards
	5.5.1. timer:within

	5.6. Pattern Observers
	5.6.1. timer:interval
	5.6.2. timer:at

	Chapter 6. EQL Reference
	6.1. EQL Introduction
	6.2. EQL Syntax
	6.2.1. Specifying Time Periods

	6.3. Choosing Event Properties And Events: the Select Clause
	6.3.1. Choosing all event properties: select *
	6.3.2. Choosing specific event properties
	6.3.3. Expressions
	6.3.4. Renaming event properties
	6.3.5. Selecting istream and rstream events

	6.4. Specifying Event Streams : the From Clause
	6.4.1. Filter-based event streams
	Specifying an event type
	Specifying event filter criteria

	6.4.2. Pattern-based event streams
	6.4.3. Specifying views

	6.5. Specifying Search Conditions: the Where Clause
	6.6. Aggregates and grouping: the Group-by Clause and the Having Clause
	6.6.1. Using aggregate functions
	6.6.2. Organizing statement results into groups: the Group-by clause
	6.6.3. Selecting groups of events: the Having clause
	6.6.4. How the stream filter, Where, Group By and Having clauses interact

	6.7. Stabilizing and Limiting Output: the Output Clause
	6.7.1. Output Clause Options
	6.7.2. Group By, Having and Output clause interaction

	6.8. Sorting Output: the Order By Clause
	6.9. Merging Streams and Continuous Insertion: the Insert Into Clause
	6.10. Joining Event Streams
	6.11. Outer Joins
	6.12. Joining Relational Data via SQL
	6.12.1. Joining SQL Query Results
	6.12.2. Outer Joins With SQL Queries
	6.12.3. Using Patterns to Request (Poll) Data
	6.12.4. JDBC Implementation Overview

	6.13. Single-row Function Reference
	6.13.1. The Min and Max Functions
	6.13.2. The Coalesce Function
	6.13.3. The Case Control Flow Function

	6.14. Operator Reference
	6.14.1. Arithmatic Operators
	6.14.2. Logical And Comparsion Operators
	6.14.3. Concatenation Operators
	6.14.4. Binary Operators
	6.14.5. The 'in' Keyword
	6.14.6. The 'between' Keyword
	6.14.7. The 'like' Keyword
	6.14.8. The 'regexp' Keyword

	6.15. Build-in views
	6.15.1. Window views
	Length window
	Time window
	Externally-timed window
	Time window buffer

	6.15.2. Standard view set
	Unique
	Group By
	Size
	Last

	6.15.3. Statistics views
	Univariate statistics
	Regression
	Correlation
	Weighted average
	Multi-dimensional statistics

	6.15.4. Extension View Set
	Sorted Window View

	6.16. User-Defined Functions

	Chapter 7. Adapters
	7.1. Adapter

	Chapter 8. Indicators
	8.1. Intro
	8.2. JMX Indicator

	Chapter 9. Architecture
	9.1. Overview
	9.2. Building and Testing

	Chapter 10. Examples, Tutorials, Case Studies
	10.1. Examples Overview
	10.2. Market Data Feed Monitor
	10.2.1. Input Events
	10.2.2. Computing Rates Per Feed
	10.2.3. Detecting a Fall-off
	10.2.4. Event generator

	10.3. Transaction 3-Event Challenge
	10.3.1. The Events
	10.3.2. Combined event
	10.3.3. Real time summary data
	10.3.4. Find problems
	10.3.5. Event generator

	10.4. J2EE Self-Service Terminal Management
	10.4.1. Events
	10.4.2. Detecting Customer Check-in Issues
	10.4.3. Absence of Status Events
	10.4.4. Activity Summary Data
	10.4.5. Sample Application for J2EE Application Server
	Running the Example
	Building the Example
	Running the Event Simulator and Receiver

	10.5. AutoID RFID Reader
	10.6. StockTicker
	10.7. MatchMaker
	10.8. QualityOfService
	10.9. LinearRoad
	10.10. StockTick RSI

	Chapter 11. References
	11.1. Reference List

