
Esper Reference Documentation

Version: 1.11.0

Table of Contents
Preface .. viii
1. Technology Overview .. 1

1.1. Introduction to CEP and event stream analysis ... 1
1.2. CEP and relational databases .. 1
1.3. The Esper engine for CEP ... 1
1.4. Required 3rd Party Libraries ... 2

2. Event Representations ... 3
2.1. Event Underlying Java Objects ... 3
2.2. Event Properties ... 3
2.3. Dynamic Event Properties .. 4
2.4. Plain-Old Java Object Events .. 5

2.4.1. Java Object Event Properties .. 5
2.5. java.util.Map Events ... 7
2.6. org.w3c.dom.Node XML Events ... 8

3. Processing Model .. 10
3.1. Introduction ... 10
3.2. Insert Stream .. 10
3.3. Insert and Remove Stream .. 11
3.4. Filters and Where-clauses ... 12
3.5. Time Windows .. 14

3.5.1. Time Window ... 14
3.5.2. Time Batch ... 15

3.6. Aggregation and Grouping .. 16
3.6.1. Insert and Remove Stream ... 16
3.6.2. Output for Event Batches ... 17

3.6.2.1. Un-aggregated and Un-grouped ... 17
3.6.2.2. Fully Aggregated and Un-grouped ... 18
3.6.2.3. Aggregated and Un-Grouped ... 18
3.6.2.4. Fully Aggregated and Grouped .. 18
3.6.2.5. Aggregated and Grouped ... 18

3.7. EventBean Query Results ... 18
4. EQL Reference: Clauses ... 21

4.1. EQL Introduction ... 21
4.2. EQL Syntax ... 21

4.2.1. Specifying Time Periods .. 22
4.2.2. Using Comments ... 22

4.3. Choosing Event Properties And Events: the Select Clause ... 23
4.3.1. Choosing all event properties: select * .. 23
4.3.2. Choosing specific event properties .. 23
4.3.3. Expressions ... 23
4.3.4. Renaming event properties ... 24
4.3.5. Selecting istream and rstream events ... 24

4.4. Specifying Event Streams : the From Clause .. 24
4.4.1. Filter-based event streams .. 25

4.4.1.1. Specifying an event type ... 25
4.4.1.2. Specifying filter criteria .. 25
4.4.1.3. Filtering Ranges ... 26
4.4.1.4. Filtering Sets of Values ... 27

Esper 1.11.0 ii

4.4.1.5. Filter Limitations .. 27
4.4.2. Pattern-based event streams ... 27
4.4.3. Specifying views ... 28

4.5. Specifying Search Conditions: the Where Clause ... 28
4.6. Aggregates and grouping: the Group-by Clause and the Having Clause 28

4.6.1. Using aggregate functions .. 28
4.6.2. Organizing statement results into groups: the Group-by clause 29
4.6.3. Selecting groups of events: the Having clause ... 31
4.6.4. How the stream filter, Where, Group By and Having clauses interact 31
4.6.5. Comparing the Group By clause and the std:groupby view 32

4.7. Stabilizing and Limiting Output: the Output Clause .. 33
4.7.1. Output Clause Options ... 33
4.7.2. Group By, Having and Output clause interaction ... 33

4.8. Sorting Output: the Order By Clause ... 34
4.9. Merging Streams and Continuous Insertion: the Insert Into Clause 34
4.10. Joining Event Streams .. 35
4.11. Outer Joins ... 36
4.12. Subqueries ... 37

4.12.1. The 'exists' keyword ... 38
4.12.2. The 'in' keyword .. 38

4.13. Joining Relational Data via SQL ... 38
4.13.1. Joining SQL Query Results .. 39
4.13.2. Outer Joins With SQL Queries ... 40
4.13.3. Using Patterns to Request (Poll) Data ... 40
4.13.4. JDBC Implementation Overview .. 40
4.13.5. Oracle Drivers and No-Metadata Workaround ... 40

5. EQL Reference: Patterns .. 42
5.1. Event Pattern Overview .. 42
5.2. How to use Patterns .. 42

5.2.1. Pattern Syntax ... 42
5.2.2. Subscribing to Pattern Events ... 43
5.2.3. Pulling Data from Patterns ... 43

5.3. Operator Precedence ... 44
5.4. Filter Expressions In Patterns .. 44
5.5. Pattern Operators ... 46

5.5.1. Every .. 46
5.5.1.1. Every Operator Example ... 47
5.5.1.2. Sensor Example .. 48

5.5.2. And .. 49
5.5.3. Or ... 49
5.5.4. Not ... 49
5.5.5. Followed-by .. 50

5.6. Pattern Guards ... 50
5.6.1. timer:within .. 50

5.7. Pattern Observers ... 51
5.7.1. timer:interval .. 51
5.7.2. timer:at ... 52

6. EQL Reference: Operators ... 54
6.1. Arithmatic Operators .. 54
6.2. Logical And Comparsion Operators ... 54
6.3. Concatenation Operators ... 54
6.4. Binary Operators .. 55

Esper - Java Event Stream Processor

Esper 1.11.0 iii

6.5. Array Definition Operator ... 55
6.6. The 'in' Keyword .. 56
6.7. The 'between' Keyword .. 56
6.8. The 'like' Keyword ... 57
6.9. The 'regexp' Keyword ... 57

7. EQL Reference: Functions .. 58
7.1. Single-row Function Reference ... 58

7.1.1. The Case Control Flow Function .. 59
7.1.2. The Cast Function ... 59
7.1.3. The Coalesce Function ... 60
7.1.4. The Current_Timestamp Function .. 60
7.1.5. The Exists Function ... 61
7.1.6. The Instance-Of Function ... 61
7.1.7. The Min and Max Functions .. 62
7.1.8. The Previous Function ... 62

7.1.8.1. Previous Event per Group ... 62
7.1.8.2. Restrictions .. 63
7.1.8.3. Comparison to the prior Function ... 63

7.1.9. The Prior Function ... 63
7.2. Aggregate Functions ... 64
7.3. User-Defined Functions .. 64

8. EQL Reference: Views .. 66
8.1. Window views ... 66

8.1.1. Length window (win:length) .. 66
8.1.2. Length window batch (win:length_batch) .. 66
8.1.3. Time window (win:time) .. 66
8.1.4. Externally-timed window (win:ext_timed) .. 67
8.1.5. Time window batch (win:time_batch) ... 67

8.2. Standard view set ... 67
8.2.1. Unique (std:unique) ... 67
8.2.2. Group By (std:groupby) ... 68
8.2.3. Size (std:size) .. 69
8.2.4. Last (std:lastevent) .. 69

8.3. Statistics views .. 69
8.3.1. Univariate statistics (stat:uni) ... 69
8.3.2. Regression (stat:linest) ... 70
8.3.3. Correlation (stat:correl) .. 70
8.3.4. Weighted average (stat:weighted_avg) .. 71
8.3.5. Multi-dimensional statistics (stat:cube) ... 71

8.4. Extension View Set .. 72
8.4.1. Sorted Window View (ext:sort) .. 72

9. API Reference ... 73
9.1. API Overview .. 73
9.2. Engine Instances .. 73
9.3. The Administrative Interface ... 73

9.3.1. Creating Statements ... 73
9.3.2. Adding Listeners ... 74
9.3.3. Using Iterators ... 74
9.3.4. Managing Statements ... 75
9.3.5. Runtime Engine Configuration ... 75

9.4. The Runtime Interface .. 75
9.5. Time-Keeping Events ... 76

Esper - Java Event Stream Processor

Esper 1.11.0 iv

9.6. Events Received from the Engine .. 76
9.7. Engine Threading and Concurrency ... 78
9.8. Statement Object Model ... 79

9.8.1. Building an Object Model .. 79
9.8.2. Building Complex Expressions ... 80
9.8.3. Building Patterns ... 81
9.8.4. Building Complete Statements ... 81

9.9. Prepared Statement and Substitution Parameters .. 81
10. Configuration .. 83

10.1. Programmatic Configuration ... 83
10.2. Configuration via XML File .. 83
10.3. XML Configuration File ... 84
10.4. Configuration Items .. 84

10.4.1. Events represented by Java Classes ... 84
10.4.1.1. Package of Java Event Classes ... 84
10.4.1.2. Event type alias to Java class mapping ... 84
10.4.1.3. Non-JavaBean and Legacy Java Event Classes .. 85
10.4.1.4. Specifying Event Properties for Java Classes .. 86
10.4.1.5. Turning off Code Generation ... 86
10.4.1.6. Case Sensitivity and Property Names ... 86

10.4.2. Events represented by java.util.Map .. 87
10.4.3. Events represented by org.w3c.dom.Node ... 88

10.4.3.1. Schema Resource .. 89
10.4.3.2. XPath Property ... 89
10.4.3.3. Absolute or Deep Property Resolution .. 90

10.4.4. Class and package imports ... 90
10.4.5. Relational Database Access .. 91

10.4.5.1. Connections obtained via DataSource ... 91
10.4.5.2. Connections obtained via DriverManager ... 91
10.4.5.3. Connections-level settings ... 92
10.4.5.4. Connections lifecycle settings .. 92
10.4.5.5. Cache settings ... 92
10.4.5.6. Column Change Case .. 93
10.4.5.7. SQL Types Mapping ... 93
10.4.5.8. Metadata Origin .. 94

10.4.6. Engine Settings related to Concurrency and Threading ... 94
10.4.6.1. Preserving the order of events delivered to listeners 94
10.4.6.2. Preserving the order of events for insert-into streams 95
10.4.6.3. Internal Timer Settings .. 95

10.4.7. Engine Settings related to Event Metadata ... 95
10.4.7.1. Java Class Property Names and Case Sensitivity ... 95

10.4.8. Engine Settings related to View Resources .. 96
10.4.8.1. Sharing View Resources between Statements ... 96

10.4.9. Engine Settings related to Logging ... 96
10.4.9.1. Execution Path Debug Logging ... 96

11. Extension and Plug-in ... 97
11.1. Overview ... 97
11.2. Custom View Implementation ... 97

11.2.1. Implementing a View Factory .. 97
11.2.2. Implementing a View ... 98
11.2.3. Configuring View Namespace and Name .. 100

11.3. Custom Aggregation Functions ... 100

Esper - Java Event Stream Processor

Esper 1.11.0 v

11.3.1. Implementing an Aggregation Function .. 100
11.3.2. Configuring Aggregation Function Name .. 102

11.4. Custom Pattern Guard ... 102
11.4.1. Implementing a Guard Factory ... 102
11.4.2. Implementing a Guard Class ... 103
11.4.3. Configuring Guard Namespace and Name ... 104

11.5. Custom Pattern Observer .. 104
11.5.1. Implementing an Observer Factory ... 104
11.5.2. Implementing an Observer Class .. 105
11.5.3. Configuring Observer Namespace and Name ... 106

12. Examples, Tutorials, Case Studies ... 107
12.1. Examples Overview ... 107
12.2. Market Data Feed Monitor .. 107

12.2.1. Input Events .. 107
12.2.2. Computing Rates Per Feed ... 107
12.2.3. Detecting a Fall-off .. 108
12.2.4. Event generator ... 108

12.3. Transaction 3-Event Challenge .. 108
12.3.1. The Events .. 108
12.3.2. Combined event .. 109
12.3.3. Real time summary data ... 109
12.3.4. Find problems ... 109
12.3.5. Event generator ... 109

12.4. J2EE Self-Service Terminal Management .. 110
12.4.1. Events ... 110
12.4.2. Detecting Customer Check-in Issues ... 110
12.4.3. Absence of Status Events ... 111
12.4.4. Activity Summary Data .. 111
12.4.5. Sample Application for J2EE Application Server ... 111

12.4.5.1. Running the Example .. 111
12.4.5.2. Building the Example .. 112
12.4.5.3. Running the Event Simulator and Receiver ... 112

12.5. Assets Moving Across Zones - An RFID Example ... 112
12.6. AutoID RFID Reader generating XML documents ... 113
12.7. StockTicker ... 113
12.8. MatchMaker .. 113
12.9. QualityOfService ... 114
12.10. LinearRoad .. 114
12.11. StockTick RSI .. 115

13. Performance .. 116
13.1. Performance Results ... 116
13.2. Performance Tips ... 116

13.2.1. Understand how to tune your Java virtual machine ... 116
13.2.2. Compare Esper to other solutions ... 116
13.2.3. Select the underlying event rather than individual fields 117
13.2.4. Prefer stream-level filtering over post-data-window filtering 117
13.2.5. Reduce the use of arithmetic in expressions ... 118
13.2.6. Consider using EventPropertyGetter for fast access to event properties 118
13.2.7. Consider casting the underlying event ... 119
13.2.8. Turn off logging .. 119

13.3. Using the performance kit ... 119
13.3.1. How to use the performance kit .. 119

Esper - Java Event Stream Processor

Esper 1.11.0 vi

13.3.2. How we use the performance kit ... 122
14. References ... 123

14.1. Reference List .. 123

Esper - Java Event Stream Processor

Esper 1.11.0 vii

Preface
Analyzing and reacting to information in real-time oftentimes requires the development of custom applications.
Typically these applications must obtain the data to analyze, filter data, derive information and then indicate
this information through some form of presentation or communication. Data may arrive with high frequency re-
quiring high throughput processing. And applications may need to be flexible and react to changes in require-
ments while the data is processed. Esper is an event stream processor that aims to enable a short development
cycle from inception to production for these types of applications.

This document is a resource for software developers who develop event driven applications. It also contains in-
formation that is useful for business analysts and system architects who are evaluating Esper.

It is assumed that the reader is familiar with the Java programming language.

This document is relevant in all phases of your software development project: from design to deployment and
support.

If you are new to Esper, please follow these steps:

1. Read the tutorials, case studies and solution patterns available on the Esper public web site at ht-

tp://esper.codehaus.org

2. Read Section 1.1, “Introduction to CEP and event stream analysis” if you are new to CEP and ESP
(complex event processing, event stream processing)

3. Read Chapter 2, Event Representations that explains the different ways of representing events to Esper

4. Read Chapter 3, Processing Model to gain insight into EQL continuous query results

5. Read Section 4.1, “EQL Introduction” for an introduction to event stream processing via EQL

6. Read Section 5.1, “Event Pattern Overview” for an overview over event patterns

7. Then glance over the examples Section 12.1, “Examples Overview”

8. Finally to test drive Esper performance, read Chapter 13, Performance

Esper 1.11.0 viii

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze and react to
events. Some typical examples of applications are:

• Business process management and automation (process monitoring, BAM, reporting exceptions)
• Finance (algorithmic trading, fraud detection, risk management)
• Network and application monitoring (intrusion detection, SLA monitoring)
• Sensor network applications (RFID reading, scheduling and control of fabrication lines, air traffic)

What these applications have in common is the requirement to process events (or messages) in real-time or near
real-time. This is sometimes referred to as complex event processing (CEP) and event stream analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the logic required.

• High throughput - applications that process large volumes of messages (between 1,000 to 100k messages
per second)

• Low latency - applications that react in real-time to conditions that occur (from a few milliseconds to a few
seconds)

• Complex computations - applications that detect patterns among events (event correlation), filter events, ag-
gregate time or length windows of events, join event streams, trigger based on absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in which most data is
fairly static and complex queries are less frequent. Also, most databases store all data on disks (except for in-
memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the data 10 times per
second it must fire the query 10 times per second. This does not scale well to hundreds or thousands of queries
per second.

Database triggers can be used to fire in response to database update events. However database triggers tend to
be slow and often cannot easily perform complex condition checking and implement logic to react.

In-memory databases may be better suited to CEP applications then traditional relational database as they gen-
erally have good query performance. Yet they are not optimized to provide immediate, real-time query results
required for CEP and event stream analysis.

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and running quer-
ies against stored data, the Esper engine allows applications to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur that match queries. The execution model is thus con-
tinuous rather then only when a query is submitted.

Esper 1.11.0 1

Esper provides two principal methods or mechanisms to process events: event patterns and event stream quer-
ies.

Esper offers an event pattern language to specify expression-based event pattern matching. Underlying the pat-
tern matching engine is a state machine implementation. This method of event processing matches expected se-
quences of presence or absence of events or combinations of events. It includes time-based correlation of
events.

Esper also offers event stream queries that address the event stream analysis requirements of CEP applications.
Event stream queries provide the windows, aggregation, joining and analysis functions for use with streams of
events. These queries are following the EQL syntax. EQL has been designed for similarity with the SQL query
language but differs from SQL in its use of views rather then tables. Views represent the different operations
needed to structure data in an event stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

1.4. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

• ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EQL syntax.
Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license is in the lib directory. The library
is required for compile-time only.

• CGLIB is the code generation library for fast method calls. This open source software is under the Apache
license. The Apache 2.0 license is in the lib directory.

• LOG4J and Apache commons logging are logging components. This open source software is under the
Apache license. The Apache 2.0 license is in the lib directory.

Esper requires the following 3rd-party libraries at compile-time and for running the test suite:

• JUnit is a great unit testing framework. Its license has also been placed in the lib directory. The library is re-
quired for build-time only.

• MySQL connector library is used for testing SQL integration and is required for running the automated test
suite.

Technology Overview

Esper 1.11.0 2

Chapter 2. Event Representations

2.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. Event properties capture the
state information for an event. An event is represented by either a POJO (plain-old Java object), a
java.util.Map or a XML document via org.w3c.dom.Node.

In Esper, an event can be represented by any of the following underlying Java objects:

Table 2.1. Event Underlying Java Objects

Java Class Description

java.lang.Object Any Java POJO (plain-old java object) with getter methods
following JavaBean conventions; Legacy Java classes not fol-
lowing JavaBean conventions can also serve as events .

java.util.Map Map events are key-values pairs

org.w3c.dom.Node XML document object model (DOM)

2.2. Event Properties

Event properties capture the state information for an event. Event properties be simple as well as indexed,
mapped and nested event properties. The table below outlines the different types of properties and their syntax
in an event expression. This syntax allows statements to query deep JavaBean objects graphs, XML structures
and Map events.

Table 2.2. Types of Event Properties

Type Description Syntax Example

Simple A property that has a single value that
may be retrieved. name sensorId

Indexed An indexed property stores an ordered
collection of objects (all of the same
type) that can be individually accessed
by an integer-valued, non-negative index
(or subscript).

name[index] sensor[0]

Mapped A mapped property stores a keyed col-
lection of objects (all of the same type). name('key') sensor('light')

Nested A nested property is a property that lives
within another property of an event. name.nestedname sensor.value

Combinations are also possible. For example, a valid combination could be per-

Esper 1.11.0 3

son.address('home').street[0].

2.3. Dynamic Event Properties

Dynamic (unchecked) properties are event properties that need not be known at statement compilation time.
Such properties are resolved during runtime.

The idea behind dynamic properties is that for a given underlying event representation we don't always know
all properties in advance. An underlying event may have additional properties that are not known at statement
compilation time, that we want to query on. The concept is especially useful for events that represent rich, ob-
ject-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed, mapped and nes-
ted properties can also be dynamic properties:

Table 2.3. Types of Event Properties

Type Syntax

Dynamic Simple
name?

Dynamic Indexed
name[index]?

Dynamic Mapped
name('key')?

Dynamic Nested
name?.nestedPropertyName

Dynamic properties always return the java.lang.Object type. Also, dynamic properties return a null value if
the dynamic property does not exist on events processed at runtime.

As an example, consider an OrderEvent event that provides an "item" property. The "item" property is of type
Object and holds a reference to an instance of either a Service or Product.

Assume that both Service and Product classes provide a property named "price". Via a dynamic property we
can specify a query that obtains the price property from either object (Service or Product):

select item.price? from OrderEvent

As a second example, assume that the Service class contains a "serviceName" property that the Product class
does not possess. The following query returns the value of the "serviceName" property for Service objects. It
returns a null-value for Product objects that do not have the "serviceName" property:

select item.serviceName? from OrderEvent

Consider the case where OrderEvent has multiple implementation classes, some of which have a "timestamp"
property. The next query returns the timestamp property of those implementations of the OrderEvent interface
that feature the property:

select timestamp? from OrderEvent

Event Representations

Esper 1.11.0 4

The query as above returns a single column named "timestamp?" of type Object.

When dynamic properties are nested, then all properties under the dynamic property are also considered dy-
namic properties. In the below example the query asks for the "direction" property of the object returned by the
"detail" dynamic property:

select detail?.direction from OrderEvent
// equivalent to
select detail?.direction? from OrderEvent

The functions that are often useful in conjunction with dynamic properties are:

• The cast function casts the value of a dynamic property (or the value of an expression) to a given type.

• The exists function checks whether a dynamic property exists. It returns true if the event has a property of
that name, or false if the property does not exist on that event.

• The instanceof function checks whether the value of a dynamic property (or the value of an expression) is
of any of the given types.

Dynamic event properties work with all event representations outlined next: Java objects, Map-based and XML
DOM-based events.

2.4. Plain-Old Java Object Events

Plain-old Java object events are object instances that expose event properties through JavaBeans-style getter
methods. Events classes or interfaces do not have to be fully compliant to the JavaBean specification; however
for the Esper engine to obtain event properties, the required JavaBean getter methods must be present.

Esper supports JavaBeans-style event classes that extend a superclass or implement one or more interfaces.
Also, Esper event pattern and EQL statements can refer to Java interface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state change or action
that occurred in the past, the relevant event properties should not be changeable. However this is not a hard re-
quirement and the Esper engine accepts events that are mutable as well.

The hashCode and equals methods do not need to be implemented. The implementation of these methods by a
Java event class does not affect the behavior of the engine in any way.

Please see Chapter 10, Configuration on options for naming event types represented by Java object event
classes.

2.4.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans specification, and
some of which are uniquely supported by Esper:

• Simple properties have a single value that may be retrieved. The underlying property type might be a Java
language primitive (such as int, a simple object (such as a java.lang.String), or a more complex object
whose class is defined either by the Java language, by the application, or by a class library included with the
application.

• Indexed - An indexed property stores an ordered collection of objects (all of the same type) that can be indi-

Event Representations

Esper 1.11.0 5

vidually accessed by an integer-valued, non-negative index (or subscript). Alternatively, the entire set of
values may be retrieved using an array.

• Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that accepts a String-
valued key a mapped property.

• Nested - A nested property is a property that lives within another Java object which itself is a property of an
event.

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed properties in this ex-
ample return Java objects but could also return Java language primitive types (such as int or String). The Ad-
dress object and Employee objects can themselves have properties that are nested within them, such as a street-
Name in the Address object or a name of the employee in the Employee object.

public class EmployeeEvent {
public String getFirstName();
public Address getAddress(String type);
public Employee getSubordinate(int index);
public Employee[] getAllSubordinates();

}

Simple event properties require a getter-method that returns the property value. In this example, the getFirst-

Name getter method returns the firstName event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes an integer-
type key value and returns the property value, such as the getSubordinate method. Or a method that returns an
array-type such as the getSubordinates getter method, which returns an array of Employee. In an EQL or
event pattern statement, indexed properties are accessed via the property[index] syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns the property
value, such as the getAddress method. In an EQL or event pattern statement, mapped properties are accessed
via the property('key') syntax.

Nested event properties require a getter-method that returns the nesting object. The getAddress and getSubor-

dinate methods are mapped and indexed properties that return a nesting object. In an EQL or event pattern
statement, nested properties are accessed via the property.nestedProperty syntax.

All event pattern and EQL statements allow the use of indexed, mapped and nested properties (or a combina-
tion of these) anywhere where one or more event property names are expected. The below example shows dif-
ferent combinations of indexed, mapped and nested properties in filters of event pattern expressions:

every EmployeeEvent(firstName='myName')
every EmployeeEvent(address('home').streetName='Park Avenue')
every EmployeeEvent(subordinate[0].name='anotherName')
every EmployeeEvent(allSubordinates[1].name='thatName')
every EmployeeEvent(subordinate[0].address('home').streetName='Water Street')

Similarly, the syntax can be used in EQL statements in all places where an event property name is expected,
such as in select lists, where-clauses or join criteria.

select firstName, address('work'), subordinate[0].name, subordinate[1].name
from EmployeeEvent
where address('work').streetName = 'Park Ave'

Property names follows Java standards: the class java.beans.Introspector and method getBeanInfo returns
the property names as derived from the name of getter methods. In addition, Esper configuration provides a flag
to turn off case-sensitive property names. A sample list of getter methods and property names is:

Event Representations

Esper 1.11.0 6

Table 2.4. JavaBeans-style Getter Methods and Property Names

Method Property Name Example

getPrice() price
select price from MyEvent

getNAME() NAME
select NAME from MyEvent

getItemDesc() itemDesc
select itemDesc from MyEvent

getQ() q
select q from MyEvent

getQN() QN
select QN from MyEvent

getqn() qn
select qn from MyEvent

gets() s
select s from MyEvent

Event properties that are enumeration values can be compared by means of the Enumeration valueOf method
on the java.lang.Enum class. An example could look as follows:

every MyEvent(enumProp=EnumClass.valueOf('ENUM_VALUE_1'))

Java classes that do not follow JavaBean conventions, such as legacy Java classes that expose public fields, or
methods not following naming conventions, require additional configuration. Via configuration it is also pos-
sible to control case sensitivity in property name resolution. The relevant section in the chapter on configura-
tion is Section 10.4.1.3, “Non-JavaBean and Legacy Java Event Classes”.

2.5. java.util.Map Events

Events can also be represented by objects that implement the java.util.Map interface. Event properties of Map
events are the values in the map accessible through the get method exposed by the java.util.Map interface.

The engine can process java.util.Map events via the sendEvent(Map map, String eventTypeAlias) method
on the EPRuntime interface. Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property names specified by pattern or EQL state-
ments.

Map event properties can be of any type. Map event properties that are Java application objects or that are of
type java.util.Map offer additional power:

• Properties that are Java application objects can be queried via the nested, indexed, mapped and dynamic
property syntax as outlined earlier.

• Properties that are of type Map allow Maps to be nested arbitrarily deep and thus can be used to represent
complex domain information. The nested, indexed, mapped and dynamic property syntax can be used to
query Maps within Maps..

Event Representations

Esper 1.11.0 7

In order to use Map events, the event type name and property names and types must be made known to the en-
gine via Configuration. Please see the examples in Section 10.4.2, “Events represented by java.util.Map”.

The code snippet below creates and processes a Map event. The example assumes the CarLocationUpdateEvent

event type alias has been configured.

Map event = new HashMap();
event.put("carId", carId);
event.put("direction", direction);
epRuntime.sendEvent(event, "CarLocUpdateEvent");

The CarLocUpdateEvent can now be used in a statement:

select carId from CarLocUpdateEvent.win:time(1 min) where direction = 1

The engine can also query Java objects as values in a Map event via the nested property syntax. Thus Map events
can be used to aggregate multiple data structures into a single event and query the composite information in a
convenient way. The example below demonstrates a Map event with a transaction and an account object.

Map event = new HashMap();
event.put("txn", txn);
event.put("account", account);
epRuntime.sendEvent(event, "TxnEvent");

An example statement could look as follows.

select account.id, account.rate * txn.amount from TxnEvent.win:time(60 sec) group by account.id

2.6. org.w3c.dom.Node XML Events

Events can also be represented as org.w3c.dom.Node instances and send into the engine via the sendEvent

method on EPRuntime. Please note that configuration is required for allowing the engine to map the event type
alias to Node element names. See Chapter 10, Configuration.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.
For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against org.w3c.dom.Node

events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphs or java.util.Map events.

Let's look at how a sample XML document could be queried, given the sample XML below.

<?xml version="1.0" encoding="UTF-8"?>
<Sensor>

<ID>urn:epc:1:4.16.36<ID>
<Observation Command="READ_PALLET_TAGS_ONLY">

<ID>00000001<ID>
<Tag>

<ID>urn:epc:1:2.24.400<ID>
</Tag>
<Tag>

<ID>urn:epc:1:2.24.401<ID>
</Tag>

</Observation>

Event Representations

Esper 1.11.0 8

</Sensor>

To configure the engine for processing Sensor documents, simply configure a SensorEvent event type alias for
the Sensor element name via Configuration. Now the document can be queried as below.

select ID, Observation.ID, Observation.Command, Observation.Tag[0], countTags
from SensorEvent.win:time(30 sec)

The equivalent XPath expressions to each of the properties are listed below.

• The equivalent XPath expression to Observeration.ID is /Sensor/Observation/ID
• The equivalent XPath expression to Observeration.Command is /Sensor/Observation/@Command
• The equivalent XPath expression to Observeration.Tag[0] is /Sensor/Observation/Tag[position() =

1]

• The equivalent XPath expression to countTags is count(/Sensor/Observation/Tag) for returning a count
of tag elements. This assumes the countTags property has been configured as an XPath property.

By specifying an event property such below:

nestedElement.mappedElement('key').indexedElement[1]

The equivalent XPath expression is as follows:

/simpleEvent/nestedElement/mappedElement[@id='key']/indexedElement[position() = 2]

Event Representations

Esper 1.11.0 9

Chapter 3. Processing Model

3.1. Introduction

The Esper processing model is continuous: Update listeners to statements receive updated data as soon as the
engine processes events for that statement, according to the statement's choice of event streams, views, filters
and output rates.

As outlined in Chapter 9, API Reference the interface for listeners is net.esper.client.UpdateListener. Im-
plementations must provide a single update method that the engine invokes when results become available:

The engine provides statement results to update listeners by placing results in net.esper.event.EventBean in-
stances. A typical listener implementation queries the EventBean instances via getter methods to obtain the
statement-generated results.

The get method on the EventBean interface can be used to retrieve result columns by name. The property name
supplied to the get method can also be used to query nested, indexed or array properties of object graphs as dis-
cussed in more detail in Chapter 2, Event Representations.

The getUnderlying method on the EventBean interface allows update listeners to obtain the underlying event
object. For wildcard selects, the underlying event is the event object that was sent into the engine via the
sendEvent method. For joins and select clauses with expressions, the underlying object implements
java.util.Map.

3.2. Insert Stream

In this section we look at the output of a very simple EQL statement. The statement selects an event stream
without using a data window and without applying any filtering, as follows:

select * from Withdrawal

This statement selects all Withdrawal events. Every time the engine processes an event of type Withdrawal or
any sub-type of Withdrawal, it invokes all update listeners, handing the new event to each of the statement's
listeners.

The term insert stream denotes the new events arriving, and entering a data window or aggregation. The insert
stream in this example is the stream of arriving Withdrawal events, and is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in parenthesis is
the withdrawal amount, an event property that is used in the examples that discuss filtering.

Esper 1.11.0 10

Figure 3.1. Output example for a simple statement

The example statement above results in only new events and no old events posted by the engine to the state-
ment's listeners.

3.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next statement applies a
length window onto the Withdrawal event stream. The statement serves to illustrate the concept of data window
and events entering and leaving a data window:

select * from Withdrawal.win:length(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal events into
the length window. When the length window is full, the oldest Withdrawal event is pushed out the window.
The engine indicates to listeners all events entering the window as new events, and all events leaving the win-
dow as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events leaving a data
window, or changing aggregation values. In this example, the remove stream is the stream of Withdrawal
events that leave the length window, and such events are posted to listeners as old events.

The next diagram illustrates how the length window contents change as events arrive and shows the events pos-
ted to an update listener.

Processing Model

Esper 1.11.0 11

Figure 3.2. Output example for a length window

As before, all arriving events are posted as new events to listeners. In addition, when event W
1

leaves the
length window on arrival of event W

6
, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time period. A time
window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds pass, the time window act-
ively pushes the oldest events out of the window resulting in one or more old events posted to update listeners.

Note EQL supports optional istream and rstream keywords on select-clauses and on insert-into clauses. These
instruct the engine to only forward events that enter or leave data windows, or select only current or prior ag-
gregation values, i.e. the insert stream or the remove stream.

3.4. Filters and Where-clauses

Filters to event streams allow filtering events out of a given stream before events enter a data window. The
statement below shows a filter that selects Withdrawal events with an amount value of 200 or more.

select * from Withdrawal(amount>=200).win:length(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length window and
are therefore not passed to update listeners. Filters are discussed in more detail in Section 4.4.1, “Filter-based
event streams” and Section 5.4, “Filter Expressions In Patterns”.

Processing Model

Esper 1.11.0 12

Figure 3.3. Output example for a statement with an event stream filter

The where-clause and having-clause in statements eliminate potential result rows at a later stage in processing,
after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed in more detail in
Section 4.5, “Specifying Search Conditions: the Where Clause”.

select * from Withdrawal.win:length(5) where amount >= 200

The where-clause applies to both new events and old events. As the diagram below shows, arriving events enter
the window however only events that pass the where-clause are handed to update listeners. Also, as events
leave the data window, only those events that pass the conditions in the where-clause are posted to listeners as
old events.

Processing Model

Esper 1.11.0 13

Figure 3.4. Output example for a statement with where-clause

The where-clause can contain complex conditions while event stream filters are more restrictive in the type of
filters that can be specified. The next statement's where-clause applies the ceil function of the java.lang.Math

Java library class in the where clause. The insert-into clause makes the results of the first statement available to
the second statement:

insert into WithdrawalFiltered select * from Withdrawal where Math.ceil(amount) >= 200

select * from WithdrawalFiltered

3.5. Time Windows

In this section we explain the output model of statements employing a time window view and a time batch
view.

3.5.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on the system
time. Time windows enable us to limit the number of events considered by a query, as do length windows.

As a practical example, consider the need to determine all accounts where the average withdrawal amount per
account for the last 4 seconds of withdrawals is greater then 1000. The statement to solve this problem is shown
below.

select account, avg(amount)
from Withdrawal.win:time(4 sec)
group by account
having amount > 1000

Processing Model

Esper 1.11.0 14

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume a query
that simply selects the event itself and does not group or filter events.

select * from Withdrawal.win:time(4 sec)

The diagram starts at a given time t and displays the contents of the time window at t + 4 and t + 5 seconds

and so on.

Figure 3.5. Output example for a statement with a time window

The activity as illustrated by the diagram:

1. At time t + 4 seconds an event W
1

arrives and enters the time window. The engine reports the new event
to update listeners.

2. At time t + 5 seconds an event W
2

arrives and enters the time window. The engine reports the new event
to update listeners.

3. At time t + 6.5 seconds an event W
3

arrives and enters the time window. The engine reports the new
event to update listeners.

4. At time t + 8 seconds event W
1

leaves the time window. The engine reports the event as an old event to
update listeners.

3.5.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update. Time win-
dows control the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of a time batch view. For the diagram, we assume a simple

Processing Model

Esper 1.11.0 15

query as below:

select * from Withdrawal.win:time_batch(4 sec)

The diagram starts at a given time t and displays the contents of the time window at t + 4 and t + 5 seconds

and so on.

Figure 3.6. Output example for a statement with a time batch view

The activity as illustrated by the diagram:

1. At time t + 1 seconds an event W
1

arrives and enters the batch. No call to inform update listeners occurs.

2. At time t + 3 seconds an event W
2

arrives and enters the batch. No call to inform update listeners occurs.

3. At time t + 4 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports events W

1
and W

2
to update listeners.

4. At time t + 6.5 seconds an event W
3

arrives and enters the batch. No call to inform update listeners oc-
curs.

5. At time t + 8 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports the event W

3
as new data to update listeners. The engine reports the events W

1
and W

2
as old data (prior

batch) to update listeners.

3.6. Aggregation and Grouping

3.6.1. Insert and Remove Stream

Processing Model

Esper 1.11.0 16

Statements that aggregate events via aggregations functions also post remove stream events as aggregated val-
ues change.

Consider the following statement that alerts when 2 Withdrawal events have been received:

select count(*) as mycount from Withdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update listeners. The
value of the "mycount" property on that new event is 2. Additionally, when the engine encounters the third
Withdrawal event, it posts an old event to update listeners containing the prior value of the count. The value of
the "mycount" property on that old event is also 2.

The istream or rstream keyword can be used to eliminate either new events or old events posted to listeners.
The next statement uses the istream keyword causing the engine to call the listener only once when the second
Withdrawal event is received:

select istream count(*) as mycount from Withdrawal having count(*) = 2

3.6.2. Output for Event Batches

The built-in data windows that act on batches of events are the win:time_batch and the win:length_batch

views. The win:time_batch data window collects events arriving during a given time interval and posts collec-
ted events as a batch to listeners at the end of the time interval. The win:length_batch data window collects a
given number of events and posts collected events as a batch to listeners when the given number of events has
collected.

Let's look at how a time batch window may be used:

select account, amount from Withdrawal.win:time_batch(1 sec)

The above statement collects events arriving during a one-second interval, at the end of which the engine posts
the collected events as new events (insert stream) to each listener. The engine posts the events collected during
the prior batch as old events (remove stream). The engine starts posting events to listeners one second after it
receives the first event and thereon.

For statements containing aggregation functions and/or a group by clause, the engine posts consolidated ag-
gregation results for an event batch. For example, consider the following statement:

select sum(amount) as mysum from Withdrawal.win:time_batch(1 sec)

Following SQL (Standard Query Language) standards for queries against relational databases, the presence or
absence of aggregation functions and the presence or absence of the group by clause dictates the number of
rows posted by the engine to listeners at the end of a batch. The next sections outline the output model for
batched events under aggregation and grouping.

Note that output rate limiting also generates batches of events following the output model as discussed here.

Un-aggregated and Un-grouped

An example statement for the un-aggregated and un-grouped case is as follows:

select * from Withdrawal.win:time_batch(1 sec)

Processing Model

Esper 1.11.0 17

At the end of a time interval, the engine posts to listeners one row for each event arriving during the time inter-
val.

Fully Aggregated and Un-grouped

If your statement only selects aggregation values and does not group, your statement may look as the example
below:

select sum(amount)
from Withdrawal.win:time_batch(1 sec)

At the end of a time interval, the engine posts to listeners a single row indicating the aggregation result. The ag-
gregation result aggregates all events collected during the time interval.

Aggregated and Un-Grouped

If your statement selects non-aggregated properties and aggregation values, and does not group, your statement
may be similar to this statement:

select account, sum(amount)
from Withdrawal.win:time_batch(1 sec)

At the end of a time interval, the engine posts to listeners one row per event. The aggregation result aggregates
all events collected during the time interval.

Fully Aggregated and Grouped

If your statement selects aggregation values and all non-aggregated properties in the select clause are listed in
the group by clause, then your statement may look similar to this example:

select account, sum(amount)
from Withdrawal.win:time_batch(1 sec)
group by account

At the end of a time interval, the engine posts to listeners one row per unique account number. The aggregation
result aggregates per unique account.

Aggregated and Grouped

If your statement selects non-aggregated properties and aggregation values, and groups only some properties
using the group by clause, your statement may look as below:

select account, accountName, sum(amount)
from Withdrawal.win:time_batch(1 sec)
group by account

At the end of a time interval, the engine posts to listeners one row per event. The aggregation result aggregates
per unique account.

3.7. EventBean Query Results

The engine posts events to UpdateListener implementations as net.esper.event.EventBean instances. The
EventBean represents a row (event) in your continuous query's result set.

Processing Model

Esper 1.11.0 18

Use the iterator method on EPStatement statements to poll or read data out of statements, if you require read-
based access to statement result sets. Statement iterators also return EventBean instances.

The EventBean interface offers property type metadata via the getEventType method returning an EventType.
The EventType provides property name, property type and underlying type information. This information can
be useful to dynamically interrogate query results. The underlying event that an EventBean represents can be
obtained via the getUnderlying method. Please see Chapter 2, Event Representations for more information on
different event underlying objects.

Consider a statement that returns the symbol, count of events per symbol and average price per symbol for tick
events. Our sample statement may declare a fully-qualified Java class name as the event type:
org.sample.StockTickEvent. Assume that this class exists and exposes a symbol property of type String, and
a price property of type (Java primitive) double.

select symbol, avg(price) as avgprice, count(*) as mycount
from org.sample.StockTickEvent
group by symbol

The next table summarizes the property names and types as posted by the statement above:

Table 3.1. Properties offered by sample statement aggregating price

Name Type Description Java code snippet

symbol java.lang.String Value of symbol event property
eventBean.get("symbol")

avgprice java.lang.Double Average price per symbol
eventBean.get("avgprice")

mycount java.lang.Long Number of events per symbol
eventBean.get("mycount")

A code snippet out of a possible UpdateListener implementation to this statement may look as below:

String symbol = (String) newEvents[0].get("symbol");
Double price= (Double) newEvents[0].get("avgprice");
Long count= (Long) newEvents[0].get("mycount");

The engine supplies the boxed java.lang.Double and java.lang.Long types as property values rather then
primitive Java types. This is because aggregated values can return a null value to indicate that no data is avail-
able for aggregation. Also, in a select statement that computes expressions, the underlying event objects to
EventBean instances are of type java.util.Map.

Consider the next statement that specifies a wildcard selecting the same type of event:

select * from org.sample.StockTickEvent where price > 100

The property names and types provided by an EventBean query result row, as posted by the statement above are
as follows:

Table 3.2. Properties offered by sample wildcard-select statement

Processing Model

Esper 1.11.0 19

Name Type Description Java code snippet

symbol java.lang.String Value of symbol event property
eventBean.get("symbol")

price double Value of price event property
eventBean.get("price")

As an alternative to querying individual event properties via the get methods, the getUnderlying method on
EventBean returns the underlying object representing the query result. In the sample statement that features a
wildcard-select, the underlying event object is of type org.sample.StockTickEvent:

StockTickEvent tick = (StockTickEvent) newEvents[0].getUnderlying();

Processing Model

Esper 1.11.0 20

Chapter 4. EQL Reference: Clauses

4.1. EQL Introduction

The Event Query Language (EQL) is a SQL-like language with SELECT, FROM, WHERE, GROUP BY, HAVING and
ORDER BY clauses. Streams replace tables as the source of data with events replacing rows as the basic unit of
data. Since events are composed of data, the SQL concepts of correlation through joins, filtering and aggrega-
tion through grouping can be effectively leveraged. The INSERT INTO clause is recast as a means of forwarding
events to other streams for further downstream processing. External data accessible through JDBC may be
queried and joined with the stream data. Additional clauses such as the PATTERN and OUTPUT clauses are also
available to provide the missing SQL language constructs specific to event processing.

EQL statements are used to derive and aggregate information from one or more streams of events, and to join
or merge event streams. This section outlines EQL syntax. It also outlines the built-in views, which are the
building blocks for deriving and aggregating information from event streams.

EQL statements contain definitions of one or more views. Similar to tables in an SQL statement, views define
the data available for querying and filtering. Some views represent windows over a stream of events. Other
views derive statistics from event properties, group events or handle unique event property values. Views can
be staggered onto each other to build a chain of views. The Esper engine makes sure that views are reused
among EQL statements for efficiency.

The built-in set of views is:

1. Views that represent moving event windows: win:length, win:length_batch, win:time,
win:time_batch, win:ext_time, ext:sort_window

2. Views for aggregation: std:unique, std:groupby, std:lastevent (note: the group-by clause and the
std:groupby view are very similar in function, see view description for differences)

3. Views that derive statistics: std:size, stat:uni, stat:linest, stat:correl, stat:weighted_avg,
stat:cube

Esper can be extended by plugging-in custom developed views.

4.2. EQL Syntax

EQL queries are created and stored in the engine, and publish results as events are received by the engine or
timer events occur that match the criteria specified in the query. Events can also be pulled from running EQL
queries.

The select clause in an EQL query specifies the event properties or events to retrieve. The from-clause in an
EQL query specifies the event stream definitions and stream names to use. The where-clause in an EQL query
specifies search conditions that specify which event or event combination to search for. For example, the fol-
lowing statement returns the average price for IBM stock ticks in the last 30 seconds.

select avg(price) from StockTick.win:time(30 sec) where symbol='IBM'

EQL queries follow the below syntax. EQL queries can be simple queries or more complex queries. A simple
select contains only a select clause and a single stream definition. Complex EQL queries can be build that fea-
ture a more elaborate select list utilizing expressions, may join multiple streams, may contain a where clause
with search conditions and so on.

Esper 1.11.0 21

[insert into insert_into_def]
select select_list
from stream_def [as name] [, stream_def [as name]] [,...]
[where search_conditions]
[group by grouping_expression_list]
[having grouping_search_conditions]
[output output_specification]
[order by order_by_expression_list]

4.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter. Time periods
follow the syntax below.

time-period : [day-part] [hour-part] [minute-part] [seconds-part] [milliseconds-part]

day-part : number ("days" | "day")
hour-part : number ("hours" | "hour")
minute-part : number ("minutes" | "minute" | "min")
seconds-part : number ("seconds" | "second" | "sec")
milliseconds-part : number ("milliseconds" | "millisecond" | "msec")

Some examples of time periods are:

10 seconds
10 minutes 30 seconds
20 sec 100 msec
1 day 2 hours 20 minutes 15 seconds 110 milliseconds
0.5 minutes

4.2.2. Using Comments

Comments can appear anywhere in the EQL or pattern statement text where whitespace is allowed. Comments
can be written in two ways: slash-slash (// ...) comments and slash-star (/* ... */) comments.

Slash-slash comments extend to the end of the line:

// This comment extends to the end of the line.
// Two forward slashes with no whitespace between them begin such comments.

select * from MyEvent // this is a slash-slash comment

// All of this text together is a valid statement.

Slash-star comments can span multiple lines:

/* This comment is a "slash-star" comment that spans multiple lines.
* It begins with the slash-star sequence with no space between the '/' and '*' characters.
* By convention, subsequent lines can begin with a star and are aligned, but this is
* not required.
*/

select * from MyEvent /* this also works */

Comments styles can also be mixed:

select field1, // first comment
/* second comment*/ field2
from MyEvent

EQL Reference: Clauses

Esper 1.11.0 22

4.3. Choosing Event Properties And Events: the Select Clause

The select clause is required in all EQL statements. The select clause can be used to select all properties via the
wildcard *, or to specify a list of event properties and expressions. The select clause defines the event type
(event property names and types) of the resulting events published by the statement, or pulled from the state-
ment.

The select clause also offers optional istream and rstream keywords to control how events are posted to Up-

dateListener instances listening to the statement.

The syntax for the select clause is summarized below.

select [rstream | istream] * | expression_list ...

4.3.1. Choosing all event properties: select *

The syntax for selecting all event properties in a stream is:

select * from stream_def

The following statement selects univariate statistics for the last 30 seconds of IBM stock ticks for price.

select * from StockTick(symbol='IBM').win:time(30 sec).stat:uni('price')

In a join statement, using the select * syntax selects event properties that contain the events representing the
joined streams themselves.

The * wildcard and expressions can also be combined in a select clause. The combination selects all event
properties and in addition the computed values as specified by any additional expressions that are part of the
select clause. Here is an example that selects all properties of stock tick events plus a computed product of
price and volume that the statement names 'pricevolume':

select *, price * volume as pricevolume from StockTick(symbol='IBM')

4.3.2. Choosing specific event properties

To chose the particular event properties to return:

select event_property [, event_property] [, ...] from stream_def

The following statement selects the count and standard deviation properties for the last 100 events of IBM
stock ticks for volume.

select count, stdev from StockTick(symbol='IBM').win:length(100).stat:uni('volume')

4.3.3. Expressions

The select clause can contain one or more expressions.

select expression [, expression] [, ...] from stream_def

EQL Reference: Clauses

Esper 1.11.0 23

The following statement selects the volume multiplied by price for a time batch of the last 30 seconds of stock
tick events.

select volume * price from StockTick.win:time_batch(30 sec)

4.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

select [event property | expression] as identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for the event prop-
erty.

select volume * price as volPrice from StockTick.win:length(100)

4.3.5. Selecting istream and rstream events

The optional istream and rstream keywords in the select clause define the event stream posted to listeners to
the statement.

If neither keyword is specified, the engine posts insert stream events via the newEvents parameter to the update

method of UpdateListener instances listening to the statement. The engine posts remove stream events to the
oldEvents parameter of the update method. The insert stream consists of the events entering the respective
window(s) or stream(s) or aggregations, while the remove stream consists of the events leaving the respective
window(s) or the changed aggregation result. See Chapter 3, Processing Model for more information on insert
and remove streams.

By specifying the istream keyword you can instruct the engine to only post insert stream events via the
newEvents parameter to the update method on listeners. The engine will then not post any remove stream
events, and the oldEvents parameter is always a null value.

By specifying the rstream keyword you can instruct the engine to only post remove stream events via the
newEvents parameter to the update method on listeners. The engine will then not post any insert stream events,
and the oldEvents parameter is also always a null value.

The following statement selects only the events that are leaving the 30 second time window.

select rstream * from StockTick.win:time(30 sec)

The istream and rstream keywords in the select clause are matched by same-name keywords available in the
insert into clause. While the keywords in the select clause control the event stream posted to listeners to the
statement, the same keywords in the insert into clause specify the event stream that the engine makes available
to other statements.

4.4. Specifying Event Streams : the From Clause

The from clause is required in all EQL statements. It specifies one or more event streams. Each event stream
can optionally be given a name by means of the as syntax.

from stream_def [as name] [, stream_def [as name]] [, ...]

EQL Reference: Clauses

Esper 1.11.0 24

The event stream definition stream_def as shown in the syntax above can consists of either a filter-based event
stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based and filter-based event
streams are also supported.

Esper supports joins against relational databases for access to historical or reference data as explained in Sec-
tion 4.13, “Joining Relational Data via SQL”.

4.4.1. Filter-based event streams

For filter-based event streams, the event stream definition stream_def as shown in the from-clause syntax con-
sists of an event type, optional filter expressions and an optional list of views that derive data from a stream.
The syntax for a filter-based event stream is as below:

event_type ([filter_criteria]) [.view_spec] [.view_spec] [...]

The following EQL statement shows event type, filter criteria and views combined in one statement. It selects
all event properties for the last 100 events of IBM stock ticks for volume. In the example, the event type is the
fully qualified Java class name org.esper.example.StockTick. The expression filters for events where the
property symbol has a value of "IBM". The optional view specifications for deriving data from the StockTick
events are a length window and a view for computing statistics on volume. The name for the event stream is
"volumeStats".

select * from
org.esper.example.StockTick(symbol='IBM').win:length(100).stat:uni('volume') as volumeStats

Esper filters out events in an event stream as defined by filter criteria before it sends events to subsequent
views. Thus, compared to search conditions in a where-clause, filter criteria remove unneeded events early. In
the above example, events with a symbol other then IBM do not enter the time window.

Specifying an event type

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardless of the event's properties. The example below is
such a filter.

select * from com.mypackage.myevents.RfidEvent

Instead of the fully-qualified Java class name any other event name can be mapped via Configuration to a Java
class, making the resulting statement more readable:

select * from RfidEvent

Interfaces and superclasses are also supported as event types. In the below example IRfidReadable is an inter-
face class.

select * from org.myorg.rfid.IRfidReadable

Specifying filter criteria

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name:

EQL Reference: Clauses

Esper 1.11.0 25

select * from RfidEvent(category="Perishable")

All expressions can be used in filters, including static methods that return a boolean value:

select * from RfidEvent(MyRFIDLib.isInRange(x, y) or (x < 0 and y < 0))

Filter expressions can be separated via a single comma ','. The comma represents a logical AND between filter
expressions:

select * from RfidEvent(zone=1, category=10)
...is equivalent to...
select * from RfidEvent(zone=1 and category=10)

The following operators are highly optimized through indexing and are the preferred means of filtering in high-
volume event streams:

• equals =
• not equals !=
• comparison operators < , > , >=, <=

• ranges

• use the between keyword for a closed range where both endpoints are included
• use the in keyword and round () or square brackets [] to control how endpoints are included
• for inverted ranges use the not keyword and the between or in keywords

• list-of-values checks using the in keyword or the not in keywords followed by a comma-separated list of
values

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions that can be
indexed. Indexing filter values to match event properties of incoming events enables the engine to match in-
coming events faster. The above list of operators represents the set of operators that the engine can best convert
into indexes. The use of comma or logical and in filter expressions does not impact optimizations by the engine.

Filtering Ranges

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates whether an end-
point is included or excluded. The low point and the high-point of the range are separated by the colon : char-
acter.

• Open ranges that contain neither endpoint (low:high)
• Closed ranges that contain both endpoints [low:high]. The equivalent 'between' keyword also defines a

closed range.
• Half-open ranges that contain the low endpoint but not the high endpoint [low:high)
• Half-closed ranges that contain the high endpoint but not the low endpoint (low:high]

The next statement shows a filter specifying a range for x and y values of RFID events. The range includes both
endpoints therefore uses [] hard brackets.

mypackage.RfidEvent(x in [100:200], y in [0:100])

The between keyword is equivalent for closed ranges. The same filter using the between keyword is:

mypackage.RfidEvent(x between 100 and 200, y between 0 and 50)

The not keyword can be used to determine if a value falls outside a given range:

EQL Reference: Clauses

Esper 1.11.0 26

mypackage.RfidEvent(x not in [0:100])

The equivalent statement using the between keyword is:

mypackage.RfidEvent(x not between 0 and 100)

Filtering Sets of Values

The in keyword for filter criteria determines if a given value matches any value in a list of values.

In this example we are interested in RFID events where the category matches any of the given values:

mypackage.RfidEvent(category in ('Perishable', 'Container'))

By using the not in keywords we can filter events with a property value that does not match any of the values
in a list of values:

mypackage.RfidEvent(category not in ('Household', 'Electrical'))

Filter Limitations

The following restrictions apply to filter criteria:

• Range and comparison operators require the event property to be of a numeric type.
• Aggregation functions are not allowed within filter expressions.
• The prev previous event function and the prior prior event function cannot be used in filter expressions.

4.4.2. Pattern-based event streams

Event pattern expressions can also be used to specify one or more event streams in an EQL statement. For pat-
tern-based event streams, the event stream definition stream_def consists of the keyword pattern and a pattern
expression in brackets []. The syntax for an event stream definition using a pattern expression is below. As in
filter-based event streams, an optional list of views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view_spec] [.view_spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade events. The ex-
ample tags stock tick events with the name "tick" and trade events with the name "trade".

select * from pattern [every tick=StockTickEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types. The generated
events resemble a map with "tick" and "trade" keys. For stock tick events, the "tick" key value is the underlying
stock tick event, and the "trade" key value is a null value. For trade events, the "trade" key value is the underly-
ing trade event, and the "tick" key value is a null value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock tick or trade
events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sum(tick.price) + sum(trade.price) as total

from pattern [every tick=StockTickEvent or every trade=TradeEvent].win:time(30 sec)

EQL Reference: Clauses

Esper 1.11.0 27

Note that in the statement above tickPrice and tradePrice can each be null values depending on the event
processed. Therefore, an aggregation function such as sum(tick.price + trade.price)) would always return
null values as either of the two price properties are always a null value for any event matching the pattern. Use
the coalesce function to handle null values, for example: sum(coalesce(tick.price, 0) + co-

alesce(trade.price, 0)).

4.4.3. Specifying views

Views are used to derive or aggregate data. Views can be staggered onto each other. See the section Chapter 8,
EQL Reference: Views on the views available.

Views can optionally take one or more parameters. These parameters can consist of primitive constants such as
String, boolean or numeric types. Arrays are also supported as a view parameter types.

The below example serves to show views and staggering of views. It uses a car location event that contains in-
formation about the location of a car on a highway.

The first view std:groupby('carId') groups car location events by car id. The second view win:length(4)

keeps a length window of the 4 last events, with one length window for each car id. The next view
std:groupby({'expressway', 'direction', 'segment'}) groups each event by its expressway, direction
and segment property values. Again, the grouping is done for each car id considering the last 4 events only. The
last view std:size() is used to report the number of events. Thus the below example reports the number of
events per car id and per expressway, direction and segment considering the last 4 events for each car id only.

select * from CarLocEvent.std:groupby('carId').win:length(4).
std:groupby({'expressway', 'direction', 'segment'}).std:size()

4.5. Specifying Search Conditions: the Where Clause

The where clause is an optional clause in EQL statements. Via the where clause event streams can be joined
and events can be filtered.

Comparison operators =, < , > , >=, <=, !=, <>, is null, is not null and logical combinations via
and and or are supported in the where clause. The where clause can also introduce join conditions as outlined in
Section 4.10, “Joining Event Streams”. Where-clauses can also contain expressions. Some examples are listed
below.

...where fraud.severity = 5 and amount > 500

...where (orderItem.orderId is null) or (orderItem.class != 10)

...where (orderItem.orderId = null) or (orderItem.class <> 10)

...where itemCount / packageCount > 10

4.6. Aggregates and grouping: the Group-by Clause and the
Having Clause

4.6.1. Using aggregate functions

The aggregate functions are sum, avg, count, max, min, median, stddev, avedev. You can use aggregate
functions to calculate and summarize data from event properties. For example, to find out the total price for all
stock tick events in the last 30 seconds, type:

EQL Reference: Clauses

Esper 1.11.0 28

select sum(price) from StockTickEvent.win:time(30 sec)

Here is the syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to all events in an event stream window or other view, or to one or more
groups of events. From each set of events to which an aggregate function is applied, Esper generates a single
value.

Expression is usually an event property name. However it can also be a constant, function, or any combination
of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the price was
doubled:

select avg(price * 2) from StockTickEvent.win:time(30 seconds)

You can use the optional keyword distinct with all aggregate functions to eliminate duplicate values before
the aggregate function is applied. The optional keyword all which performs the operation on all events is the
default.

You can use aggregation functions in a select clause and in a having clause. You cannot use aggregate func-
tions in a where clause, but you can use the where clause to restrict the events to which the aggregate is applied.
The next query computes the average and sum of the price of stock tick events for the symbol IBM only, for the
last 10 stock tick events regardless of their symbol.

select 'IBM stats' as title, avg(price) as avgPrice, sum(price) as sumPrice
from StockTickEvent.win:length(10)
where symbol='IBM'

In the above example the length window of 10 elements is not affected by the where-clause, i.e. all events enter
and leave the length window regardless of their symbol. If we only care about the last 10 IBM events, we need
to add filter criteria as below.

select 'IBM stats' as title, avg(price) as avgPrice, sum(price) as sumPrice
from StockTickEvent(symbol='IBM').win:length(10)
where symbol='IBM'

You can use aggregate functions with any type of event property or expression, with the following exceptions:

1. You can use sum, avg, median, stddev, avedev with numeric event properties only

Esper ignores any null values returned by the event property or expression on which the aggregate function is
operating, except for the count(*) function, which counts null values as well. All aggregate functions return
null if the data set contains no events, or if all events in the data set contain only null values for the aggregated
expression.

4.6.2. Organizing statement results into groups: the Group-by clause

The group by clause is optional in all EQL statements. The group by clause divides the output of an EQL
statement into groups. You can group by one or more event property names, or by the result of computed ex-
pressions. When used with aggregate functions, group by retrieves the calculations in each subgroup. You can
use group by without aggregate functions, but generally that can produce confusing results.

EQL Reference: Clauses

Esper 1.11.0 29

For example, the below statement returns the total price per symbol for all stock tick events in the last 30
seconds:

select symbol, sum(price) from StockTickEvent.win:time(30 sec) group by symbol

The syntax of the group by clause is:

group by arregate_free_expression [, arregate_free_expression] [, ...]

Esper places the following restrictions on expressions in the group by clause:

1. Expressions in the group by cannot contain aggregate functions
2. Event properties that are used within aggregate functions in the select clause cannot also be used in a

group by expression

You can list more then one expression in the group by clause to nest groups. Once the sets are established with
group by the aggregation functions are applied. This statement posts the median volume for all stock tick
events in the last 30 seconds per symbol and tick data feed. Esper posts one event for each group to statement
listeners:

select symbol, tickDataFeed, median(volume)
from StockTickEvent.win:time(30 sec)
group by symbol, tickDataFeed

In the statement above the event properties in the select list (symbol, tickDataFeed) are also listed in the
group by clause. The statement thus follows the SQL standard which prescribes that non-aggregated event
properties in the select list must match the group by columns.

Esper also supports statements in which one or more event properties in the select list are not listed in the
group by clause. The statement below demonstrates this case. It calculates the standard deviation for the last 30
seconds of stock ticks aggregating by symbol and posting for each event the symbol, tickDataFeed and the
standard deviation on price.

select symbol, tickDataFeed, stddev(price) from StockTickEvent.win:time(30 sec) group by symbol

The above example still aggregates the price event property based on the symbol, but produces one event per
incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the group by clause are not
listed in the select list. This is an example that calculates the mean deviation per symbol and tickDataFeed

and posts one event per group with symbol and mean deviation of price in the generated events. Since tick-
DataFeed is not in the posted results, this can potentially be confusing.

select symbol, avedev(price)
from StockTickEvent.win:time(30 sec)
group by symbol, tickDataFeed

Expressions are also allowed in the group by list:

select symbol * price, count(*) from StockTickEvent.win:time(30 sec) group by symbol * price

If the group by expression resulted in a null value, the null value becomes its own group. All null values are
aggregated into the same group. If you are using the count(expression) aggregate function which does not
count null values, the count returns zero if only null values are encountered.

EQL Reference: Clauses

Esper 1.11.0 30

You can use a where clause in a statement with group by. Events that do not satisfy the conditions in the where

clause are eliminated before any grouping is done. For example, the statement below posts the number of stock
ticks in the last 30 seconds with a volume larger then 100, posting one event per group (symbol).

select symbol, count(*) from StockTickEvent.win:time(30 sec) where volume > 100 group by symbol

4.6.3. Selecting groups of events: the Having clause

Use the having clause to pass or reject events defined by the group-by clause. The having clause sets condi-
tions for the group by clause in the same way where sets conditions for the select clause, except where cannot
include aggregate functions, while having often does.

This statement is an example of a having clause with an aggregate function. It posts the total price per symbol
for the last 30 seconds of stock tick events for only those symbols in which the total price exceeds 1000. The
having clause eliminates all symbols where the total price is equal or less then 1000.

select symbol, sum(price)
from StockTickEvent.win:time(30 sec)
group by symbol
having sum(price) > 1000

To include more then one condition in the having clause combine the conditions with and, or or not. This is
shown in the statement below which selects only groups with a total price greater then 1000 and an average
volume less then 500.

select symbol, sum(price), avg(volume)
from StockTickEvent.win:time(30 sec)
group by symbol
having sum(price) > 1000 and avg(volume) < 500

Esper places the following restrictions on expressions in the having clause:

1. Any expressions that contain aggregate functions must also occur in the select clause

A statement with the having clause should also have a group by clause. If you omit group-by, all the events
not excluded by the where clause return as a single group. In that case having acts like a where except that hav-
ing can have aggregate functions.

The having clause can also be used without group by clause as the below example shows. The example below
posts events where the price is less then the current running average price of all stock tick events in the last 30
seconds.

select symbol, price, avg(price)
from StockTickEvent.win:time(30 sec)
having price < avg(price)

4.6.4. How the stream filter, Where, Group By and Having clauses interact

When you include filters, the where condition, the group by clause and the having condition in an EQL state-
ment the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is used). The
filter discards any events not meeting filter criteria.

2. The where clause excludes events that do not meet its search condition.

EQL Reference: Clauses

Esper 1.11.0 31

3. Aggregate functions in the select list calculate summary values for each group.
4. The having clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and having clauses in one statement with a
select clause containing an aggregate function.

select tickDataFeed, stddev(price)
from StockTickEvent(symbol='IBM').win:length(10)
where volume > 1000
group by tickDataFeed
having stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream StockTickEvent. In the example above only
events with symbol IBM enter the length window over the last 10 events, all other events are simply discarded.
The where clause removes any events posted by the length window (events entering the window and event
leaving the window) that do not match the condition of volume greater then 1000. Remaining events are ap-
plied to the stddev standard deviation aggregate function for each tick data feed as specified in the group by

clause. Each tickDataFeed value generates one event. Esper applies the having clause and only lets events
pass for tickDataFeed groups with a standard deviation of price greater then 0.8.

4.6.5. Comparing the Group By clause and the std:groupby view

The group by clause as well as the built-in std:groupby view are similar in their ability to group events. This
section explains the key differences in their behavior and use.

The group by clause works together with aggregation functions in your statement to produce an aggregation
result per group. In greater detail, this means that when a new event arrives, the engine applies the expressions
in the group by clause to determine a grouping key. If the engine has not encountered that grouping key before
(a new group), the engine creates a set of new aggregation results for that grouping key and performs the ag-
gregation changing that new set of aggregation results. If the grouping key points to an existing set of prior ag-
gregation results (an existing group), the engine performs the aggregation changing the prior set of aggregation
results for that group.

The std:groupby view is a built-in view that also groups events. The view is described in greater detail in Sec-
tion 8.2.2, “Group By (std:groupby)”. Its primary use is to create a separate data window per group, or more
generally to create separate instances of all its sub-views for each grouping key encountered.

The next example shows two queries that produce equivalent results. The query using the group by clause is
generally preferable as is easier to read. The second form introduces the stat:uni view which computes uni-
variate statistics for a given property:

select symbol, sum(price) from StockTickEvent group by symbol
// ... is equivalent to ...
select symbol, sum from StockTickEvent.std:groupby('symbol').stat:uni('price')

The next example shows two queries that are NOT equivalent as the length window is ungrouped in the first
query, and grouped in the second query:

select symbol, sum(price) from StockTickEvent.win:length(10) group by symbol
// ... NOT equivalent to ...
select symbol, sum(price) from StockTickEvent.std:groupby('symbol').win:length(10)

The key difference between the two statements is that in the first statement the length window is ungrouped and
applies to all events regardless of group. While in the second query each group gets its own instance of a length
window. For example, in the second query events arriving for symbol "ABC" get a length window of 10 events,

EQL Reference: Clauses

Esper 1.11.0 32

and events arriving for symbol "DEF" get their own length window of 10 events.

4.7. Stabilizing and Limiting Output: the Output Clause

4.7.1. Output Clause Options

The output clause is optional in Esper and is used to control or stabilize the rate at which events are output. For
example, the following statement batches old and new events and outputs them at the end of every 90 second
interval.

select * from StockTickEvent.win:length(5) output every 90 seconds

Here is the syntax for output rate limiting:

output [all | first | last] every number [minutes | seconds | events]

The all keyword is the default and specifies that all events in a batch should be output. The batch size can be
specified in terms of time or number of events.

The first keyword specifies that only the first event in an output batch is to be output. Using the first

keyword instructs the engine to output the first matching event as soon as it arrives, and then ignore matching
events for the time interval or number of events specified. After the time interval elapsed, or the number of
matching events has been reached, the next first matching event is output again and the following interval the
engine again ignores matching events.

The last keyword specifies to only output the last event at the end of the given time interval or after the given
number of matching events have been accumulated.

The time interval can also be specified in terms of minutes; the following statement is identical to the first one.

select * from StockTickEvent.win:length(5) output every 1.5 minutes

A second way that output can be stabilized is by batching events until a certain number of events have been col-
lected. The next statement only outputs when either 5 (or more) new or 5 (or more) old events have been
batched.

select * from StockTickEvent.win:time(30 sec) output every 5 events

Additionally, event output can be further modified by the optional last keyword, which causes output of only
the last event to arrive into an output batch.

select * from StockTickEvent.win:time(30 sec) output last every 5 events

Using the first keyword you can be notified at the start of the interval. The allows to watch for situations such
as a rate falling below a threshold and only be informed every now and again after the specified output interval,
but be informed the moment it first happens.

select * from TickRate.win:time(30 seconds) where rate<100 output first every 60 seconds

4.7.2. Group By, Having and Output clause interaction

EQL Reference: Clauses

Esper 1.11.0 33

The output clause interacts in two ways with the group by and having clauses. First, in the output every n

events case, the number n refers to the number of events arriving into the group by clause. That is, if the
group by clause outputs only 1 event per group, or if the arriving events don't satisfy the having clause, then
the actual number of events output by the statement could be fewer than n.

Second, the last and all keywords have special meanings when used in a statement with aggregate functions
and the group by clause. The last keyword specifies that only groups whose aggregate values have been up-
dated with the most recent batch of events should be output. The all keyword (the default) specifies that the
most recent data for all groups seen so far should be output, whether or not these groups' aggregate values have
just been updated.

By adding an output rate limiting clause to a statement that contains a group by clause we can control output of
groups to obtain one row for each group, generating an event per group at the given output frequency:

select symbol, sum(price) from StockTickEvent group by symbol output every 5 seconds

4.8. Sorting Output: the Order By Clause

The order by clause is optional in Esper. It is used for ordering output events by their properties, or by expres-
sions involving those properties. For example, the following statement outputs batches of 5 or more stock tick
events that are sorted first by price and then by volume.

select symbol from StockTickEvent.win:time(60 sec)
output every 5 events
order by price, volume

Here is the syntax for the order by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

Esper places the following restrictions on the expressions in the order by clause:

1. All aggregate functions that appear in the order by clause must also appear in the select expression.

Otherwise, any kind of expression that can appear in the select clause, as well as any alias defined in the se-

lect clause, is also valid in the order by clause.

4.9. Merging Streams and Continuous Insertion: the Insert Into
Clause

The insert into clause is optional in Esper. This clause can be specified to make the results of a statement
available as an event stream for use in further statements. The clause can also be used to merge multiple event
streams to form a single stream of events.

insert into CombinedEvent
select A.customerId as custId, A.timestamp - B.timestamp as latency

from EventA.win:time(30 min) A, EventB.win:time(30 min) B
where A.txnId = B.txnId

The insert into clause in above statement generates events of type CombinedEvent. Each generated Combine-

dEvent event has 2 event properties named "custId" and "latency". The events generated by above statement
can be used in further statements. The below statement uses the generated events:

EQL Reference: Clauses

Esper 1.11.0 34

select custId, sum(latency)
from CombinedEvent.win:time(30 min)
group by custId

The insert into clause can consist of just an event type alias, or of an event type alias and 1 or more event
property names. The syntax for the insert into clause is as follows:

insert [istream | rstream] into event_type_alias [(property_name [, property_name])]

The istream (default) and rstream keywords are optional. If no keyword or the istream keyword is specified,
the engine supplies the insert stream events generated by the statement. The insert stream consists of the events
entering the respective window(s) or stream(s). If the rstream keyword is specified, the engine supplies the re-
move stream events generated by the statement. The remove stream consists of the events leaving the respect-
ive window(s).

The event_type_alias is an identifier that names the events generated by the engine. The identifier can be
used in statements to filter and process events of the given name.

The engine also allows listeners to be attached to a statement that contain an insert into clause.

To merge event streams, simply use the same event_type_alias identifier in all EQL statements that merge
their result event streams. Make sure to use the same number and names of event properties and event property
types match up.

Esper places the following restrictions on the insert into clause:

1. The number of elements in the select clause must match the number of elements in the insert into

clause if the clause specifies a list of event property names
2. If the event type alias has already been defined by a prior statement or configuration, and the event prop-

erty names and types do not match, an exception is thrown at statement creation time.

The example statement below shows the alternative form of the insert into clause that explicitly defines the
property names to use.

insert into CombinedEvent (custId, latency)
select A.customerId, A.timestamp - B.timestamp
...

The rstream keyword can be useful to indicate to the engine to generate only remove stream events. This can
be useful if we want to trigger actions when events leave a window rather then when events enter a window.
The statement below generates CombinedEvent events when EventA and EventB leave the window after 30
minutes (1800 seconds).

insert rstream into CombinedEvent
select A.customerId as custId, A.timestamp - B.timestamp as latency

from EventA.win:time(30 min) A, EventB.win:time(30 min) B
where A.txnId = B.txnId

4.10. Joining Event Streams

Two or more event streams can be part of the from clause and thus both streams determine the resulting events.
The where-clause lists the join conditions that Esper uses to relate events in the two or more streams. Reference
and historical data such as stored in your relational database can also be included in joins. Please see Sec-
tion 4.13, “Joining Relational Data via SQL” for details.

EQL Reference: Clauses

Esper 1.11.0 35

Each point in time that an event arrives to one of the event streams, the two event streams are joined and output
events are produced according to the where-clause.

This example joins 2 event streams. The first event stream consists of fraud warning events for which we keep
the last 30 minutes (1800 seconds). The second stream is withdrawal events for which we consider the last 30
seconds. The streams are joined on account number.

select fraud.accountNumber as accntNum, fraud.warning as warn, withdraw.amount as amount,
max(fraud.timestamp, withdraw.timestamp) as timestamp, 'withdrawlFraud' as desc

from net.esper.example.atm.FraudWarningEvent.win:time(30 min) as fraud,
net.esper.example.atm.WithdrawalEvent.win:time(30 sec) as withdraw

where fraud.accountNumber = withdraw.accountNumber

Joins can also include one or more pattern statements as the next example shows:

select * from FraudWarningEvent.win:time(30 min) as fraud,
pattern [every w=WithdrawalEvent -> PINChangeEvent(acct=w.acct)] as withdraw

where fraud.accountNumber = withdraw.w.accountNumber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern consists of every
withdrawal event that is followed by a PIN change event for the same account number. It joins the two event
streams on account number.

4.11. Outer Joins

Esper supports left outer joins, right outer joins and full outer joins between an unlimited number of event
streams. Outer joins can also join reference and historical data as explained in Section 4.13, “Joining Relational
Data via SQL”.

If the outer join is a left outer join, there will be an output event for each event of the stream on the left-hand
side of the clause. For example, in the left outer join shown below we will get output for each event in the
stream RfidEvent, even if the event does not match any event in the event stream OrderList.

select * from net.esper.example.rfid.RfidEvent.win:time(30 sec) as rfid
left outer join
net.esper.example.rfid.OrderList.win:length(10000) as orderlist

on rfid.itemId = orderList.itemId

Similarly, if the join is a Right Outer Join, then there will be an output event for each event of the stream on the
right-hand side of the clause. For example, in the right outer join shown below we will get output for each event
in the stream OrderList, even if the event does not match any event in the event stream RfidEvent.

select * from net.esper.example.rfid.RfidEvent.win:time(30 sec) as rfid
right outer join
net.esper.example.rfid.OrderList.win:length(10000) as orderlist

on rfid.itemId = orderList.itemId

For all types of outer joins, if the join condition is not met, the select list is computed with the event properties
of the arrived event while all other event properties are considered to be null.

select * from net.esper.example.rfid.RfidEvent.win:time(30 sec) as rfid
full outer join
net.esper.example.rfid.OrderList.win:length(10000) as orderlist

on rfid.itemId = orderList.itemId

The last type of outer join is a full outer join. In a full outer join, each point in time that an event arrives to one

EQL Reference: Clauses

Esper 1.11.0 36

of the event streams, one or more output events are produced. In the example below, when either an RfidEvent
or an OrderList event arrive, one or more output event is produced.

4.12. Subqueries

A subquery is a select within another statement. Esper supports subqueries in the select-clause and in the
where-clause of EQL statements. Subqueries provide an alternative way to perform operations that would oth-
erwise require complex joins. Subqueries can also make statements more readable then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery, the inner query is
not correlated to the outer query. Here is an example simple subquery within a select-clause:

select assetId, (select zone from ZoneClosed.std:lastevent) as lastClosed from RFIDEvent

If the inner query is dependent on the outer query, we will have a correlated subquery. An example of a correl-
ated subquery is shown below. Notice the where-clause in the inner query, where the condition involves a
stream from the outer query:

select * from RfidEvent as RFID where 'Dock 1' =
(select name from Zones.std:unique('zoneId') where zoneId = RFID.zoneId)

The example above shows a subquery in the where-clause. The statement selects RFID events in which the
zone name matches a string constant based on zone id. The statement uses the view std:unique to guarantee
that only the last event per zone id is held from processing by the subquery.

The next example is a correlated subquery within a select-clause. In this statement the select-clause retrieves
the zone name by means of a subquery against the Zones set of events correlated by zone id:

select zoneId, (select name from Zones.std:unique('zoneId')
where zoneId = RFID.zoneId) as name from RFIDEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns a null value as the
subquery result. To limit the number of events returned by a subquery consider using one of the views
std:lastevent, std:unique and std:groupby.

The select clause of a subquery also allows wildcard selects, which return as an event property the underlying
event object of the event type as defined in the from-clause. An example:

select (select * from MarketData.std:lastevent()) as md
from pattern [every timer:interval(10 sec)]

The output events to the statement above contain the underlying MarketData event in a property named "md".
The statement populates the last MarketData event into a property named "md" every 10 seconds following the
pattern definition, or populates a null value if no MarketData event has been encountered so far.

The following restrictions apply to subqueries:

1. The subquery stream definition must define a data window or other view to limit subquery results, redu-
cing the number of events held for subquery execution

2. Aggregation functions cannot be used in subqueries. Instead, the insert-into clause can be used to provide
aggregation results for use in subqueries

3. Subqueries can only consist of a select-clause, a from-clause and a where-clause. The group-by and hav-
ing-clauses, as well as joins, outer-joins and output rate limiting are not permitted within subqueries.

EQL Reference: Clauses

Esper 1.11.0 37

Performance of your statement containing one or more subqueries principally depends on two parameters. First,
if your subquery correlates one or more columns in the subquery stream with the enclosing statement's streams
via equals '=', the engine automatically builds the appropriate indexes for fast row retrieval based on the key
values correlated (joined). The second parameter is the number of rows found in the subquery stream and the
complexity of the filter criteria (where-clause), as each row in the subquery stream must evaluate against the
where-clause filter.

4.12.1. The 'exists' keyword

The exists condition is considered "to be met" if the subquery returns at least one row. The not exists condi-
tion is considered true if the subquery returns no rows.

Let's take a look at a simple example. The following is an EQL statement that uses the exists condition:

select assetId from RFIDEvent as RFID
where exists (select * from Asset.std:unique(assetId) where assetId = RFID.assetId)

This select statement will return all RFID events where there is at least one event in Assets unique by asset id
with the same asset id.

4.12.2. The 'in' keyword

The in subquery condition is true if the value of an expression matches one or more of the values returned by
the subquery. Consequently, the not in condition is true if the value of an expression matches none of the val-
ues returned by the subquery.

The next statement demonstrates the use of the in subquery condition:

select assetId from RFIDEvent as RFID
where zone in (select zone from ZoneUpdate.win:time(10 min) where status = 'closed')

The above statement demonstrated the in subquery to select RFID events for which the zone status is in a
closed state.

4.13. Joining Relational Data via SQL

This chapter outlines how reference data and historical data that are stored in a relational database can be quer-
ied via SQL within EQL statements.

Esper can join and outer join all types of event streams to stored data. In order for such data sources to become
accessible to Esper, some configuration is required. The Section 10.4.5, “Relational Database Access” explains
the required configuration for database access in greater detail, and includes information of configuring a query
result cache.

The following restrictions currently apply:

• Only one event stream and one SQL query can be joined; Joins of two or more event streams with an SQL
query are not yet supported.

• Sub-views on an SQL query are not allowed; That is, one cannot create a time or length window on an SQL
query. However one can use the insert into syntax to make join results available to a further statement.

• Your database software must support JDBC prepared statements that provide statement meta data at com-
pilation time. Most major databases provide this function.

EQL Reference: Clauses

Esper 1.11.0 38

• JDBC drivers must support the getMetadata feature

The next sections assume basic knowledge of SQL (Structured Query Language).

4.13.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of the database and
a parameterized SQL query. The syntax to use in the from-clause of an EQL statement is:

sql:database_name [" parameterized_sql_query "]

The engine uses the database_name identifier to obtain configuration information in order to establish a data-
base connection, as well as settings that control connection creation and removal. Please see Section 10.4.5,
“Relational Database Access” to configure an engine for database access.

Following the database name is the SQL query to execute. The SQL query can contain one or more substitution
parameters. The SQL query string is placed in single brackets [and]. The SQL query can be placed in either
single quotes (') or double quotes ("). The SQL query grammer is passed to your database software unchanged,
allowing you to write any SQL query syntax that your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${event_property_name}. The engine resolves
event_property_name at statement execution time to the actual event property value supplied by the events in
the joined event stream.

The engine determines the type of the SQL query output columns by means of the result set metadata that your
database software returns for the statement. The actual query results are obtained via the getObject on
java.sql.ResultSet.

The sample EQL statement below joins an event stream consisting of CustomerCallEvent events with the res-
ults of an SQL query against the database named MyCustomerDB and table Customer:

select custId, cust_name from CustomerCallEvent,
sql:MyCustomerDB [' select cust_name from Customer where cust_id = ${custId} ']

The example above assumes that CustomerCallEvent supplies an event property named custId. The SQL
query selects the customer name from the Customer table. The where-clause in the SQL matches the Customer
table column cust_id with the value of custId in each CustomerCallEvent event. The engine executes the
SQL query for each new CustomerCallEvent encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event. Else the engine
generates one output event for each row returned by the SQL query. An outer join as described in the next sec-
tion can be used to control whether the engine should generate output events even when the SQL query returns
no rows.

The next example adds a time window of 30 seconds to the event stream CustomerCallEvent. It also renames
the selected properties to customerName and customerId to demonstrate how the naming of columns in an SQL
query can be used in the select clause in the EQL query. And the example uses explicit stream names via the as

keyword.

select customerId, customerName from
CustomerCallEvent.win:time(30 sec) as cce,
sql:MyCustomerDB ["select cust_id as customerId, cust_name as customerName from Customer

where cust_id = ${cce.custId}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events enter the window,

EQL Reference: Clauses

Esper 1.11.0 39

and remove stream (rstream) events as events leave the window. The engine executes the given SQL query for
each CustomerCallEvent in both the insert stream and the remove stream. As a performance optimization, the
istream or rstream keywords in the select-clause can be used to instruct the engine to only join insert stream
or remove stream events, reducing the number of SQL query executions.

4.13.2. Outer Joins With SQL Queries

You can use outer joins to join data obtained from an SQL query and control when an event is produced. Use a
left outer join, such as in the next statement, if you need an output event for each event regardless of whether or
not the SQL query returns rows. If the SQL query returns no rows, the join result populates null values into the
selected properties.

select custId, custName from
CustomerCallEvent as cce
left outer join
sql:MyCustomerDB ["select cust_id, cust_name as custName

from Customer where cust_id = ${cce.custId}"] as cq
on cce.custId = cq.cust_id

The statement above always generates at least one output event for each CustomerCallEvent, containing all
columns selected by the SQL query, even if the SQL query does not return any rows. Note the on expression
that is required for outer joins. The on acts as an additional filter to rows returned by the SQL query.

4.13.3. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use is to poll or re-
quest data from a database at regular intervals. The next statement is an example that shows a pattern that fires
every 5 seconds to query the NewOrder table for new orders:

insert into NewOrders
select orderId, orderAmount from

pattern [every timer:interval(5 sec)],
sql:MyCustomerDB ['select orderId, orderAmount from NewOrders']

4.13.4. JDBC Implementation Overview

The engine translates SQL queries into JDBC java.sql.PreparedStatement statements by replacing ${name}
parameters with '?' placeholders. It obtains name and type of result columns from the compiled Prepared-

Statement meta data when the EQL statement is created.

The engine supplies parameters to the compiled statement via the setObject method on PreparedStatement.
The engine uses the getObject method on the compiled statement PreparedStatement to obtain column val-
ues.

4.13.5. Oracle Drivers and No-Metadata Workaround

Certain JDBC database drivers are known to not return metadata for precompiled prepared SQL statements.
This can be a problem as metadata is required by Esper. Esper obtains SQL result set metadata to validate an
EQL statement and to provide column types for output events. JDBC drivers that do not provide metadata for
precompiled SQL statements require a workaround. Such drivers do generally provide metadata for executed
SQL statements, however do not provide the metadata for precompiled SQL statements.

EQL Reference: Clauses

Esper 1.11.0 40

Please consult the Chapter 10, Configuration for the configuration options available in relation to metadata re-
trieval.

To obtain metadata for an SQL statement, Esper can alternatively fire a SQL statement which returns the same
column names and types as the actual SQL statement but without returning any rows. This kind of SQL state-
ment is referred to as a sample statement in below workaround description. The engine can then use the sample
SQL statement to retrieve metadata for the column names and types returned by the actual SQL statement.

Applications can provide a sample SQL statement to retrieve metadata via the metadatasql keyword:

sql:database_name ["parameterized_sql_query" metadatasql "sql_meta_query"]

The sql_meta_query must be an SQL statement that returns the same number of columns, the same type of
columns and the same column names as the parameterized_sql_query, and does not return any rows.

Alternatively, applications can choose not to provide an explicit sample SQL statement. If the EQL statement
does not use the metadatasql syntax, the engine applies lexical analysis to the SQL statement. From the lexical
analysis Esper generates a sample SQL statement adding a restrictive clause "where 1=0" to the SQL statement.

Alternatively, applications can add the following tag to the SQL statement: ${$ESPER-SAMPLE-WHERE}. If the
tag exists in the SQL statement, the engine does not perform lexical analysis and simply replaces the tag with
the SQL where-clause "where 1=0". Therefore this workaround is applicable to SQL statements that cannot be
correctly lexically analyzed. The SQL text after the placeholder is not part of the sample query. For example:

select mycol from sql:myDB [
'select mycol from mytesttable ${$ESPER-SAMPLE-WHERE} where'], ...

EQL Reference: Clauses

Esper 1.11.0 41

Chapter 5. EQL Reference: Patterns

5.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition. Patterns can
also be time-based.

Pattern expressions can consist of filter expressions combined with pattern operators. Expressions can contain
further nested pattern expressions by including the nested expression(s) in () round brackets.

There are 5 types of operators:

1. Operators that control pattern subexpression repetition: every
2. Logical operators: and, or, not
3. Temporal operators that operate on event order: -> (followed-by)
4. Guards are where-conditions that control the lifecycle of subexpressions. Examples are timer:within.
5. Observers observe time events as well as other events. Examples are timer:interval and timer:at.

5.2. How to use Patterns

5.2.1. Pattern Syntax

This is an example pattern expression that matches on every ServiceMeasurement events in which the value of
the latency event property is over 20 seconds, and on every ServiceMeasurement event in which the success

property is false. Either one or the other condition must be true for this pattern to match.

every (spike=ServiceMeasurement(latency>20000) or error=ServiceMeasurement(success=false))

In the example above, the pattern expression starts with an every operator to indicate that the pattern should
fire for every matching events and not just the first matching event. Within the every operator in round brack-
ets is a nested pattern expression using the or operator. The left hand of the or operator is a filter expression
that filters for events with a high latency value. The right hand of the operator contains a filter expression that
filters for events with error status. Filter expressions are explained in Section 5.4, “Filter Expressions In Pat-
terns”.

The example above assigned the tags spike and error to the events in the pattern. The tags are important since
the engine only places tagged events into the output event(s) that a pattern generates, and that the engine sup-
plies to listeners of the pattern statement. The tags can further be selected in the select-clause of an EQL state-
ment as discussed in Section 4.4.2, “Pattern-based event streams”.

Patterns can also contain comments within the pattern as outlined in Section 4.2.2, “Using Comments”.

Pattern statements are created via the EPAdministrator interface. The EPAdministrator interface allows to
create pattern statements in two ways: Pattern statements that want to make use of the EQL select clause or
any other EQL constructs use the createEQL method to create a statement that specifies one or more pattern ex-
pressions. EQL statements that use patterns are described in more detail in Section 4.4.2, “Pattern-based event
streams”. Use the syntax as shown in below example.

EPAdministrator admin = EPServiceProviderManager.getDefaultProvider().getEPAdministrator();

String eventName = ServiceMeasurement.class.getName();

Esper 1.11.0 42

EPStatement myTrigger = admin.createEQL("select * from pattern [" +
"every (spike=" + eventName + "(latency>20000) or error=" + eventName + "(success=false))]");

Pattern statements that do not need to make use of the EQL select clause or any other EQL constructs can use
the createPattern method, as in below example.

EPStatement myTrigger = admin.createPattern(
"every (spike=" + eventName + "(latency>20000) or error=" + eventName + "(success=false))");

5.2.2. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The listener inter-
face is the net.esper.client.UpdateListener interface.

The example below shows an anonymous implementation of the net.esper.client.UpdateListener inter-
face. We add the anonymous listener implementation to the myPattern statement created earlier. The listener
code simply extracts the underlying event class.

myPattern.addListener(new UpdateListener()
{

public void update(EventBean[] newEvents, EventBean[] oldEvents)
{
ServiceMeasurement spike = (ServiceMeasurement) newEvents[0].get("spike");
ServiceMeasurement error = (ServiceMeasurement) newEvents[0].get("error");
... // either spike or error can be null, depending on which occurred
... // add more logic here

}
});

Listeners receive an array of EventBean instances in the newEvents parameter. There is one EventBean instance
passed to the listener for each combination of events that matches the pattern expression. At least one Event-

Bean instance is always passed to the listener.

The properties of each EventBean instance contain the underlying events that caused the pattern to fire, if
events have been named in the filter expression via the name=eventType syntax. The property name is thus the
name supplied in the pattern expression, while the property type is the type of the underlying class, in this ex-
ample ServiceMeasurement.

5.2.3. Pulling Data from Patterns

Data can also be pulled from pattern statements via the iterator() method. If the pattern had fired at least
once, then the iterator returns the last event for which it fired. The hasNext() method can be used to determine
if the pattern had fired.

if (myPattern.iterator().hasNext())
{

ServiceMeasurement event = (ServiceMeasurement) view.iterator().next().get("alert");
... // some more code here to process the event

}
else
{

... // no matching events at this time
}

EQL Reference: Patterns

Esper 1.11.0 43

5.3. Operator Precedence

The operators at the top of this table take precedence over operators lower on the table.

Table 5.1. Pattern Operator Precedence

Precedence Operator Description Example

1 Guard post-
fix

where timer:within (or
plug-in pattern guard) MyEvent where timer:within(1 sec)

2 unary every, not
every MyEvent
timer:interval(5 min) and not MyEvent

3 and and
every (MyEvent and MyOtherEvent)

4 or or
every (MyEvent or MyOtherEvent)

5 followed-by ->
every (MyEvent -> MyOtherEvent)

If you are not sure about the precedence, please consider placing parenthesis () around your subexpressions.
Parenthesis can also help make expressions easier to read and understand.

Note that we are also providing the EQL grammar as a HTML file as part of the documentation set on the
project website.

The following table outlines sample equivalent expressions, with and without the use of parenthesis for subex-
pressions.

Table 5.2. Equivalent Pattern Expressions

Expression Equivalent Reason

every A or B (every A) or B The every operator has higher precedence then the or oper-
ator

every A -> B or C (every A) -> (B or C) The or operator has higher precedence then the followed-

by operator

A and B or C (A and B) or C The and operator has higher precedence then the or operat-
or

5.4. Filter Expressions In Patterns

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardless of the event's properties. The example below is
such a filter. Note that this event pattern would stop firing as soon as the first RfidEvent is encountered.

EQL Reference: Patterns

Esper 1.11.0 44

com.mypackage.myevents.RfidEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the every keyword.

every com.mypackage.myevents.RfidEvent

The example above specifies the fully-qualified Java class name as the event type. Via configuration, the event
pattern above can be simplified by using the alias that has been defined for the event type.

every RfidEvent

Interfaces and superclasses are also supported as event types. In the below example IRfidReadable is an inter-
face class, and the statement matches any event that implements this interface:

every org.myorg.rfid.IRfidReadable

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name:

RfidEvent(category="Perishable")

All expressions can be used in filters, including static method invocations that return a boolean value:

RfidEvent(MyRFIDLib.isInRange(x, y) or (x<0 and y < 0))

Filter expressions can be separated via a single comma ','. The comma represents a logical AND between ex-
pressions:

RfidEvent(zone=1, category=10)
...is equivalent to...
RfidEvent(zone=1 and category=10)

The following set of operators are highly optimized through indexing and are the preferred means of filtering
high-volume event streams:

• equals =
• not equals !=
• comparison operators < , > , >=, <=

• ranges

• use the between keyword for a closed range where both endpoints are included
• use the in keyword and round () or square brackets [] to control how endpoints are included
• for inverted ranges use the not keyword and the between or in keywords

• list-of-values checks using the in keyword or the not in keywords followed by a comma-separated list of
values

At compile time as well as at run time, the engine scans new filter expressions for subexpressions that can be
indexed. Indexing filter values to match event properties of incoming events enables the engine to match in-
coming events faster. The above list of operators represents the set of operators that the engine can best convert
into indexes. The use of comma or logical and in filter expressions does not impact optimizations by the engine.

For more information on filters please see Section 4.4.1, “Filter-based event streams”.

Filter criteria can also refer to events matching prior named events in the same expression. Below pattern is an
example in which the pattern matches once for every RfidEvent that is preceded by an RfidEvent with the same

EQL Reference: Patterns

Esper 1.11.0 45

asset id.

every A=RfidEvent -> B=RfidEvent(assetId=A.assetId)

The syntax shown above allows filter criteria to reference prior results by specifying the event name tag of the
prior event, and the event property name. This syntax can be used in all filter operators or expressions including
ranges and the in set-of-values check:

every A=RfidEvent ->
B=RfidEvent(MyLib.isInRadius(A.x, A.y, x, y) and zone in (1, A.zone))

5.5. Pattern Operators

5.5.1. Every

The every operator indicates that the pattern subexpression should restart when the subexpression qualified by
the every keyword evaluates to true or false. Without the every operator the pattern subexpression stops when
the pattern subexpression evaluates to true or false.

Thus the every operator works like a factory for the pattern subexpression contained within. When the pattern
subexpression within it fires and thus quits checking for events, the every causes the start of a new pattern
subexpression listening for more occurances of the same event or set of events.

Every time a pattern subexpression within an every operator turns true the engine starts a new active subex-
pression looking for more event(s) or timing conditions that match the pattern subexpression. If the every oper-
ator is not specified for a subexpression, the subexpression stops after the first match was found.

This pattern fires when encountering event A and then stops looking.

A

This pattern keeps firing when encountering event A, and doesn't stop looking.

every A

Let's consider an example event sequence as follows.

A
1

B
1

C
1

B
2

A
2

D
1

A
3

B
3

E
1

A
4

F
1

B
4

Table 5.3. 'Every' operator examples

Example Description

every (A -> B) Detect event A followed by event B. At the time when B occurs the pattern
matches, then the pattern matcher restarts and looks for event A again.

1. Matches on B
1

for combination {A
1
, B

1
}

2. Matches on B
3

for combination {A
2
, B

3
}

3. Matches on B
4

for combination {A
4
, B

4
}

every A -> B The pattern fires for every event A followed by an event B.

EQL Reference: Patterns

Esper 1.11.0 46

Example Description

1. Matches on B
1

for combination {A
1
, B

1
}

2. Matches on B
3

for combination {A
2
, B

3
} and {A

3
, B

3
}

3. Matches on B
4

for combination {A
4
, B

4
}

A -> every B The pattern fires for an event A followed by every event B.

1. Matches on B
1

for combination {A
1
, B

1
}.

2. Matches on B
2

for combination {A
1
, B

2
}.

3. Matches on B
3

for combination {A
1
, B

3
}

4. Matches on B
4

for combination {A
1
, B

4
}

every A -> every B The pattern fires for every event A followed by every event B.

1. Matches on B
1

for combination {A
1
, B

1
}.

2. Matches on B
2

for combination {A
1
, B

2
}.

3. Matches on B
3

for combination {A
1
, B

3
} and {A

2
, B

3
} and {A

3
, B

3
}

4. Matches on B
4

for combination {A
1
, B

4
} and {A

2
, B

4
} and {A

3
, B

4
} and

{A
4
, B

4
}

The examples show that it is possible that a pattern fires for multiple combinations of events that match a pat-
tern expression. Each combination is posted as an EventBean instance to the update method in the UpdateL-

istener implementation.

Let's consider the every operator in conjunction with a subexpression that matches 3 events that follow each
other:

every (A -> B -> C)

The pattern first looks for event A. When event A arrives, it looks for event B. After event B arrives, the pattern
looks for event C. Finally when event C arrives the pattern fires. The engine then starts looking for event A
again.

Assume that between event B and event C a second event A
2

arrives. The pattern would ignore the A
2

entirely
since it's then looking for event C. As observed in the prior example, the every operator restarts the subexpres-
sion A -> B -> C only when the subexpression fires.

In the next statement the every operator applies only to the A event, not the whole subexpression:

every A -> B -> C

This pattern now matches for any event A that is followed by an event B and then event C, regardless of when
the event A arrives. Oftentimes this can be practical in combination with the and not syntax and the
timer:within syntax as the next example shows.

Every Operator Example

In this example we consider a generic pattern in which the pattern must match for each A event followed by a B
and followed by a C event, in which both B and C must arrive within 1 hour of the A event. The first approach
to the pattern is as follows:

every A -> (B -> C) where timer:within(1 hour)

EQL Reference: Patterns

Esper 1.11.0 47

Consider the following sequence of events arriving:

A
1

A
2

B
1

C
1

B
2

C
2

First, the pattern as above never stops looking for A events since the every operator instructs the pattern to
keep looking for A events.

When A
1

arrives, the pattern starts a new subexpression that keeps A
1

in memory and looks for any B event. At
the same time, it also keeps looking for more A events.

When A
2

arrives, the pattern starts a new subexpression that keeps A
2

in memory and looks for any B event. At
the same time, it also keeps looking for more A events.

After the arrival of A
2
, there are 3 subexpressions active:

1. The first active subexpression with A
1

in memory, looking for any B event
2. The second active subexpression with A

2
in memory, looking for any B event

3. A third active subexpression, looking for the next A event

In the pattern above, we have specified a 1-hour lifetime for subexpressions looking for B and C events. Thus,
if no B and no C event arrive within 1 hour after A

1
, the first subexpression goes away. If no B and no C event

arrive within 1 hour after A
2
, the second subexpression goes away. The third subexpression however stays

around looking for more A events.

The pattern as shown above thus matches on arrival of C
1

for combination {A
1
, B

1
, C

1
} and for combination

{A
2
, B

1
, C

1
}, provided that B

1
and C

1
arrive within an hour of A

1
and A

2
.

You may now ask how to match on {A
1
, B

1
, C

1
} and {A

2
, B

2
, C

2
} instead, since you may need to correlate on

a given property.

The pattern as discussed above matches every A event followed by the first B event followed by the next C
event, and doesn't specifically qualify the B or C events to look for based on the A event. To look for specific B
and C events in relation to a given A event, the correlation must use one or more of the properties of the A
event, such as the "id" property:

every a=A -> (B(id=a.id -> C(id=a.id)) where timer:within(1 hour)

The pattern as shown above thus matches on arrival of C
1

for combination {A
1
, B

1
, C

1
} and on arrival of C

2
for

combination {A
2
, B

2
, C

2
}.

Sensor Example

This example looks at temperature sensor events named Sample. The pattern detects when 3 sensor events in-
dicate a temperature of more then 50 degrees uninterrupted within 90 seconds of the first event, considering
events for the same sensor only.

every sample=Sample(temp > 50) ->
((Sample(sensor=sample.sensor, temp > 50) and not Sample(sensor=sample.sensor, temp <= 50))

->
(Sample(sensor=sample.sensor, temp > 50) and not Sample(sensor=sample.sensor, temp <= 50))
) where timer:within(90 seconds))

The pattern starts a new subexpression in the round braces after the first followed-by operator for each time a
sensor indicated more then 50 degrees. Each subexpression then lives a maximum of 90 seconds. Each subex-
pression ends if a temperature of 50 degress or less is encountered for the same sensor. Only if 3 temperature

EQL Reference: Patterns

Esper 1.11.0 48

events in a row indicate more then 50 degrees, and within 90 seconds of the first event, and for the same sensor,
does this pattern fire.

5.5.2. And

Similar to the Java && operator the and operator requires both nested pattern expressions to turn true before the
whole expression turns true (a join pattern).

Pattern matches when both event A and event B are found.

A and B

Pattern matches on any sequence A followed by B and C followed by D, or C followed by D and A followed by
B

(A -> B) and (C -> D)

Note that in an and pattern expression it is not possible to correlate events based on event property values. For
example, this is an invalid pattern:

// This is NOT valid
a=A and B(id = a.id)

The above expression is invalid as it relies on the order of arrival of events, however in an and expression the
order of events is not specified and events fulfill an and condition in any order. The above expression can be
changed to use the followed-by operator:

// This is valid
a=A -> B(id = a.id)
// another example using 'and'...
a=A -> (B(id = a.id) and C(id = a.id))

5.5.3. Or

Similar to the Java “||” operator the or operator requires either one of the expressions to turn true before the
whole expression turns true.

Look for either event A or event B. As always, A and B can itself be nested expressions as well.

A or B

Detect all stock ticks that are either above or below a threshold.

every (StockTick(symbol='IBM', price < 100) or StockTick(symbol='IBM', price > 105)

5.5.4. Not

The not operator negates the truth value of an expression. Pattern expressions prefixed with not are automatic-
ally defaulted to true.

This pattern matches only when an event A is encountered followed by event B but only if no event C was en-
countered before event B.

EQL Reference: Patterns

Esper 1.11.0 49

(A -> B) and not C

5.5.5. Followed-by

The followed by -> operator specifies that first the left hand expression must turn true and only then is the right
hand expression evaluated for matching events.

Look for event A and if encountered, look for event B. As always, A and B can itself be nested event pattern
expressions.

A -> B

This is a pattern that fires when 2 status events indicating an error occur one after the other.

StatusEvent(status='ERROR') -> StatusEvent(status='ERROR')

5.6. Pattern Guards

Guards are where-conditions that control the lifecycle of subexpressions. Custom guard functions can also be
used. The section Chapter 11, Extension and Plug-in outlines guard plug-in development in greater detail.

Take as an example the following pattern expression:

MyEvent where timer.within(10 sec)

In this pattern the timer:within guard controls the subexpression that is looking for MyEvent events. The
guard terminates the subexpression looking for MyEvent events after 10 seconds after start of the pattern. Thus
the pattern alerts only once when the first MyEvent event arrives within 10 seconds after start of the pattern.

The every keyword requires additional discussion since it also controls subexpression lifecycle. Let's add the
every keyword to the example pattern:

every MyEvent where timer.within(10 sec)

The difference to the pattern without every is that each MyEvent event that arrives now starts a new subexpres-
sion, including a new guard, looking for a further MyEvent event. The result is that, when a MyEvent arrives
within 10 seconds after pattern start, the pattern execution will look for the next MyEvent event to arrive within
10 seconds after the previous one.

By placing parentheses around the every keyword and its subexpression, we can have the every under the con-
trol of the guard:

(every MyEvent) where timer.within(10 sec)

In the pattern above, the guard terminates the subexpression looking for all MyEvent events after 10 seconds
after start of the pattern. This pattern alerts for all MyEvent events arriving within 10 seconds after pattern start,
and then stops.

5.6.1. timer:within

The timer:within guard acts like a stopwatch. If the associated pattern expression does not turn true within the

EQL Reference: Patterns

Esper 1.11.0 50

specified time period it is stopped and permanently false. The timer:within guard takes a time period (see
Section 4.2.1, “Specifying Time Periods”) or a number of seconds as a parameter.

This pattern fires if an A event arrives within 5 seconds after statement creation.

A where timer:within (5 seconds)

This pattern fires for all A events that arrive within 5 seconds. After 5 seconds, this pattern stops matching even
if more A events arrive.

(every A) where timer:within (5 seconds)

This pattern is similar to the first pattern but here every time A arrives within 5 seconds, the pattern begins
looking for A for another 5 seconds. As long as A events arrive within 5 seconds after the last A, the pattern
does not stop matching.

every (A where timer:within (5 sec))

This pattern matches for any one A or B event in the next 5 seconds.

(A or B) where timer:within (5 sec)

This pattern matches for any 2 errors that happen 10 seconds within each other.

every (StatusEvent(status='ERROR') -> StatusEvent(status='ERROR') where timer:within (10 sec))

The following guards are equivalent:

timer:within(2 minutes 5 seconds)
timer:within(125 sec)
timer:within(125)

5.7. Pattern Observers

Observers observe time-based events for which the thread-of-control originates by the engine timer thread.
Custom observers can also be developed that observe timer events or other engine-external events. The section
Chapter 11, Extension and Plug-in outlines observer plug-in development in greater detail.

5.7.1. timer:interval

The timer:interval observer waits for the defined time before the truth value of the observer turns true. The
observer takes a time period (see Section 4.2.1, “Specifying Time Periods”) or a number of seconds as a para-
meter.

After event A arrived wait 10 seconds then indicate that the pattern matches.

A -> timer:interval(10 seconds)

The pattern below fires every 20 seconds.

every timer:interval(20 sec)

The next example pattern fires for every event A that is not followed by an event B within 60 seconds after

EQL Reference: Patterns

Esper 1.11.0 51

event A arrived. B must have the same "id" property value as A.

every a=A -> (timer:interval(60 sec) and not B(id=a.id))

5.7.2. timer:at

The timer:at observer is similar in function to the Unix “crontab” command. At a specified time the expres-
sion turns true. The at operator can also be made to pattern match at regular intervals by using an every operat-
or in front of the timer:at operator.

The syntax is: timer:at (minutes, hours, days of month, months, days of week [, seconds]).

The value for seconds is optional. Each element allows wildcard * values. Ranges can be specified by means of
lower bounds then a colon ‘:’ then the upper bound. The division operator */x can be used to specify that every
x

th
value is valid. Combinations of these operators can be used by placing these into square brackets([]).

This expression pattern matches every 5 minutes past the hour.

every timer:at(5, *, *, *, *)

The below timer:at pattern matches every 15 minutes from 8am to 5pm on even numbered days of the month
as well as on the first day of the month.

timer:at (*/15, 8:17, [*/2, 1], *, *)

The below table outlines the fields, valid values and keywords available for each field:

Table 5.4. Properties offered by sample statement aggregating price

Field Name Mandatory? Allowed Values Additional Keywords

Minutes yes 0 - 59

Hours yes 0 - 23

Days Of Month yes 1 - 31 last, weekday, lastweekday

Months yes 1 - 12

Days Of Week yes 0 (Sunday) - 6
(Saturday)

last

Seconds no 0 - 59

The keyword last used in the days-of-month field means the last day of the month (current month). To specify
the last day of another month, a value for the month field has to be provided. For example: timer:at(*, *,

last,2,*) is the last day of February.

The last keyword in the day-of-week field by itself simply means Saturday. If used in the day-of-week field
after another value, it means "the last xxx day of the month" - for example "5 last" means "the last friday of the
month". So the last Friday of the current month will be: timer:at(*, *, *, *, 5 last). And the last Friday
of June: timer:at(*, *, *, 6, 5 last).

The keyword weekday is used to specify the weekday (Monday-Friday) nearest the given day. Variant could in-

EQL Reference: Patterns

Esper 1.11.0 52

clude month like in: timer:at(*, *, 30 weekday, 9, *) which is Friday September 28th (no jump over
month).

The keyword lastweekday is a combination of two parameters, the last and the weekday keywords. A typical
example could be: timer:at(*, *, *, lastweekday, 9, *) which will define Friday September 28th
(example year is 2007).

EQL Reference: Patterns

Esper 1.11.0 53

Chapter 6. EQL Reference: Operators
Esper arithmatic and logical operator precedence follows Java standard arithmatic and logical operator preced-
ence.

6.1. Arithmatic Operators

The below table outlines the arithmatic operators available.

Table 6.1. Syntax and results of arithmatic operators

Operator Description

+, -
As unary operators they denote a positive or
negative expression. As binary operators they
add or subtract.

*, /
Multiplication and division are binary operat-
ors.

%
Modulo binary operator.

6.2. Logical And Comparsion Operators

The below table outlines the logical and comparison operators available.

Table 6.2. Syntax and results of logical and comparison operators

Operator Description

NOT
Returns true if the following condition is
false, returns false if it is true.

OR
Returns true if either component condition is
true, returns false if both are false.

AND
Returns true if both component conditions are
true, returns false if either is false.

=, !=, <, > <=, >=,
Comparison.

6.3. Concatenation Operators

Esper 1.11.0 54

The below table outlines the concatenation operators available.

Table 6.3. Syntax and results of concatenation operators

Operator Description

||
Concatenates character strings

6.4. Binary Operators

The below table outlines the binary operators available.

Table 6.4. Syntax and results of binary operators

Operator Description

&
Bitwise AND if both operands are numbers;
conditional AND if both operands are
boolean

|
Bitwise OR if both operands are numbers;
conditional OR if both operands are boolean

^
Bitwise exclusive OR (XOR)

6.5. Array Definition Operator

The { and } curly braces are array definition operators following the Java array initialization syntax. Arrays can
be useful to pass to user-defined functions or to select array data in a select clause.

Array definitions consist of zero or more expressions within curly braces. Any type of expression is allowed
within array definitions including constants, arithmatic expressions or event properties. This is the syntax of an
array definition:

{ [expression [,expression...]] }

Consider the next statement that returns an event property named actions. The engine populates the actions

property as an array of java.lang.String values with a length of 2 elements. The first element of the array
contains the observation property value and the second element the command property value of RFIDEvent

events.

select {observation, command} as actions from RFIDEvent

The engine determines the array type based on the types returned by the expressions in the array definiton. For
example, if all expressions in the array definition return integer values then the type of the array is
java.lang.Integer[]. If the types returned by all expressions are compatible number types, such as integer

EQL Reference: Operators

Esper 1.11.0 55

and double values, the engine coerces the array element values and returns a suitable type,
java.lang.Double[] in this example. The type of the array returned is Object[] if the types of expressions
cannot be coerced or return object values. Null values can also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

select * from RFIDEvent where Filter.myFilter(zone, {1,2,3})

6.6. The 'in' Keyword

The in keyword determines if a given value matches any value in a list. The syntax of the keyword is:

test_expression [not] in (expression [,expression...])

The test_expression is any valid expression. The keyword is followed by a list of expressions to test for a
match. The optional not keyword specifies that the result of the predicate be negated.

The result of an in expression is of type Boolean. If the value of test_expression is equal to any expression
from the comma-separated list, the result value is true. Otherwise, the result value is false. All expressions
must be of the same type as or a compatible type to test_expression.

The next example shows how the in keyword can be applied to select certain command types of RFID events:

select * from RFIDEvent where command in ('OBSERVATION', 'SIGNAL')

The statement is equivalent to:

select * from RFIDEvent where command = 'OBSERVATION' or command = 'SIGNAL'

6.7. The 'between' Keyword

The between keyword specifies a range to test. The syntax of the keyword is:

test_expression [not] between begin_expression and end_expression

The test_expression is any valid expression and is the expression to test for in the range defined by be-
gin_expression and end_expression. The not keyword specifies that the result of the predicate be negated.

The result of a between expression is of type Boolean. If the value of test_expression is greater then or equal to
the value of begin_expression and less than or equal to the value of end_expression, the result is true.

The next example shows how the between keyword can be used to select events with a price between 55 and 60
(inclusive).

select * from StockTickEvent where price between 55 and 60

The equivalent expression without between is:

select * from StockTickEvent where price >= 55 and price <= 60

And also equivalent to:

select * from StockTickEvent where price between 60 and 55

EQL Reference: Operators

Esper 1.11.0 56

6.8. The 'like' Keyword

The like keyword provides standard SQL pattern matching. SQL pattern matching allows you to use '_' to
match any single character and '%' to match an arbitrary number of characters (including zero characters). In
Esper, SQL patterns are case-sensitive by default. The syntax of like is:

test_expression [not] like pattern_expression [escape string_literal]

The test_expression is any valid expression yielding a String-type or a numeric result. The optional not

keyword specifies that the result of the predicate be negated. The like keyword is followed by any valid stand-
ard SQL pattern_expression yielding a String-typed result. The optional escape keyword signals the escape
character to escape '_' and '%' values in the pattern.

The result of a like expression is of type Boolean. If the value of test_expression matches the pat-
tern_expression, the result value is true. Otherwise, the result value is false.

An example for the like keyword is below.

select * from PersonLocationEvent where name like '%Jack%'

The escape character can be defined as follows. In this example the where-clause matches events where the suf-
fix property is a single '_' character.

select * from PersonLocationEvent where suffix like '!_' escape '!'

6.9. The 'regexp' Keyword

The regexp keyword is a form of pattern matching based on regular expressions implemented through the Java
java.util.regex package. The syntax of regexp is:

test_expression [not] regexp pattern_expression

The test_expression is any valid expression yielding a String-type or a numeric result. The optional not

keyword specifies that the result of the predicate be negated. The regexp keyword is followed by any valid reg-
ular expression pattern_expression yielding a String-typed result.

The result of a regexp expression is of type Boolean. If the value of test_expression matches the regular ex-
pression pattern_expression, the result value is true. Otherwise, the result value is false.

An example for the regexp keyword is below.

select * from PersonLocationEvent where name regexp '*Jack*'

EQL Reference: Operators

Esper 1.11.0 57

Chapter 7. EQL Reference: Functions

7.1. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement. These func-
tions can appear anywhere where expressions are allowed.

Esper allows static Java library methods as single-row functions, and also features built-in single-row functions.

Esper auto-imports the following Java library packages:

• java.lang.*
• java.math.*
• java.text.*
• java.util.*

Thus Java static library methods can be used in all expressions as shown in below example:

select symbol, Math.round(volume/1000)
from StockTickEvent.win:time(30 sec)

In general, arbitrary Java class names have to be fully qualified (e.g. java.lang.Math) but Esper provides a
mechanism for user-controlled imports of classes and packages as outlined in Chapter 10, Configuration.

The below table outlines the built-in single-row functions available.

Table 7.1. Syntax and results of single-row functions

Single-row Function Result

case value
when compare_value then result
[when compare_value then result ...]
[else result]
end

Returns result where the first value equals
compare_value.

case
when condition then result
[when condition then result ...]
[else result]
end

Returns the result for the first condition that
is true.

cast(expression, type_name) Casts the result of an expression to the given
type.

coalesce(expression, expression [, expression ...]) Returns the first non-null value in the list, or
null if there are no non-null values.

current_timestamp[()] Returns the current engine time as a long mil-
lisecond value. Reserved keyword with op-
tional parenthesis.

Esper 1.11.0 58

Single-row Function Result

exists(dynamic_property_name) Returns true if the dynamic property exists
for the event, or false if the property does not
exist.

instanceof(expression, type_name [, type_name ...]) Returns true if the expression returns an ob-
ject whose type is one of the types listed.

max(expression, expression [, expression ...]) Returns the highest numeric value among the
2 or more comma-separated expressions.

min(expression, expression [, expression ...]) Returns the lowest numeric value among the
2 or more comma-separated expressions.

prev(expression, event_property) Returns a property value of a previous event,
relative to the event order within a data win-
dow

prior(integer, event_property) Returns a property value of a prior event, rel-
ative to the natural order of arrival of events

7.1.1. The Case Control Flow Function

The case control flow function has two versions. The first version takes a value and a list of compare values to
compare against, and returns the result where the first value equals the compare value. The second version
takes a list of conditions and returns the result for the first condition that is true.

The return type of a case expression is the compatible aggregated type of all return values.

The example below shows the first version of a case statement. It has a String return type and returns the
value 'one'.

select case 1 when 1 then 'one' when 2 then 'two' else 'more' end from ...

The second version of the case function takes a list of conditions. The next example has a Boolean return type
and returns the boolean value true.

select case when 1>0 then true else false end from ...

7.1.2. The Cast Function

The cast function casts the return type of an expression to a designated type. The function accepts two para-
meters: The first parameter is the property name or expression that returns the value to be casted. The second
parameter is the type to cast to.

Valid parameters for the second (type) parameter are:

• Any of the Java built-in types: int, long, byte, short, char, double, float, string, where string

EQL Reference: Functions

Esper 1.11.0 59

is a short notation for java.lang.String. The type name is not case-sensitive. For example:

cast(price, double)

• The fully-qualified class name of the class to cast to, for example:

cast(product, org.myproducer.Product)

The cast function is often used to provide a type for dynamic (unchecked) properties. Dynamic properties are
properties whose type is not known at compile type. These properties are always of type java.lang.Object.

The cast function as shown in the next statement casts the dynamic "price" property of an "item" in the Or-
derEvent to a double value.

select cast(item.price?, double) from OrderEvent

The cast function returns a null value if the expression result cannot be casted to the desired type, or if the ex-
pression result itself is null.

The cast function adheres to the following type conversion rules:

• For all numeric types, the cast function utilitzes java.lang.Number to convert numeric types, if required.

• For casts to string or java.lang.String, the function calls toString on the expression result.

• For casts to other objects including application objects, the cast function considers a Java class's super-
classes as well as all directly or indirectly-implemented interfaces by superclasses .

7.1.3. The Coalesce Function

The result of the coalesce function is the first expression in a list of expressions that returns a non-null value.
The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo':

select coalesce(null, 'foo') from ...

7.1.4. The Current_Timestamp Function

The current_timestamp function is a reserved keyword and requires no parameters. The result of the cur-

rent_timestamp function is the long-type millisecond value of the current engine system time.

The function returns the current engine timestamp at the time of expression evaluation. When using external-
timer events, the function provides the last value of the externally-supplied time at the time of expression evalu-
ation.

This example selects the current engine time:

select current_timestamp from MyEvent
// equivalent to
select current_timestamp from MyEvent

EQL Reference: Functions

Esper 1.11.0 60

7.1.5. The Exists Function

The exists function returns a boolean value indicating whether the dynamic property, provided as a parameter
to the function, exists on the event. The exists function accepts a single dynamic property name as it's only
parameter.

The exists function is for use with dynamic (unchecked) properties. Dynamic properties are properties whose
type is not known at compile type. Dynamic properties return a null value if the dynamic property does not ex-
ists on an event, or if the dynamic property exists but the value of the dynamic property is null.

The exists function as shown next returns true if the "item" property contains an object that has a "service-
Name" property. It returns false if the "item" property is null, or if the "item" property does not contain an ob-
ject that has a property named "serviceName" :

select exists(item.serviceName?) from OrderEvent

7.1.6. The Instance-Of Function

The instanceof function returns a boolean value indicating whether the type of value returned by the expres-
sion is one of the given types. The first parameter to the instanceof function is an expression to evaluate. The
second and subsequent parameters are Java type names.

The function determines the return type of the expression at runtime by evaluating the expression, and com-
pares the type of object returned by the expression to the defined types. If the type of object returned by the ex-
pression matches any of the given types, the function returns true. If the expression returned null or a type
that does not match any of the given types, the function returns false.

The instanceof function is often used in conjunction with dynamic (unchecked) properties. Dynamic proper-
ties are properties whose type is not known at compile type.

This example uses the instanceof function to select different properties based on the type:

select case when instanceof(item, com.mycompany.Service) then serviceName?
when instanceof(item, com.mycompany.Product) then productName? end
from OrderEvent

The instanceof function returns false if the expression tested by instanceof returned null.

Valid parameters for the type parameter list are:

• Any of the Java built-in types: int, long, byte, short, char, double, float, string, where string

is a short notation for java.lang.String. The type name is not case-sensitive. For example, the next func-
tion tests if the dynamic "price" property is either of type float or type double:

instanceof(price?, double, float)

• The fully-qualified class name of the class to cast to, for example:

instanceof(product, org.myproducer.Product)

The function considers an event class's superclasses as well as all the directly or indirectly-implemented inter-
faces by superclasses.

EQL Reference: Functions

Esper 1.11.0 61

7.1.7. The Min and Max Functions

The min and max function take two or more parameters that itself can be expressions. The min function returns
the lowest numeric value among the 2 or more comma-separated expressions, while the max function returns the
highest numeric value. The return type is the compatible aggregated type of all return values.

The next example shows the max function that has a Double return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from ...

The min function returns the lowest value. The statement below uses the function to determine the smaller of
two timestamp values.

select symbol, min(ticks.timestamp, news.timestamp) as minT
from StockTickEvent.win:time(30 sec) as ticks, NewsEvent.win:time(30 sec) as news
where ticks.symbol = news.symbol

7.1.8. The Previous Function

The prev function returns the property value of a previous event. The first parameter denotes the i-th previous
event in the order established by the data window. The second parameter is a property name for which the func-
tion returns the value for the previous event.

This example selects the value of the price property of the 2nd-previous event from the current Trade event.

select prev(2, price) from Trade.win:length(10)

Since the prev function takes the order established by the data window into account, the function works well
with sorted windows. In the following example the statement selects the symbol of the 3 Trade events that had
the largest, second-largest and third-largest volume.

select prev(0, symbol), prev(1, symbol), prev(2, symbol)
from Trade.ext:sort(volume, true, 10)

The i-th previous event parameter can also be an expression returning an Integer-type value. The next statement
joins the Trade data window with an RankSelectionEvent event that provides a rank property used to look up
a certain position in the sorted Trade data window:

select prev(rank, symbol) from Trade.ext:sort(volume, true, 10), RankSelectionEvent

And the expression count(*) - 1 allows us to select the oldest event in the length window:

select prev(count(*) - 1, price) from Trade.win:length(100)

The prev function returns a null value if the data window does not currently hold the i-th previous event. The
example below illustrates this using a time batch window. Here the prev function returns a null value for any
events in which the previous event is not in the same batch of events. Note that the prior function as discussed
below can be used if a null value is not the desired result.

select prev(1, symbol) from Trade.win:time_batch(1 min)

Previous Event per Group

EQL Reference: Functions

Esper 1.11.0 62

The combination of prev function and group-by view returns the property value for a previous event in the giv-
en group.

Let's look at an example. Assume we want to obtain the price of the previous event of the same symbol as the
current event.

The statement that follows solves this problem. It declares a group-by view grouping on the symbol property
and a time window of 1 minute. As a result, when the engine encounters a new symbol value that it hasn't seen
before, it creates a new time window specifically to hold events for that symbol. Consequently, the previous
function returns the previous event within the respective time window for that event's symbol value.

select prev(1, price) as prevPrice from Trade.std:groupby('symbol').win:time(1 min)

In a second example, assume we need to return, for each event, the current top price per symbol. We can use
the prev to obtain the highest price from a sorted data window, and use the group-by view to group by symbol:

select prev(0, price) as topPricePerSymbol
from Trade.std:groupby('symbol').ext:sort('price', false, 1)

Restrictions

The following restrictions apply to the prev functions and its results:

• The function always returns a null value for remove stream (old data) events
• The function requires a data window view, or a group-by and data window view, without any additional

sub-views. Data window views are: length window, time and time batch window and sorted window

Comparison to the prior Function

The prev function is similar to the prior function. The key differences between the two functions are as fol-
lows:

• The prev function returns previous events in the order provided by the data window, while the prior func-
tion returns prior events in the order of arrival as posted by a stream's declared views.

• The prev function requires a data window view while the prior function does not have any view require-
ments.

• The prev function returns the previous event grouped by a criteria by combining the std:groupby view and
a data window. The prior function returns prior events posted by the last view regardless of data window
grouping.

• The prev function returns a null value for remove stream events, i.e. for events leaving a data window. The
prior function does not have this restriction.

7.1.9. The Prior Function

The prior function returns the property value of a prior event. The first parameter is an integer value that de-
notes the i-th prior event in the natural order of arrival. The second parameter is a property name for which the
function returns the value for the prior event.

This example selects the value of the price property of the 2nd-prior event to the current Trade event.

select prior(2, price) from Trade

The prior function can be used on any event stream or view and does not have any specific view requirements.

EQL Reference: Functions

Esper 1.11.0 63

The function operates on the order of arrival of events by the event stream or view that provides the events.

The next statement uses a time batch window to compute an average volume for 1 minute of Trade events,
posting results every minute. The select-clause employs the prior function to select the current average and the
average before the current average:

select average, prior(1, average)
from TradeAverages.win:time_batch(1 min).stat:uni('volume')

7.2. Aggregate Functions

The syntax of the aggregation functions and the results they produce are shown in below table.

Table 7.2. Syntax and results of aggregate functions

Aggregate Function Result

sum([all|distinct] expression)
Totals the (distinct) values in the expression, returning a value of long,
double, float or integer type depending on the expression

avg([all|distinct] expression)
Average of the (distinct) values in the expression, returning a value of
double type

count([all|distinct] expression)
Number of the (distinct) non-null values in the expression, returning a
value of long type

count(*)
Number of events, returning a value of long type

max([all|distinct] expression)
Highest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

min([all|distinct] expression)
Lowest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

median([all|distinct] expression)
Median (distinct) value in the expression, returning a value of double

type

stddev([all|distinct] expression)
Standard deviation of the (distinct) values in the expression, returning a
value of double type

avedev([all|distinct] expression)
Mean deviation of the (distinct) values in the expression, returning a
value of double type

7.3. User-Defined Functions

A user-defined function can be invoked anywhere as an expression itself or within an expresson. The function

EQL Reference: Functions

Esper 1.11.0 64

must simply be a public static method that the classloader can resolve at statement creation time. The engine re-
solves the function reference at statement creation time and verifies parameter types.

The example below assumes a class MyClass that exposes a public static method myFunction accepting 2 para-
meters, and returing a numeric type such as double.

select 3 * MyClass.myFunction(price, volume) as myValue
from StockTick.win:time(30 sec)

User-defined functions also take array parameters as this example shows. The section on Section 6.5, “Array
Definition Operator” outlines in more detail the types of arrays produced.

select * from RFIDEvent where com.mycompany.rfid.MyChecker.isInZone(zone, {10, 20, 30})

EQL Reference: Functions

Esper 1.11.0 65

Chapter 8. EQL Reference: Views
This chapter outlines the views that are built into Esper. All views can be arbitrarily combined as many of the
examples below show. The section on Chapter 3, Processing Model provides additional information on the re-
lationship of views, filtering and aggregation.

8.1. Window views

8.1.1. Length window (win:length)

This view is a moving length window extending the specified number of elements into the past. The view takes
a single numeric parameter that defines the window size:

win:length(size)

The below example calculates univariate statistics on price for the last 5 stock ticks for symbol IBM.

select * from StockTickEvent(symbol='IBM').win:length(5).stat:uni('price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. The statistics on price is calculated only for the last 10 events for each symbol.

select * from StockTickEvent.std:groupby('symbol').win:length(10).stat:uni('price')

8.1.2. Length window batch (win:length_batch)

This window view buffers events and releases them when a given minimum number of events has been collec-
ted. The view takes the number of events to batch as a parameter:

win:length_batch(size)

The next statement buffers events until a minimum of 5 events have collected. Listeners to updates posted by
this view receive updated information only when 5 or more events have collected.

select * from StockTickEvent.win:length_batch(5)

8.1.3. Time window (win:time)

This view is a moving time window extending from the specified time interval into the past based on the sys-
tem time. This view takes a time period (see Section 4.2.1, “Specifying Time Periods”) or a number of seconds
as a parameter:

win:time(time period)

win:time(number of seconds)

For the IBM stock tick events in the last 1 second, calculate statistics on price.

select * from StockTickEvent(symbol='IBM').win:time(1 sec).stat:uni('price')

Esper 1.11.0 66

The same statement rewritten to use a parameter supplying number-of-seconds is:

select * from StockTickEvent(symbol='IBM').win:time(1).stat:uni('price')

The following time windows are equivalent specifications:

win:time(2 minutes 5 seconds)
win:time(125 sec)
win:time(125)

8.1.4. Externally-timed window (win:ext_timed)

Similar to the time window, this view is a moving time window extending from the specified time interval into
the past, but based on the millisecond time value supplied by an event property. The view takes two parameters:
the name of the event property to return the long-typed timestamp value, and a time period or a number of
seconds:

win:time(timestamp_property_name, time_period)

win:time(timestamp_property_name, number_of_seconds)

This view holds stock tick events of the last 10 seconds based on the timestamp property in StockTickEvent.

select * from StockTickEvent.win:ext_timed('timestamp', 10 seconds)

8.1.5. Time window batch (win:time_batch)

This window view buffers events and releases them every specified time interval in one update. The view takes
a time period or a number of seconds as a parameter.

win:time_batch(time_period)

win:time_batch(number_of_seconds)

The below example batches events into a 5 second window releasing new batches every 5 seconds. Listeners to
updates posted by this view receive updated information only every 5 seconds.

select * from StockTickEvent.win:time_batch(5 sec)

8.2. Standard view set

8.2.1. Unique (std:unique)

The unique view is a view that includes only the most recent among events having the same value for the spe-
cified field:

std:unique(event_property_name)

The view acts as a length window of size 1 for each distinct value of the event property. It thus posts as old
events the prior event of the same property value, if any.

EQL Reference: Views

Esper 1.11.0 67

The below example creates a view that retains only the last event per symbol.

select * from StockTickEvent.std:unique('symbol')

8.2.2. Group By (std:groupby)

This view groups events into sub-views by the value of the specified field. The view takes a single property
name to supply the group-by values, or a list of property names as the synopsis shows:

std:groupby(property_name)

std:groupby({property_name [, property_name ...] })

This example calculates statistics on price separately for each symbol.

select * from StockTickEvent.std:groupby('symbol').stat:uni('price')

The group-by view can also take multiple fields to group by. This example calculates statistics on price for each
symbol and feed.

select * from StockTickEvent.std:groupby({'symbol', 'feed'}).stat:uni('price')

The order in which the group-by view appears within sub-views of a stream controls the data the engine derives
from events for each group. The next 2 statements demonstrate this using a length window.

This example keeps a length window of 10 events of stock trade events, with a separate length window for each
symbol. The engine calculates statistics on price for the last 10 events for each symbol. During runtime, the en-
gine actually allocates a separate length window for each new symbol arriving.

select * from StockTickEvent.std:groupby('symbol').win:length(10).stat:uni('price')

By putting the group-by view in position after the length window, we can change the semantics of the query.
The query now returns the statistics on price per symbol for only the last 10 events across all symbols. Here the
engine allocates only one length window for all events.

select * from StockTickEvent.win:length(10).std:groupby('symbol').stat:uni('price')

We have learned that by placing the group-by view before other views, these other views become part of the
grouped set of views. The engine dynamically allocates a new view instance for each subview, every time it en-
counters a new group key such as a new value for symbol. Therefore, in
std:groupby('symbol').win:length(10) the engine allocates a new length window for each distinct symbol.
However in win:length(10).std:groupby('symbol') the engine maintains a single length window.

Multiple group-by views can also be used in the same statement. The statement below groups by symbol and
feed. As the statement declares the time window after the group-by view for symbols, the engine allocates a
new time window per symbol however reports statistics on price per symbol and feed. The query results are
statistics on price per symbol and feed for the last 1 minute of events per symbol (and not per feed).

select * from StockTickEvent.std:groupby('symbol').win:time(1 minute)
.std:groupby('feed').stat:uni('price')

Last, we consider the permutation where the time window is declared after the group-by. Here, the query results
are statistics on price per symbol and feed for the last 1 minute of events per symbol and feed.

EQL Reference: Views

Esper 1.11.0 68

select * from StockTickEvent.std:groupby({'symbol', 'feed'})
.win:time(1 minute).stat:uni('price')

8.2.3. Size (std:size)

This view simply posts the number of events received from a stream or view. The synopsis is simply:

std:size()

The view posts a single long-typed property named size. The view posts the prior size as old data, and the cur-
rent size as new data to update listeners of the view. Via the iterator method of the statement the size value
can also be polled (read).

When combined with a data window view, the size view reports the current and prior number of events in the
data window. This example reports the number of tick events within the last 1 minute:

select size from StockTickEvent.win:time(1 min).std:size()

The size view is also useful in conjunction with a group-by view to count the number of events per group. The
EQL below returns the number of events per symbol.

select size from StockTickEvent.std:groupby('symbol').std:size()

When used without a data window, the view simply counts the number of events:

select size from StockTickEvent.std:size()

All views can be used with pattern statements as well. The next EQL snippet shows a pattern where we look for
tick events followed by trade events for the same symbol. The size view counts the number of occurances of the
pattern.

select size from pattern[every s=StockTickEvent -> TradeEvent(symbol=s.symbol)].std:size()

8.2.4. Last (std:lastevent)

This view exposes the last element of its parent view:

std:lastevent()

The view acts as a length window of size 1. It thus posts as old events the prior event in the stream, if any.

This example statement retains statistics calculated on stock tick price for the symbol IBM.

select * from StockTickEvent(symbol='IBM').stat:uni('price').std:lastevent()

8.3. Statistics views

8.3.1. Univariate statistics (stat:uni)

This view calculates univariate statistics on an event property. The view takes a single event property name as a

EQL Reference: Views

Esper 1.11.0 69

parameter. The event property must be of numeric type:

stat:uni(event_property_name)

Table 8.1. Univariate statistics derived properties

Property Name Description

count Number of values

sum Sum of values

average Average of values

variance Variance

stdev Sample standard deviation (square root of variance)

stdevpa Population standard deviation

The below example selects the standard deviation on price for stock tick events for the last 10 events.

select stdev from StockTickEvent.win:length(10).stat:uni('price')

8.3.2. Regression (stat:linest)

This view calculates regression on two event properties. The view takes two event property names as paramet-
ers. The event properties must be of numeric type:

stat:linest(event_property_name_1, event_property_name_2)

Table 8.2. Regression derived properties

Property Name Description

slope Slope

YIntercept Y Intercept

Calculate slope and y-intercept on price and offer for all events in the last 10 seconds.

select slope, YIntercept from StockTickEvent.win:time(10 seconds).stat:linest('price', 'offer')

8.3.3. Correlation (stat:correl)

This view calculates the correlation value on two event properties. The view takes two event property names as
parameters. The event properties must be of numeric type:

stat:correl(event_property_name_1, event_property_name_2)

Table 8.3. Correlation derived properties

EQL Reference: Views

Esper 1.11.0 70

Property Name Description

correlation Correlation between two event properties

Calculate correlation on price and offer over all stock tick events for IBM.

select correlation from StockTickEvent(symbol='IBM').stat:correl('price', 'offer')

8.3.4. Weighted average (stat:weighted_avg)

This view returns the weighted average given a weight field and a field to compute the average for. The view
takes two event property names as parameters. The event properties must be of numeric type:

stat:weighted_avg(event_property_name_field, event_property_name_weight)

Table 8.4. Weighted average derived properties

Property Name Description

average Weighted average

A statement that derives the volume-weighted average price for the last 3 seconds:

select average
from StockTickEvent(symbol='IBM').win:time(3 seconds).stat:weighted_avg('price', 'volume')

8.3.5. Multi-dimensional statistics (stat:cube)

This view works similar to the std:groupby views in that it groups information by one or more event proper-
ties. The view accepts 3 or more parameters: The first parameter to the view defines the univariate statistics
values to derive. The second parameter is the property name to derive data from. The remaining parameters
supply the event property names to use to derive dimensions.

stat:cube(values_to_derive, property_name_datapoint, property_name_column)

stat:cube(values_to_derive, property_name_datapoint, property_name_column,
property_name_row)

stat:cube(values_to_derive, property_name_datapoint, property_name_column,
property_name_row, property_name_page)

Table 8.5. Multi-dim derived properties

Property Name Description

cube The cube following the net.esper.view.stat.olap.Cube interface

The example below derives the count, average and standard deviation latency of service measurement events
per customer.

select cube from ServiceMeasurement.stat:cube({‘count’, ‘average’, ‘stdev’},

EQL Reference: Views

Esper 1.11.0 71

'latency', 'customer')

This example derives the average latency of service measurement events per customer, service and error status
for events in the last 30 seconds.

select * from ServiceMeasurement.win:length(30000).stat:cube({‘average’},
'latency', 'customer', 'service', 'status')

8.4. Extension View Set

8.4.1. Sorted Window View (ext:sort)

This view sorts by values of the specified event properties and keeps only the top events up to the given size.

The syntax to sort on a single event property is as follows.

std:sort(property_name, is_descending, size)

To sort on a multiple event properties the syntax is as follows.

sort({ property_name, is_descending [, property_name, is_descending ...] }, size)

The view below sorts on price descending keeping the lowest 10 prices and reporting statistics on price.

select * from StockTickEvent.ext:sort('price', false, 10).stat:uni('price')

The following example sorts events first by price in descending order, and then by symbol name in ascending
(alphabetical) order, keeping only the 10 events with the highest price (with ties resolved by alphabetical order
of symbol).

select * from StockTickEvent.ext:sort({'price', true, 'symbol', false}, 10)

EQL Reference: Views

Esper 1.11.0 72

Chapter 9. API Reference

9.1. API Overview

Esper has 2 primary interfaces that this section outlines: The administrative interface and the runtime interface.

Use Esper's administrative interface to create and manage EQL and pattern statements, and set runtime config-
urations, as discussed in Section 4.1, “EQL Introduction” and Section 5.1, “Event Pattern Overview”.

Use Esper's runtime interface to send events into the engine, emit events and get statistics for an engine in-
stance.

The JavaDoc documentation is also a great source for API information.

9.2. Engine Instances

Each instance of an Esper engine is completely independent of other engine instances and has its own adminis-
trative and runtime interface.

An instance of the Esper engine is obtained via static methods on the EPServiceProviderManager class. The
getDefaultProvider method and the getProvider(String URI) methods return an instance of the Esper en-
gine. The latter can be used to obtain multiple instances of the engine for different URI values. The EPService-

ProviderManager determines if the URI matches all prior URI values and returns the same engine instance for
the same URI value. If the URI has not been seen before, it creates a new engine instance.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the default engine in-
stance return the same instance.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

This code snippet gets an Esper engine for URI RFIDProcessor1. Subsequent calls to get an engine with the
same URI return the same instance.

EPServiceProvider epService = EPServiceProviderManager.getProvider("RFIDProcessor1");

An existing Esper engine instance can be reset via the initialize method on the EPServiceProvider instance.
This stops and removes all statements in the Engine.

9.3. The Administrative Interface

9.3.1. Creating Statements

Create event pattern expression and EQL statements via the administrative interface EPAdministrator.

This code snippet gets an Esper engine then creates an event pattern and an EQL statement.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();
EPAdministrator admin = epService.getEPAdministrator();

EPStatement 10secRecurTrigger = admin.createPattern(

Esper 1.11.0 73

"every timer:at(*, *, *, *, *, */10)");

EPStatement countStmt = admin.createEQL(
"select count(*) from MarketDataBean.win:time(60 sec)");

Note that event pattern expressions can also occur within EQL statements. This is outlined in more detail in
Section 4.4.2, “Pattern-based event streams”.

The create methods on EPAdministrator are overloaded and allow an optional statement name to be passed to
the engine. A statement name can be useful for retrieving a statement by name from the engine at a later time.
The engine assigns a statement name if no statement name is supplied on statement creation.

The createPattern and createEQL methods return EPStatement instances. Statements are automatically star-
ted and active when created. A statement can also be stopped and started again via the stop and start methods
shown in the code snippet below.

countStmt.stop();
countStmt.start();

9.3.2. Adding Listeners

We can subscribe to updates posted by a statement via the addListener and removeListener methods on EP-

Statement . We need to provide an implementation of the UpdateListener or the StatementAwareUpdateL-

istener interface to the statement:

UpdateListener myListener = new MyUpdateListener();
countStmt.addListener(myListener);

EQL statements and event patterns publish old data and new data to registered UpdateListener listeners. New
data published by statements is the events representing the new values of derived data held by the statement.
Old data published by statements constists of the events representing the prior values of derived data held by
the statement.

A second listener interface is the StatementAwareUpdateListener interface. A StatementAwareUpdateL-

istener is especially useful for registering the same listener object with multiple statements, as the listener re-
ceives the statement instance and engine instance in addition to new and old data when the engine indicates
new results to a listener.

StatementAwareUpdateListener myListener = new MyStmtAwareUpdateListener();
statement.addListener(myListener);

To indicate results the engine invokes this method on StatementAwareUpdateListener listeners: up-

date(EventBean[] newEvents, EventBean[] oldEvents, EPStatement statement, EPServiceProvider

epServiceProvider)

9.3.3. Using Iterators

Subscribing to events posted by a statement is following a push model. The engine pushes data to listeners
when events are received that cause data to change or patterns to match. Alternatively, statements can also
serve up data in a pull model via the iterator method. This can come in handy if we are not interested in all
new updates, but only want to perform a frequent poll for the latest data. For example, an event pattern that
fires every 5 seconds could be used to pull data from an EQL statement. The code snippet below demonstrates
some pull code.

API Reference

Esper 1.11.0 74

Iterator<EventBean> eventIter = countStmt.iterator();
for (EventBean event : eventIter) {

// .. do something ..
}

This is a second example:

double averagePrice = (Double) eqlStatement.iterator().next().get("average");

The iterator method can be used to pull results out of most statements, including statements that contain ag-
gregation functions, pattern statements, and statements that contain a where clause, group by clause, having
clause or order by clause.

For statements without an order by clause, the iterator method returns events in the order maintained by the
data window. For statements that contain an order by clause, the iterator method returns events in the order
indicated by the order by clause.

Esper places the following restrictions on the pull API and usage of the iterator method:

1. EQL statements joining multiple event streams do not support the pull API.
2. Since the iterator method returns events to the application immediately, the iterator does not honor an

output rate limiting clause, if present.
3. In multithreaded applications, the iterator method does not hold any locks and modifications to the un-

derlying data window may throw runtime exceptions in the face of concurrent modifications.

9.3.4. Managing Statements

The EPAdministrator interface provides the facilities for managing statements:

• Use the getStatement method to obtain an existing started or stopped statement by name
• Use the getStatementNames methods to obtain a list of started and stopped statement names
• Use the startAllStatements, stopAllStatements and destroyAllStatements methods to manage all

statements in one operation

9.3.5. Runtime Engine Configuration

Certain configuration changes are available to perform on an engine instance while in operation. Such configur-
ation operations are available via the getConfiguration method on EPAdministrator, which returns an Con-

figurationOperations object.

The configuration operations available on a running engine instance are as follows. Please see Chapter 10, Con-
figuration for more information.

• Add an new event type for a JavaBean class, legacy Java class or custom Java class
• Add an new DOM XML event type
• Add an new Map-based event type

9.4. The Runtime Interface

The EPRuntime interface is used to send events for processing into an Esper engine, and to emit Events from an
engine instance to the outside world.

API Reference

Esper 1.11.0 75

The below code snippet shows how to send a Java object event to the engine. Note that the sendEvent method
is overloaded. As events can take on different representation classes in Java, the sendEvent takes parameters to
reflect the different types of events that can be send into the engine. The Chapter 2, Event Representations sec-
tion explains the types of events accepted.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();
EPRuntime runtime = epService.getEPRuntime();

// Send an example event containing stock market data
runtime.sendEvent(new MarketDataBean('IBM', 75.0));

Events, in theoretical terms, are observations of a state change that occured in the past. Since one cannot
change an event that happened in the past, events are best modelled as immutable objects.

Note that the Esper engine relies on events that are sent into an engine to not change their state. Typically, ap-
plications create a new event object for every new event, to represent that new event. Application should not
modify an existing event that was sent into the engine.

Another important method in the runtime interface is the route method. This method is designed for use by Up-

dateListener implementations that need to send events into an engine instance.

The emit and addEmittedListener methods can be used to emit events from a runtime to a registered set of
one or more emitted event listeners. This mechanism is available as a service to enable channel-based publish-
subscribe of events emitted from an engine instance via the emit method. Emitting events is not integrated with
EQL and is available only via the EPRuntime interface. Events are emitted on an event channel identified by a
name. Listeners are implementations of the EmittedListener interface. Via the addEmittedListener method a
listener can be added to the specified event channel. The lister receives only those events posted to that channel.
The channel parameter to addEmittedListener also allows null values. If a null channel value is specified, the
listeners receives emitted events posted on any channel.

9.5. Time-Keeping Events

Special events are provided that can be used to control the time-keeping of an engine instance. There are two
models for an engine to keep track of time. Internal clocking is when the engine instance relies on the
java.util.Timer class for time tick events. External clocking can be used to supply time ticks to the engine.
The latter is useful for testing time-based event sequences or for synchronizing the engine with an external time
source.

By default, the Esper engine uses internal time ticks. This behavior can be changed by sending a timer control
event to the engine as shown below.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();
EPRuntime runtime = epService.getEPRuntime();
// switch to external clocking
runtime.sendEvent(new TimerControlEvent(TimerControlEvent.ClockType.CLOCK_EXTERNAL));

// send a time tick
long timeInMillis = System.currentTimeMillis(); // Or get the time somewhere else
runtime.sendEvent(new CurrentTimeEvent(timeInMillis));

We recommend that when disabling the internal timer, applications send an external timer event setting the start
time before creating statements, such that statement start time is well-defined.

9.6. Events Received from the Engine

API Reference

Esper 1.11.0 76

The Esper engine posts events to registered UpdateListener instances ('push' method for receiving events). For
many statements events can also be pulled from statements via the iterator method. Both pull and push sup-
ply EventBean instances representing the events generated by the engine or events supplied to the engine. Each
EventBean instance represents an event, with each event being either an artificial event, composite event or an
event supplied to the engine via its runtime interface.

The getEventType method supplies an event's event type information represented by an EventType instance.
The EventType supplies event property names and types as well as information about the underlying object to
the event.

The engine may generate artificial events that contain information derived from event streams. A typical ex-
ample for artificial events is the events posted for a statement to calculate univariate statistics on an event prop-
erty. The below example shows such a statement and queries the generated events for an average value.

// Derive univariate statistics on price for the last 100 market data events
String stmt = "select * from MarketDataBean(symbol='IBM').win:length(100).stat:uni('price')";
EPStatement priceStatsView = epService.getEPAdministrator().createEQL(stmt);
priceStatsView.addListener(testListener);

// Example listener code
public class MyUpdateListener implements UpdateListener
{

public void update(EventBean[] newData, EventBean[] oldData)
{

// Interrogate events
System.out.println("new average price=" + newData[0].get("average");
}

}

Composite events are events that aggregate one or more other events. Composite events are typically created by
the engine for statements that join two event streams, and for event patterns in which the causal events are re-
tained and reported in a composite event. The example below shows such an event pattern.

// Look for a pattern where BEvent follows AEvent
String pattern = "a=AEvent -> b=BEvent";
EPStatement stmt = epService.getEPAdministrator().createPattern(pattern);
stmt.addListener(testListener);

// Example listener code
public class MyUpdateListener implements UpdateListener
{

public void update(EventBean[] newData, EventBean[] oldData)
{

System.out.println("a event=" + newData[0].get("a").getUnderlying());
System.out.println("b event=" + newData[0].get("b").getUnderlying());
}

}

Note that the update method can receive multiple events at once as it accepts an array of EventBean instances.
For example, a time batch window may post multiple events to listeners representing a batch of events received
during a given time period.

Pattern statements can also produce multiple events delivered to update listeners in one invocation. The pattern
statement below, for instance, delivers an event for each A event that was not followed by a B event with the
same id property within 60 seconds of the A event. The engine may deliver all matching A events as an array
of events in a single invocation of the update method of each listener to the statement:

every a=A -> (timer:interval(60 sec) and not B(id=a.id))

API Reference

Esper 1.11.0 77

9.7. Engine Threading and Concurrency

Esper is designed from the ground up to operate as a component to multi-threaded, highly-concurrent applica-
tions that require efficient use of Java VM resources. In addition, multi-threaded execution requires guarantees
in predictability of results and deterministic processing. This section discusses these concerns in detail.

In Esper, an engine instance is a unit of separation. Applications can obtain and discard (initialize) one or more
engine instances within the same Java VM and can provide the same or different engine configurations to each
instance. An engine instance efficiently shares resources between statements. For example, consider two state-
ments that declare the same data window. The engine matches up view declarations provided by each statement
and can thus provide a single data window representation shared between the two statements.

Applications can use Esper APIs to concurrently, by multiple threads of execution, perform such functions as
creating and managing statements, or sending events into an engine instance for processing. Applications can
use one or more thread pools or any set of same or different threads of execution with any of the public Esper
APIs. There are no restrictions towards threading other then those noted in specific sections of this document.

Applications using Esper retain full control over threading, allowing an engine to be easily embedded and used
as a component or library in your favorite Java container or process. It is up to the application code to use mul-
tiple threads for processing events by the engine, if so desired. All event processing takes places within your
application thread call stack. The exception is timer-based processing if your engine instance relies on the in-
ternal timer (default).

The fact that event processing takes places within an application thread call stack makes developing applica-
tions with Esper easier: Any common Java integrated development environment (IDE) can host an Esper en-
gine instance. This allows developers to easily set up test cases, debug through listener code and inspect input
or output events, or trace their call stack.

To send events into an engine concurrently by multiple execution threads, typically applications use the Java
java.lang.Thread or java.lang.Runnable classes or Java 5 concurrent utilities that include abstractions for
thread pools and blocking in-memory queues.

Each engine instance maintains a single timer thread (internal timer) providing for time or schedule-based pro-
cessing within the engine. The default resolution at which the timer operates is 100 milliseconds. The internal
timer thread can be disabled and applications can instead send external time events to an engine instance to per-
form timer or scheduled processing at the resolution required by an application.

Each engine instance performs minimal locking to enable high levels of concurrency. An engine instance locks
on a statement level to protect statement resources.

For an engine instance to produce predictable results from the viewpoint of listeners to statements, an engine
instance by default ensures that it dispatches statement result events to listeners in the order in which a state-
ment produced result events. Applications that require the highest possible concurrency and do not require pre-
dictable order of delivery of events to listeners, this feature can be turned off via configuration.

In multithreaded environments, when one or more statements make result events available via the insert into

clause to further statements, the engine preserves the order of events inserted into the generated insert-into
stream, allowing statements that consume other statement's events to behave deterministic. This feature can
also be turned off via configuration.

We generally recommended that listener implementations do not block. By implementing listener code as non-
blocking code execution threads can often achieve higher levels of concurrency.

API Reference

Esper 1.11.0 78

9.8. Statement Object Model

The statement object model is a set of classes that provide an object-oriented representation of an EQL or pat-
tern statement. The object model classes are found in package net.esper.client.soda. An instance of EP-

StatementObjectModel represents a statement's object model.

The statement object model classes are a full and complete specification of a statement. All EQL and pattern
constructs including expressions and sub-queries are available via the statement object model.

In conjunction with the administrative API, the statement object model provides the means to build, change or
interrogate statements beyond the EQL or pattern syntax string representation. The object graph of the state-
ment object model is fully navigable for easy querying by code, and is also serializable allowing applications to
persist or transport statements in object form, when required.

The statement object model supports full round-trip from object model to EQL statement string and back to ob-
ject model: A statement object model can be rendered into an EQL string representation via the toEQL method
on EPStatementObjectModel. Further, the administrative API allows to compile a statement string into an ob-
ject model representation via the compileEQL method on EPAdministrator.

The create method on EPAdministrator creates and starts a statement as represented by an object model. In
order to obtain an object model from an existing statement, obtain the statement expression text of the state-
ment via the getText method on EPStatement and use the compileEQL method to obtain the object model.

The following limitations apply:

• Statement object model classes are not safe for sharing between threads other then for read access.
• Between versions of Esper, the serialized form of the object model is subject to change. Esper makes no

guarantees that the serialized object model of one version will be fully compatible with the serialized object
model generated by another version of Esper. Please consider this issue when storing Esper object models
in persistent store.

9.8.1. Building an Object Model

A EPStatementObjectModel consists of an object graph representing all possible clauses that can be part of an
EQL statement.

Among all clauses, the SelectClause and FromClause objects are required clauses that must be present, in or-
der to define what to select and where to select from.

Table 9.1. Required Statement Object Model Instances

Class Description

EPStatementObjectModel All statement clauses for a statement, such as the select-clause and the
from-clause, are specified within the object graph of an instance of this
class

SelectClause A list of the selection properties or expressions, or a wildcard

FromClause A list of one or more streams; A stream can be a filter-based, a pattern-
based or a SQL-based stream; Views are added to streams to provide
data window or other projections

API Reference

Esper 1.11.0 79

Part of the statement object model package are convenient builder classes that make it easy to build a new ob-
ject model or change an existing object model. The SelectClause and FromClause are such builder classes and
provide convenient create methods.

Within the from-clause we have a choice of different streams to select on. The FilterStream class represents a
stream that is filled by events of a certain type and that pass an optional filter expression.

We can use the classes introduced above to create a simple statement object model:

EPStatementObjectModel model = new EPStatementObjectModel();
model.setSelectClause(SelectClause.createWildcard());
model.setFromClause(FromClause.create(FilterStream.create("com.chipmaker.ReadyEvent")));

The model as above is equivalent to the EQL:

select * from com.chipmaker.ReadyEvent

Last, the code snippet below creates a statement from the object model:

EPStatement stmt = epService.getEPAdministrator().create(model);

9.8.2. Building Complex Expressions

The EPStatementObjectModel includes an optional where-clause. The where-clause is a filter expression that
the engine applies to events in one or more streams. The key interface for all expressions is the Expression in-
terface.

The Expressions class provides a convenient way of obtaining Expression instances for all possible expres-
sions. Please consult the JavaDoc for detailed method information. The next example discusses sample where-
clause expressions.

Use the Expressions class as a service for creating expression instances, and add additional expressions via the
add method that most expressions provide.

In the next example we add a simple where-clause to the EQL as shown earlier:

select * from com.chipmaker.ReadyEvent where line=8

And the code to add a where-clause to the object model is below.

model.setWhereClause(Expressions.eq("line", 8));

The following example considers a more complex where-clause. Assume we need to build an expression using
logical-and and logical-or:

select * from com.chipmaker.ReadyEvent
where (line=8) or (line=10 and age<5)

The code for building such a where-clause by means of the object model classes is:

model.setWhereClause(Expressions.or()
.add(Expressions.eq("line", 8))
.add(Expressions.and()

.add(Expressions.eq("line", 10))

.add(Expressions.lt("age", 5))
));

API Reference

Esper 1.11.0 80

9.8.3. Building Patterns

The Patterns class is a factory for building pattern expressions. It provides convenient methods to create all
pattern expressions of the pattern language.

Patterns in EQL are seen as a stream of events that consist of patterns matches. The PatternStream class rep-
resents a stream of pattern matches and contains a pattern expression within.

For instance, consider the following pattern statement.

select * from pattern [every a=MyAEvent and not b=MyBEvent]

The next code snippet outlines how to use the statement object model and specifically the Patterns class to
create a statement object model that is equivalent to the pattern statement above.

EPStatementObjectModel model = new EPStatementObjectModel();
model.setSelectClause(SelectClause.createWildcard());
PatternExpr pattern = Patterns.and()

.add(Patterns.everyFilter("MyAEvent", "a"))

.add(Patterns.notFilter("MyBEvent", "b"));
model.setFromClause(FromClause.create(PatternStream.create(pattern)));

9.8.4. Building Complete Statements

In this section we build a complete example statement and include all optional clauses in one EQL statement, to
demonstrate the object model API.

A sample statement:

insert into ReadyStreamAvg(line, avgAge)
select line, avg(age) as avgAge
from com.chipmaker.ReadyEvent(line in (1, 8, 10)).win:time(10) as RE
where RE.waverId != null
group by line
having avg(age) < 0
output every 10.0 seconds
order by line

Finally, this code snippet builds the above statement from scratch:

EPStatementObjectModel model = new EPStatementObjectModel();
model.setInsertInto(InsertIntoClause.create("ReadyStreamAvg", "line", "avgAge"));
model.setSelectClause(SelectClause.create()

.add("line")

.add(Expressions.avg("age"), "avgAge"));
Filter filter = Filter.create("com.chipmaker.ReadyEvent", Expressions.in("line", 1, 8, 10));
model.setFromClause(FromClause.create(

FilterStream.create(filter, "RE").addView("win", "time", 10)));
model.setWhereClause(Expressions.isNotNull("RE.waverId"));
model.setGroupByClause(GroupByClause.create("line"));
model.setHavingClause(Expressions.lt(Expressions.avg("age"), Expressions.constant(0)));
model.setOutputLimitClause(OutputLimitClause.create(10, OutputLimitUnit.SECONDS));
model.setOrderByClause(OrderByClause.create("line"));

9.9. Prepared Statement and Substitution Parameters

The prepare method that is part of the administrative API pre-compiles an EQL statement and stores the pre-
compiled statement in an EPPreparedStatement object. This object can then be used to efficiently start the

API Reference

Esper 1.11.0 81

parameterized statement multiple times.

Substitution parameters are inserted into an EQL statement as a single question mark character '?'. The engine
assigns the first substitution parameter an index of 1 and subsequent parameters increment the index by one.

Substitution parameters can be inserted into any EQL construct that takes an expression. They are therefore val-
id in any clauses such as the select-clause, from-clause filters, where-clause, group-by-clause, having-clause or
order-by-clause. Substitution parameters cannot be used as parameters to views, pattern observers and guards.
They also cannot be used where a numeric constant is required rather then an expression.

All substitution parameters must be replaced by actual values before a statement with substitution parameters
can be started. Substitution parameters can be replaced with an actual value using the setObject method for
each index. Substitution parameters can be set to new values and new statements can be created from the same
EPPreparedStatement object more then once.

While the setObject method allows substitution parameters to assume any actual value including application
Java objects or enumeration values, the application must provide the correct type of substitution parameter that
matches the requirements of the expression the parameter resides in.

In the following example of setting parameters on a prepared statement and starting the prepared statement,
epService represents an engine instance:

String stmt = "select * from com.chipmaker.ReadyEvent(line=?)";
EPPreparedStatement prepared = epService.getEPAdministrator().prepareEQL(stmt);
prepared.setObject(1, 8);
EPStatement statement = epService.getEPAdministrator().create(prepared);

API Reference

Esper 1.11.0 82

Chapter 10. Configuration
Esper engine configuration is entirely optional. Esper has a very small number of configuration parameters that
can be used to simplify event pattern and EQL statements, and to tune the engine behavior to specific require-
ments. The Esper engine works out-of-the-box without configuration.

An application can supply configuration at the time of engine allocation using the Configuration class, and
can also use XML files to hold configuration. Configuration can be changed at runtime via the Configuration-

Operations interface available from EPAdministrator via the getConfiguration method.

10.1. Programmatic Configuration

An instance of net.esper.client.Configuration represents all configuration parameters. The Configura-

tion is used to build an (immutable) EPServiceProvider, which provides the administrative and runtime inter-
faces for an Esper engine instance.

You may obtain a Configuration instance by instantiating it directly and adding or setting values on it. The
Configuration instance is then passed to EPServiceProviderManager to obtain a configured Esper engine.

Configuration configuration = new Configuration();
configuration.addEventTypeAlias("PriceLimit", PriceLimit.class.getName());
configuration.addEventTypeAlias("StockTick", StockTick.class.getName());
configuration.addImport("org.mycompany.mypackage.MyUtility");
configuration.addImport("org.mycompany.util.*");

EPServiceProvider epService = EPServiceProviderManager.getProvider("sample", configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine represented by an
EPServiceProvider is immutable and does not retain any association back to the Configuration.

The ConfigurationOperations interface provides runtime configuration options. Through this interface ap-
plications can, for example, add new event types or aliases at runtime and then create new statements that rely
on the additional configuration. The getConfiguration method on EPAdministrator allows access to Config-

urationOperations.

10.2. Configuration via XML File

An alternative approach to configuration is to specify a configuration in an XML file.

The default name for the XML configuration file is esper.cfg.xml. Esper reads this file from the root of the
CLASSPATH as an application resource via the configure method.

Configuration configuration = new Configuration();
configuration.configure();

The Configuration class can read the XML configuration file from other sources as well. The configure

method accepts URL, File and String filename parameters.

Configuration configuration = new Configuration();
configuration.configure("myengine.esper.cfg.xml");

Esper 1.11.0 83

10.3. XML Configuration File

Here is an example configuration file. The schema for the configuration file can be found in the etc folder and
is named esper-configuration-1-0.

<?xml version="1.0" encoding="UTF-8"?>
<esper-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="esper-configuration-1-0.xsd">
<event-type alias="StockTick" class="net.esper.example.stockticker.event.StockTick"/>
<event-type alias="PriceLimit" class="net.esper.example.stockticker.event.PriceLimit"/>
<auto-import import-name="org.mycompany.mypackage.MyUtility"/>
<auto-import import-name="org.mycompany.util.*"/>

</esper-configuration>

The example above is only a subset of the configuration items available. The next chapters outline the available
configuration in greater detail.

10.4. Configuration Items

10.4.1. Events represented by Java Classes

Package of Java Event Classes

Via this configuration an application can make the Java package or packages that contain an application's Java
event classes known to an engine. Thereby an application can simply refer to event types in statements by using
the simple class name of each Java class representing an event type.

For example, consider an order-taking application that places all event classes in package
com.mycompany.order.event. One Java class representing an event is the class OrderEvent. The application
can simply issue a statement as follows to select OrderEvent events:

select * from OrderEvent

The XML configuration for defining the Java packages that contain Java event classes is:

<event-type-auto-alias package-name="com.mycompany.order.event"/>

The same configuration but using the Configuration class:

Configuration config = new Configuration();
config.addEventTypeAutoAlias("com.mycompany.order.event");

Event type alias to Java class mapping

This configuration item can be used to allow event pattern statements and EQL statements to use an event type
alias rather then the fully qualified Java class name. Note that Java Interface classes and abstract classes are
also supported as event types via the fully qualified Java class name, and an event type alias can also be defined
for such classes.

The example pattern statement below first shows a pattern that uses the alias StockTick. The second pattern
statement is equivalent but specifies the fully-qualified Java class name.

every StockTick(symbol='IBM')"

Configuration

Esper 1.11.0 84

every net.esper.example.stockticker.event.StockTick(symbol='IBM')

The event type alias can be listed in the XML configuration file as shown below. The Configuration API can
also be used to programatically specify an event type alias, as shown in an earlier code snippet.

<event-type alias="StockTick" class="net.esper.example.stockticker.event.StockTick"/>

Non-JavaBean and Legacy Java Event Classes

Esper can process Java classes that provide event properties through other means then through JavaBean-style
getter methods. It is not necessary that the method and member variable names in your Java class adhere to the
JavaBean convention - any public methods and public member variables can be exposed as event properties via
the below configuration.

A Java class can optionally be configured with an accessor style attribute. This attribute instructs the engine
how it should expose methods and fields for use as event properties in statements.

Table 10.1. Accessor Styles

Style Name Description

javabean As the default setting, the engine exposes an event property
for each public method following the JavaBean getter-method
conventions

public The engine exposes an event property for each public method
and public member variable of the given class

explicit The engine exposes an event property only for the explicitly
configured public methods and public member variables

Using the public setting for the accessor-style attribute instructs the engine to expose an event property for
each public method and public member variable of a Java class. The engine assigns event property names of the
same name as the name of the method or member variable in the Java class.

For example, assuming the class MyLegacyEvent exposes a method named readValue and a member variable
named myField, we can then use properties as shown.

select readValue, myField from MyLegacyEvent

Using the explicit setting for the accessor-style attribute requires that event properties are declared via con-
figuration. This is outlined in the next chapter.

When configuring an engine instance from an XML configuration file, the XML snippet below demonstrates
the use of the legacy-type element and the accessor-style attribute.

<event-type alias="MyLegacyEvent" class="com.mycompany.mypackage.MyLegacyEventClass">
<legacy-type accessor-style="public"/>

</event-type>

When configuring an engine instance via Configuration API, the sample code below shows how to set the ac-
cessor style.

Configuration configuration = new Configuration();

Configuration

Esper 1.11.0 85

ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();
legacyDef.setAccessorStyle(ConfigurationEventTypeLegacy.AccessorStyle.PUBLIC);
config.addEventTypeAlias("MyLegacyEvent", MyLegacyEventClass.class.getName(), legacyDef);

EPServiceProvider epService = EPServiceProviderManager.getProvider("sample", configuration);

Specifying Event Properties for Java Classes

Sometimes it may be convenient to use event property names in pattern and EQL statements that are backed up
by a given public method or member variable (field) in a Java class. And it can be useful to declare multiple
event properties that each map to the same method or member variable.

We can configure properties of events via method-property and field-property elements, as the next ex-
ample shows.

<event-type alias="StockTick" class="net.esper.example.stockticker.event.StockTickEvent">
<legacy-type accessor-style="javabean" code-generation="enabled">

<method-property name="price" accessor-method="getCurrentPrice" />
<field-property name="volume" accessor-field="volumeField" />

</legacy-type>
</event-type>

The XML configuration snippet above declared an event property named price backed by a getter-method
named getCurrentPrice, and a second event property named volume that is backed by a public member vari-
able named volumeField. Thus the price and volume properties can be used in a statement:

select avg(price * volume) from StockTick

As with all configuration options, the API can also be used:

Configuration configuration = new Configuration();
ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();
legacyDef.addMethodProperty("price", "getCurrentPrice");
legacyDef.addFieldProperty("volume", "volumeField");
config.addEventTypeAlias("StockTick", StockTickEvent.class.getName(), legacyDef);

Turning off Code Generation

Esper employes the CGLIB library for very fast read access to event property values. For certain legacy Java
classes it may be desirable to disable the use of this library and instead use Java reflection to obtain event prop-
erty values from event objects.

In the XML configuration, the optional code-generation attribute in the legacy-type section can be set to
disabled as shown next.

<event-type alias="MyLegacyEvent" class="com.mycompany.package.MyLegacyEventClass">
<legacy-type accessor-style="javabean" code-generation="disabled" />

</event-type>

The sample below shows how to configure this option via the API.

Configuration configuration = new Configuration();
ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();
legacyDef.setCodeGeneration(ConfigurationEventTypeLegacy.CodeGeneration.DISABLED);
config.addEventTypeAlias("MyLegacyEvent", MyLegacyEventClass.class.getName(), legacyDef);

Case Sensitivity and Property Names

Configuration

Esper 1.11.0 86

By default the engine resolves Java event properties case sensitive. That is, property names in statements must
match JavaBean-convention property names in name and case. This option controls case sensitivity per Java
class.

In the configuration XML, the optional property-resolution-style attribute in the legacy-type element can
be set to any of these values:

Table 10.2. Property Resolution Case Sensitivity Styles

Style Name Description

case_sensitive (default) As the default setting, the engine matches property names for
the exact name and case only.

case_insensitive Properties are matched if the names are identical. A case in-
sensitive search is used and will choose the first property that
matches the name exactly or the first property that matches
case insensitively should no match be found.

distinct_case_insensitive Properties are matched if the names are identical. A case in-
sensitive search is used and will choose the first property that
matches the name exactly case insensitively. If more than one
'name' can be mapped to the property an exception is thrown.

The sample below shows this option in XML configuration, however the setting can also be changed via API:

<event-type alias="MyLegacyEvent" class="com.mycompany.package.MyLegacyEventClass">
<legacy-type property-resolution-style="case_insensitive"/>

</event-type>

10.4.2. Events represented by java.util.Map

The engine can process java.util.Map events via the sendEvent(Map map, String eventTypeAlias) method
on the EPRuntime interface. Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property names in pattern or EQL statements.
Values can be of any type. JavaBean-style objects as values in a Map can also be processed by the engine.
Please see the Chapter 2, Event Representations section for details on how to use Map events with the engine.

Via configuration we provide an event type alias name for Map events for use in statements, and the event prop-
erty names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event named MyMapEvent.

<event-type alias="MyMapEvent">
<java-util-map>
<map-property name="carId" class="int"/>
<map-property name="carType" class="string"/>
<map-property name="assembly" class="com.mycompany.Assembly"/>

</java-util-map>
</event-type>

This configuration defines the carId property of MyMapEvent events to be of type int, and the carType prop-
erty to be of type java.util.String. The assembly property of the Map event will contain instances of
com.mycompany.Assembly for the engine to query.

Configuration

Esper 1.11.0 87

The valid list of values for the type definition via the class attribute is:

• string or java.lang.String
• char or java.lang.Character
• byte or java.lang.Byte
• short or java.lang.Short
• int or java.lang.Integer
• long or java.lang.Long
• float or java.lang.Float
• double or java.lang.Double
• boolean or java.lang.Boolean
• Any fully-qualified Java class name that can be resolved by the engine via Class.forName

You can also use the configuration API to configure Map event types, as the short code snippet below demon-
strates.

Properties properties = new Properties();
properties.put("carId", "int");
properties.put("carType", "string");
properties.put("assembly", Assembly.class.getName());

Configuration configuration = new Configuration();
configuration.addEventTypeAlias("MyMapEvent", properties);

Finally, here is a sample EQL statement that uses the configured MyMapEvent map event. This statement uses
the chassisTag and numParts properties of Assembly objects in each map.

select carType, assembly.chassisTag, count(assembly.numParts) from MyMapEvent.win:time(60 sec)

10.4.3. Events represented by org.w3c.dom.Node

Via this configuration item the Esper engine can natively process org.w3c.dom.Node instances, i.e. XML docu-
ment object model (DOM) nodes. Please see the Chapter 2, Event Representations section for details on how to
use Node events with the engine.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.

For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against org.w3c.dom.Node

events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphs or java.util.Map events.

In the simplest form, the Esper engine only requires a configuration entry containing the root element name and
the event type alias in order to process org.w3c.dom.Node events:

<event-type alias="MyXMLNodeEvent">
<xml-dom root-element-name="myevent" />

</event-type>

You can also use the configuration API to configure XML event types, as the short example below demon-
strates. In fact, all configuration options available through XML configuration can also be provided via setter
methods on the ConfigurationEventTypeXMLDOM class.

Configuration

Esper 1.11.0 88

Configuration configuration = new Configuration();
ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();
desc.setRootElementName("myevent");
desc.addXPathProperty("name1", "/element/@attribute", XPathConstants.STRING);
desc.addXPathProperty("name2", "/element/subelement", XPathConstants.NUMBER);
configuration.addEventTypeAlias("MyXMLNodeEvent", desc);

The next example presents configuration options in a sample configuration entry.

<event-type alias="AutoIdRFIDEvent">
<xml-dom root-element-name="Sensor" schema-resource="data/AutoIdPmlCore.xsd"

default-namespace="urn:autoid:specification:interchange:PMLCore:xml:schema:1">
<namespace-prefix prefix="pmlcore"

namespace="urn:autoid:specification:interchange:PMLCore:xml:schema:1"/>
<xpath-property property-name="countTags"

xpath="count(/pmlcore:Sensor/pmlcore:Observation/pmlcore:Tag)" type="number"/>
</xml-dom>

</event-type>

This example configures an event property named countTags whose value is computed by an XPath expres-
sion. The namespace prefixes and default namespace are for use with XPath expressions and must also be made
known to the engine in order for the engine to compile XPath expressions. Via the schema-resource attribute
we instruct the engine to load a schema file.

Here is an example EQL statement using the configured event type named AutoIdRFIDEvent.

select ID, countTags from AutoIdRFIDEvent.win:time(30 sec)

Schema Resource

The schema-resource attribute takes a schema resource URL or classpath-relative filename. The engine at-
tempts to resolve the schema resource as an URL. If the schema resource name is not a valid URL, the engine
attempts to resolve the resource from classpath via the ClassLoader.getResource method using the thread
context class loader. If the name could not be resolved, the engine uses the Configuration class classloader.

By configuring a schema file for the engine to load, the engine performs these additional services:

• Validates the event properties in a statement, ensuring the event property name matches an attribute or ele-
ment in the XML

• Determines the type of the event property allowing event properties to be used in type-sensitive expressions
such as expressions involving arithmatic (Note: XPath properties are also typed)

• Matches event property names to either element names or attributes

If no schema resource is specified, none of the event properties specified in statements are validated at state-
ment creation time and their type defaults to java.lang.String. Also, attributes are not supported if no schema
resource is specified and must thus be declared via XPath expression.

XPath Property

The xpath-property element adds event properties to the event type that are computed via an XPath expres-
sion. In order for the XPath expression to compile, be sure to specify the default-namespace attribute and use
the namespace-prefix to declare namespace prefixes.

XPath expression properties are strongly typed. The type attribute allows the following values. These values
correspond to those declared by javax.xml.xpath.XPathConstants.

• number (Note: resolves to a double)

Configuration

Esper 1.11.0 89

• string
• boolean

Absolute or Deep Property Resolution

This setting indicates that when properties are compiled to XPath expressions that the compilation should gen-
erate an absolute XPath expression or a deep (find element) XPath expression.

For example, consider the following statement against an event type that is represented by a XML DOM docu-
ment, assuming the event type GetQuote has been configured with the engine as an XML DOM event type:

select request, request.symbol from GetQuote

By default, the engine compiles the "request" property name to an XPath expression "/GetQuote/request". It
compiles the nested property named "request.symbol" to an XPath expression "/GetQuote/request/symbol",
wherein the root element node is "GetQuote".

By setting absolute property resolution to false, the engine compiles the "request" property name to an XPath
expression "//request". It compiles the nested property named "request.symbol" to an XPath expression "/
/request/symbol". This enables these elements to be located anywhere in the XML document.

The setting is available in XML via the attribute resolve-properties-absolute.

The configuration API provides the above settings as shown here in a sample code:

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();
desc.setRootElementName("GetQuote");
desc.setDefaultNamespace("http://services.samples/xsd");
desc.setRootElementNamespace("http://services.samples/xsd");
desc.addNamespacePrefix("m0", "http://services.samples/xsd");
desc.setResolvePropertiesAbsolute(false);
configuration.addEventTypeAlias("GetQuote", desc);

10.4.4. Class and package imports

Esper allows invocations of static Java library functions as outlined in Section 7.1, “Single-row Function Refer-
ence”. This configuration item can be set to allow a partial rather than a fully qualified class name in such in-
vocations. The imports work in the same way as in Java files, so both packages and classes can be imported.

select Math.max(priceOne, PriceTwo)
// via configuration equivalent to
select java.lang.Math.max(priceOne, priceTwo)

Esper auto-imports the following Java library packages if no other configuration is supplied. This list is re-
placed with any configuration specified in a configuration file or through the API.

• java.lang.*
• java.math.*
• java.text.*
• java.util.*

In an XML configuration file the auto-import configuration may look as below. Note that all configuration op-
tions are available through the Configuration API as well.

<auto-import import-name="com.mycompany.mypackage.*"/>
<auto-import import-name="com.mycompany.myapp.MyUtilityClass"/>

Configuration

Esper 1.11.0 90

10.4.5. Relational Database Access

Esper has the capability to join event streams against historical data sources, such as a relational database. This
section describes the configuration entries that the engine requires to access data stored in your database. Please
see Section 4.13, “Joining Relational Data via SQL” for information on the use of EQL queries that include his-
torical data sources.

EQL queries that poll data from a relational database specify the name of the database as part of the EQL state-
ment. The engine uses the configuration information described here to resolve the database name in the state-
ment to database settings. The required and optional database settings are summarized below.

• Database connections can be obtained via JDBC javax.xml.DataSource or alternatively via
java.sql.DriverManager. Either one of these methods to obtain new database connections is a required
configuration.

• Optionally, JDBC connection-level settings such as auto-commit, transaction isolation level, read-only and
the catalog name can be defined.

• Optionally, a connection lifecycle can be set to indicate to the engine whether the engine must retain con-
nections or must obtain a new connection for each lookup.

• Optionally, define a cache policy to allow the engine to retrieve data from a query cache, reducing the num-
ber of query executions.

Some of the settings can have important performance implications that need to be carefully considered in rela-
tionship to your database software, JDBC driver and runtime environment. This section attempts to outline such
implications where appropriate.

The sample XML configuration file in the "etc" folder can be used as a template for configuring database set-
tings. All settings are also available by means of the configuration API through the classes Configuration and
ConfigurationDBRef.

Connections obtained via DataSource

The snippet of XML below configures a database named mydb1 to obtain connections via a
javax.sql.DataSource. The datasource-connection element instructs the engine to obtain new connections
to the database mydb1 by performing a lookup via javax.naming.InitialContext for the given object lookup
name. Optional environment properties for the InitialContext are also shown in the example.

<database-reference name="mydb1">
<datasource-connection context-lookup-name="java:comp/env/jdbc/mydb">
<env-property name="java.naming.factory.initial" value ="com.myclass.CtxFactory"/>
<env-property name="java.naming.provider.url" value ="iiop://localhost:1050"/>

</datasource-connection>
</database-reference>

To help you better understand how the engine uses this information to obtain connections, we have included the
logic below.

if (envProperties.size() > 0) {
initialContext = new InitialContext(envProperties);

}
else {

initialContext = new InitialContext();
}
DataSource dataSource = (DataSource) initialContext.lookup(lookupName);
Connection connection = dataSource.getConnection();

Connections obtained via DriverManager

Configuration

Esper 1.11.0 91

The next snippet of XML configures a database named mydb2 to obtain connections via
java.sql.DriverManager. The drivermanager-connection element instructs the engine to obtain new con-
nections to the database mydb2 by means of Class.forName and DriverManager.getConnection using the class
name, URL and optional username, password and connection arguments.

<database-reference name="mydb2">
<drivermanager-connection class-name="my.sql.Driver"

url="jdbc:mysql://localhost/test?user=root&password=mypassword"
user="myuser" password="mypassword">

<connection-arg name="user" value ="myuser"/>
<connection-arg name="password" value ="mypassword"/>
<connection-arg name="somearg" value ="someargvalue"/>

</drivermanager-connection>
</database-reference>

The username and password are shown in multiple places in the XML only as an example. Please check with
your database software on the required information in URL and connection arguments.

Connections-level settings

Additional connection-level settings can optionally be provided to the engine which the engine will apply to
new connections. When the engine obtains a new connection, it applies only those settings to the connection
that are explicitly configured. The engine leaves all other connection settings at default values.

The below XML is a sample of all available configuration settings. Please refer to the Java API JavaDocs for
java.sql.Connection for more information to each option or check the documentation of your JDBC driver
and database software.

<database-reference name="mydb2">
... configure data source or driver manager settings...

<connection-settings auto-commit="true" catalog="mycatalog"
read-only="true" transaction-isolation="1" />

</database-reference>

The read-only setting can be used to indicate to your database engine that SQL statements are read-only. The
transaction-isolation and auto-commit help you database software perform the right level of locking and
lock release. Consider setting these values to reduce transactional overhead in your database queries.

Connections lifecycle settings

By default the engine retains a separate database connection for each started EQL statement. However, it is
possible to override this behavior and require the engine to obtain a new database connection for each lookup,
and to close that database connection after the lookup is completed. This often makes sense when you have a
large number of EQL statements and require pooling of connections via a connection pool. If your runtime en-
vironment includes an application server, the connection pool may be exposed as a DataSource.

The XML for this option is below. The connection lifecycle allows the following values: pooled and retain.

<database-reference name="mydb2">
... configure data source or driver manager settings...

<connection-lifecycle value="pooled"/>
</database-reference>

Cache settings

Cache settings can dramatically reduce the number of database queries that the engine executes for EQL state-
ments. If no cache setting is specified, the engine does not cache query results and executes a separate database

Configuration

Esper 1.11.0 92

query for every event.

Caches store the results of database queries and make these results available to subsequent queries using the ex-
act same query parameters as the query for which the result was stored. If your query returns one or more rows,
the cache keep the result rows of the query keyed to the parameters of the query. If your query returns no rows,
the cache also keeps the empty result. Query results are held by a cache until the cache entry is evicted. The
strategies available for evicting cached query results are listed next.

LRU Cache

The least-recently-used (LRU) cache is configured by a maximum size. The cache discards the least recently
used query results first once the cache reaches the maximum size.

The XML configuration entry for a LRU cache is as below. This entry configures an LRU cache holding up to
1000 query results.

<database-reference name="mydb">
... configure data source or driver manager settings...

<lru-cache size="1000"/>
</database-reference>

Expiry-time Cache

The expiry time cache is configured by a maximum age in seconds and a purge interval. The cache discards (on
the get operation) any query results that are older then the maximum age so that stale data is not used. If the
cache is not empty, then every purge interval number of seconds the engine purges any expired entries from the
cache.

The XML configuration entry for an expiry-time cache is as follows. The example configures an expiry time
cache in which prior query results are valid for 60 seconds and which the engine inspects every 2 minutes to re-
move query results older then 60 seconds.

<database-reference name="mydb">
... configure data source or driver manager settings...

<expiry-time-cache max-age-seconds="60" purge-interval-seconds="120"/>
</database-reference>

Column Change Case

This setting instructs the engine to convert to lower- or uppercase any output column names returned by your
database system. When using Oracle relational database software, for example, column names can be changed
to lowercase via this setting.

A sample XML configuration entry for this setting is:

<column-change-case value="lowercase"/>

SQL Types Mapping

By providing a mapping of SQL types (java.sql.Types) to Java built-in types your code can avoid using
sometimes awkward default database types and can easily change the way Esper returns Java types for columns
returned by a SQL query.

The mapping maps a constant as defined by java.sql.Types to a Java built-in type of any of the following
Java type names: String, BigDecimal, Boolean, Byte, Short, Int, Long, Float, Double, ByteArray,

Configuration

Esper 1.11.0 93

SqlDate, SqlTime, SqlTimestamp. The Java type names are not case-sensitive.

A sample XML configuration entry for this setting is shown next. The sample maps Types.NUMERIC (of value
2) to the Java int type.

<sql-types-mapping sql-type="2" java-type="int" />

Metadata Origin

This setting controls how the engine retrieves SQL statement metadata from JDBC prepared statements.

Table 10.3. Syntax and results of aggregate functions

Option Description

default
By default, the engine detects the driver name and queries prepared statement metadata
if the driver is not an Oracle database driver. For Oracle drivers, the engine uses lexical
analysis of the SQL statement to construct a sample SQL statement and then fires that
statement to retrieve statement metadata.

metadata
The engine always queries prepared statement metadata regardless of the database
driver used.

sample
The engine always uses lexical analysis of the SQL statement to construct a sample
SQL statement, and then fires that statement to retrieve statement metadata.

10.4.6. Engine Settings related to Concurrency and Threading

Preserving the order of events delivered to listeners

In multithreaded environments, this setting controls whether dispatches of statement result events to listeners
preserve the ordering in which a statement processes events. By default the engine guarantees that it delivers a
statement's result events to statement listeners in the order in which the result is generated. This behavior can be
turned off via configuration as below.

The next code snippet shows how to control this feature:

Configuration config = new Configuration();
config.getEngineDefaults().getThreading().setListenerDispatchPreserveOrder(false);
engine = EPServiceProviderManager.getDefaultProvider(config);

An the XML configuration file can also control this feature by adding the following elements:

<engine-settings>
<defaults>
<threading>
<listener-dispatch preserve-order="false" timeout-msec="2000"/>
<insert-into-dispatch preserve-order="false"/>

</threading>
</defaults>

</engine-settings>

As discussed, by default the engine can temporarily block a thread when delivering result events to listeners in

Configuration

Esper 1.11.0 94

order to preserve the order in which results are generated by a given statement. The maximum time the engine
blocks a thread can also be configured, and by default is set to 1 second.

Preserving the order of events for insert-into streams

In multithreaded environments, this setting controls whether insert-into streams preserve the order of events in-
serted into them by one or more statements, allowing statements that consume other statement's events to be-
have deterministic.

By default, the engine acquires a lock per insert-into stream when a statement makes events available to further
statements using the insert into clause. The lock allows generated events to be processed by further state-
ments consuming the insert-into stream in the order the generating statement(s) produce events. This allows
statements that require order (such as pattern detection, previous and prior functions) to behave deterministic-
ally.

The setting can be changed via the configuration API and XML as shown in the prior section.

Internal Timer Settings

This option can be used to disable the internal timer thread and such have the application supply external time
events, as well as to set a timer resolution.

The next code snippet shows how to disable the internal timer thread via the configuration API:

Configuration config = new Configuration();
config.getEngineDefaults().getThreading().setInternalTimerEnabled(false);

This snippet of XML configuration leaves the internal timer enabled (the default) and sets a resolution of 200
milliseconds (the default is 100 milliseconds):

<engine-settings>
<defaults>
<threading>
<internal-timer enabled="true" msec-resolution="200"/>

</threading>
</defaults>

</engine-settings>

We recommend that when disabling the internal timer, applications send an external timer event setting the start
time before creating statements, such that statement start time is well-defined.

10.4.7. Engine Settings related to Event Metadata

Java Class Property Names and Case Sensitivity

As discussed in Section 10.4.1.6, “Case Sensitivity and Property Names” this setting controls case sensitivity
for Java event class properties of all Java classes as a default, rather then at a class level.

The next code snippet shows how to control this feature via the API:

Configuration config = new Configuration();
config.getEngineDefaults().getEventMeta().setClassPropertyResolutionStyle(

Configuration.PropertyResolutionStyle.CASE_INSENSITIVE);

Configuration

Esper 1.11.0 95

10.4.8. Engine Settings related to View Resources

Sharing View Resources between Statements

The engine by default attempts to optimize resource usage and thus re-uses or shares views between statements
that declare same views. However, in multi-threaded environments, this can lead to reduced concurrency as
locking for shared view resources must take place. Via this setting this behavior can be turned off for higher
concurrency in multi-threaded processing.

The next code snippet outlines the API to turn off view resource sharing between statements:

Configuration config = new Configuration();
config.getEngineDefaults().getViewResources().setShareViews(false);

10.4.9. Engine Settings related to Logging

Execution Path Debug Logging

By default, the engine does not produce debug output for the event processing execution paths even when
Log4j or Logger configurations have been set to output debug level logs. To enable debug level logging, set
this option in the configuration as well as in your Log4j configuration file.

The API to use to enable debug logging is shown here:

Configuration config = new Configuration();
config.getEngineDefaults().getLogging().setEnableExecutionDebug(true);

Note: this is a configuration option that applies to all engine instances of a given Java module or VM.

Configuration

Esper 1.11.0 96

Chapter 11. Extension and Plug-in

11.1. Overview

Esper can currently be extended by these means:

• User-defined functions - these can be used anywhere where expressions are allowed, please see Section 7.3,
“User-Defined Functions”

• Custom-developed Plug-in Views

11.2. Custom View Implementation

Views in Esper are used to derive information from an event stream, and to represent data windows onto an
event stream. This chapter describes how to plug-in a new, custom view.

The following steps are required to develop and use a custom view with Esper.

1. Implement a view factory class. View factories are classes that accept and check view parameters and in-
stantiate the appropriate view class.

2. Implement a view class. A view class commonly represents a data window or derives new information
from a stream.

3. Configure the view factory class supplying a view namespace and name in the engine configuration file.

The example view factory and view class that are used in this chapter can be found in the test source folder in
the package net.esper.regression.client by the name MyTrendSpotterViewFactory and MyTrendSpotter-

View.

Views can make use of the following engine services available via StatementServiceContext:

• The SchedulingService interface allows views to schedule timer callbacks to a view
• The EventAdapterService interface allows views to create new event types and event instances of a given

type.
• The StatementStopService interface allows view to register a callback that the engine invokes to indicate

that the view's statement has been stopped

Note that custom views may use engine services and APIs that can be subject to change between major re-
leases. The engine services discussed above and view APIs are considered part of the engine internal public
API and are stable. Any changes to such APIs are disclosed through the release change logs and history. Please
also consider contributing your custom view to the Esper project team by submitting the view code through the
mailing list or via a JIRA issue.

11.2.1. Implementing a View Factory

A view factory class is responsible for the following functions:

• Accept zero, one or more view parameters. Validate and parse the parameters as required.
• Validate that the parameterized view is compatible with its parent view. For example, validate that field

names are valid in the event type of the parent view.
• Instantiate the actual view class.
• Provide information about the event type of events posted by the view.

Esper 1.11.0 97

View factory classes simply subclass net.esper.view.ViewFactorySupport:

public class MyTrendSpotterViewFactory extends ViewFactorySupport { ...

Your view factory class must implement the setViewParameters method to accept and parse view parameters.
The next code snippet shows an implementation of this method. The code obtains a single field name parameter
from the parameter list passed to the method:

public class MyTrendSpotterViewFactory extends ViewFactorySupport {
private String fieldName;
private EventType eventType;

public void setViewParameters(ViewFactoryContext viewFactoryContext,
List<Object> viewParameters) throws ViewParameterException

{
String errorMessage = "'Trend spotter' view require a single field name as a parameter";
if (viewParameters.size() != 1) {
throw new ViewParameterException(errorMessage);

}

if (!(viewParameters.get(0) instanceof String)) {
throw new ViewParameterException(errorMessage);

}

fieldName = (String) viewParameters.get(0);
}
...

After the engine supplied view parameters to the factory, the engine will ask the view to attach to its parent
view and validate any field name parameters against the parent view's event type. If the view will be generating
events of a different type then the events generated by the parent view, then the view factory can create the new
event type in this method:

public void attach(EventType parentEventType,
StatementServiceContext statementServiceContext,
ViewFactory optionalParentFactory,
List<ViewFactory> parentViewFactories)

throws ViewAttachException {
String result = PropertyCheckHelper.checkNumeric(parentEventType, fieldName);
if (result != null) {
throw new ViewAttachException(result);

}

// create new event type
Map<String, Class> eventTypeMap = new HashMap<String, Class>();
eventTypeMap.put(PROPERTY_NAME, Long.class);
eventType = statementServiceContext.getEventAdapterService().

createAnonymousMapType(eventTypeMap);
}

Finally, the engine asks the view factory to create a view instance:

public View makeView(StatementServiceContext statementServiceContext) {
return new MyTrendSpotterView(statementServiceContext, fieldName);

}

11.2.2. Implementing a View

A view class is responsible for:

• The setParent method informs the view of the parent view's event type

Extension and Plug-in

Esper 1.11.0 98

• The update method receives insert streams and remove stream events from its parent view
• The iterator method supplies an (optional) iterator to allow an application to pull or request results from

an EPStatement

• The cloneView method must make a configured copy of the view to enable the view to work in a grouping
context together with a std:groupby parent view

View classes simply subclass net.esper.view.ViewSupport:

public class MyTrendSpotterView extends ViewSupport { ...

The view class must implement the setParent(Viewable parent) method. This is an opportunity for the view
to initialize and obtain a fast event property getter for later use to obtain event property values. The next code
snippet shows an implementation of this method:

public void setParent(Viewable parent) {
super.setParent(parent);
if (parent != null) {
fieldGetter = parent.getEventType().getGetter(fieldName);

}
}

Your update method will be processing incoming (insert stream) and outgoing (remove stream) events, as well
as providing incoming and outgoing events to child views. The convention required of your update method im-
plementation is that the view releases any insert stream events which the view generates as semantically-equal
remove stream events at a later time. A sample update method implementation that computes a number of
events in an upward trend is shown below:

public final void update(EventBean[] newData, EventBean[] oldData) {
EventBean oldDataPost = populateMap(trendcount);

// add data points
if (newData != null) {
for (int i = 0; i < newData.length; i++) {
double dataPoint = ((Number) fieldGetter.get(newData[i])).doubleValue();

if (lastDataPoint == null) {
trendcount = 1L;

}
else if (lastDataPoint < dataPoint) {

trendcount++;
}
else if (lastDataPoint > dataPoint) {

trendcount = 0L;
}
lastDataPoint = dataPoint;

}
}

if (this.hasViews()) {
EventBean newDataPost = populateMap(trendcount);
updateChildren(new EventBean[] {newDataPost}, new EventBean[] {oldDataPost});

}
}

This update method must adhere to the following view conventions, to prevent memory leaks and to enable
correct behavior within the engine:

• Views must post a remove stream in the form of old data to child views. The remove stream must consist of
the same event reference(s) posted as insert stream (new data).

The engine can provide a callback to the view indicating when a statement using the view is stopped. The call-
back is available to the view via the net.esper.view.StatementStopCallback interface. Your view code must

Extension and Plug-in

Esper 1.11.0 99

subscribe to the stop callback in order for the engine to invoke the callback:

statementContext.getStatementStopService().addSubscriber(this);

Please refer to the sample views for a code sample on how to implement iterator and cloneView methods.

11.2.3. Configuring View Namespace and Name

The view factory class name as well as the view namespace and name for the new view must be added to the
engine configuration via the configuration API or using the XML configuration file. The configuration shown
below is XML however the same options are available through the configuration API:

<esper-configuration
<plugin-view namespace="custom" name="trendspotter"

factory-class="net.esper.regression.view.MyTrendSpotterViewFactory" />
</esper-configuration>

The new view is now ready to use in a statement:

select * from StockTick.custom:trendspotter('price')

Note that the view must implement the copyView method to enable the view to work in a grouping context as
shown in the next statement:

select * from StockTick.std:groupby('symbol').custom:trendspotter('price')

11.3. Custom Aggregation Functions

Aggregation functions aggregate event property values or expression results obtained from one or more
streams. Examples for built-in aggregation functions are count(*), sum(price * volume) or avg(distinct

volume).

The optional keyword distinct ensures that only distinct (unique) values are aggregated and duplicate values
are ignored by the aggregation function. Custom plug-in aggregation functions do not need to implement the lo-
gic to handle distinct values. This is because when the engine encounters the distinct keyword, it eliminates
any non-distinct values before passing the value for aggregation to the custom aggregation function.

The following steps are required to develop and use a custom aggregation function with Esper.

1. Implement an aggregation function class.
2. Register the aggregation function class with the engine by supplying a function name, via the engine con-

figuration file or the configuration API.

The code for the example aggregation function as shown in this chapter can be found in the test source folder in
the package net.esper.regression.client by the name MyConcatAggregationFunction. The sample func-
tion simply concatenates string-type values.

11.3.1. Implementing an Aggregation Function

An aggregation function class is responsible for the following functions:

• Implement a validate method that validates the value type of the data points that the function must pro-
cess.

Extension and Plug-in

Esper 1.11.0 100

• Implement a getValueType method that returns the type of the aggregation value generated by the function.
For example, the built-in count aggregation function returns Long.class as it generates long -typed values.

• Implement an enter method that the engine invokes to add a data point into the aggregation, when an event
enters a data window

• Implement a leave method that the engine invokes to remove a data point from the aggregation, when an
event leaves a data window

• Implement a getValue method that returns the current value of the aggregation.

Aggregation function classes simply subclass net.esper.eql.agg.AggregationSupport:

public class MyConcatAggregationFunction extends AggregationSupport { ...

The engine generally constructs one instance of the aggregation function class for each time the function is lis-
ted in a statement, however the engine may decide to reduce the number of aggregation class instances if it
finds equivalent aggregations. The constructor initializes the aggregation function:

public class MyConcatAggregationFunction extends AggregationSupport {
private final static char DELIMITER = ' ';
private StringBuilder builder;
private String delimiter;

public MyConcatAggregationFunction()
{
super();
builder = new StringBuilder();
delimiter = "";

}
...

An aggregation function must provide an implementation of the validate method that is passed the result type
of the expression within the aggregation function. Since the example concatenation function requires string
types, it implements a type check:

public void validate(Class childNodeType) {
if (childNodeType != String.class) {
throw new IllegalArgumentException("Concat aggregation requires a String parameter");

}
}

The enter method adds a datapoint to the current aggregation value. The example enter method shown below
adds a delimiter and the string value to a string buffer:

public void enter(Object value) {
if (value != null) {
builder.append(delimiter);
builder.append(value.toString());
delimiter = String.valueOf(DELIMITER);

}
}

Conversly, the leave method removes a datapoint from the current aggregation value. The example leave

method removes from the string buffer:

public void leave(Object value) {
if (value != null) {
builder.delete(0, value.toString().length() + 1);

}
}

In order for the engine to validate the type returned by the aggregation function against the types expected by

Extension and Plug-in

Esper 1.11.0 101

enclosing expressions, the getValueType must return the result type of any values produced by the aggregation
function:

public Class getValueType() {
return String.class;

}

Finally, the engine obtains the current aggregation value by means of the getValue method:

public Object getValue() {
return builder.toString();

}

11.3.2. Configuring Aggregation Function Name

The aggregation function class name as well as the function name for the new aggregation function must be ad-
ded to the engine configuration via the configuration API or using the XML configuration file. The configura-
tion shown below is XML however the same options are available through the configuration API:

<esper-configuration
<plugin-aggregation-function name="concat"
function-class="net.esper.regression.client.MyConcatAggregationFunction" />

</esper-configuration>

The new aggregation function is now ready to use in a statement:

select concat(symbol) from StockTick.win:length(3)

11.4. Custom Pattern Guard

Pattern guards are pattern objects that control the lifecycle of the guarded sub-expression, and can filter the
events fired by the subexpression.

The following steps are required to develop and use a custom guard object with Esper.

1. Implement a guard factory class, responsible for creating guard object instances.
2. Implement a guard class.
3. Register the guard factory class with the engine by supplying a namespace and name, via the engine con-

figuration file or the configuration API.

The code for the example guard object as shown in this chapter can be found in the test source folder in the
package net.esper.regression.client by the name MyCountToPatternGuardFactory. The sample guard dis-
cussed here counts the number of events occurring up to a maximum number of events, and end the sub-
expression when that maximum is reached.

11.4.1. Implementing a Guard Factory

A guard factory class is responsible for the following functions:

• Implement a setGuardParameters method that validates guard parameters.
• Implement a makeGuard method that constructs a new guard instance.

Guard factory classes subclass net.esper.pattern.guard.GuardFactorySupport:

Extension and Plug-in

Esper 1.11.0 102

public class MyCountToPatternGuardFactory extends GuardFactorySupport { ...

The engine constructs one instance of the guard factory class for each time the guard is listed in a statement.

The guard factory class implements the setGuardParameters method that is passed the parameters to the guard
as supplied by the statement. It verifies the guard parameters, similar to the code snippet shown next. Our ex-
ample counter guard takes a single numeric parameter:

public void setGuardParameters(List<Object> guardParameters) throws GuardParameterException {
if (guardParameters.size() != 1) {
throw new GuardParameterException("Count-to guard takes a single integer parameter");

}
if (!(guardParameters.get(0) instanceof Integer)) {
throw new GuardParameterException("Count-to guard takes a single integer parameter");

}
numCountTo = (Integer) guardParameters.get(0);

}

The makeGuard method is called by the engine to create a new guard instance. The example makeGuard method
shown below passes the maximum count of events to the guard instance. It also passes a Quitable implementa-
tion to the guard instance. The guard uses Quitable to indicate that the sub-expression contained within must
stop (quit) listening for events.

public Guard makeGuard(PatternContext context, Quitable quitable,
Object stateNodeId, Object guardState) {
return new MyCountToPatternGuard(numCountTo, quitable);

}

11.4.2. Implementing a Guard Class

A guard class has the following responsibilities:

• Provides a startGuard method that initalizes the guard.
• Provides a stopGuard method that stops the guard, called by the engine when the whole pattern is stopped,

or the sub-expression containing the guard is stopped.
• Provides an inspect method that the pattern engine invokes to determine if the guard lets matching events

pass for further evaluation by the containing expression.

Guard classes subclass net.esper.pattern.guard.GuardSupport as shown here:

public abstract class GuardSupport implements Guard { ...

The engine invokes the guard factory class to construct an instance of the guard class for each new sub-
expression instance within a statement.

A guard class must provide an implementation of the startGuard method that the pattern engine invokes to
start a guard instance. In our example, the method resets the guard's counter to zero:

public void startGuard() {
counter = 0;

}

The pattern engine invokes the inspect method for each time the sub-expression indicates a new event result.
Our example guard needs to count the number of events matched, and quit if the maximum number is reached:

public boolean inspect(MatchedEventMap matchEvent) {
counter++;

Extension and Plug-in

Esper 1.11.0 103

if (counter > numCountTo) {
quitable.guardQuit();
return false;

}
return true;

}

The inspect method returns true for events that pass the guard, and false for events that should not pass the
guard.

11.4.3. Configuring Guard Namespace and Name

The guard factory class name as well as the namespace and name for the new guard must be added to the en-
gine configuration via the configuration API or using the XML configuration file. The configuration shown be-
low is XML however the same options are available through the configuration API:

<esper-configuration
<plugin-pattern-guard namespace="myplugin" name="count_to"

factory-class="net.esper.regression.client.MyCountToPatternGuardFactory"/>
</esper-configuration>

The new guard is now ready to use in a statement. The next pattern statement detects the first 10 MyEvent
events:

select * from pattern [(every MyEvent) where myplugin:count_to(10)]

Note that the every keyword was placed within parentheses to ensure the guard controls the repeated matching
of events.

11.5. Custom Pattern Observer

Pattern observers are pattern objects that are executed as part of a pattern expression and can observe events or
test conditions. Examples for built-in observers are timer:at and timer:interval. Some suggested uses of ob-
server objects are:

• Implement custom scheduling logic using the engine's own scheduling and timer services
• Test conditions related to prior events matching an expression

The following steps are required to develop and use a custom observer object within pattern statements:

1. Implement an observer factory class, responsible for creating observer object instances.
2. Implement an observer class.
3. Register an observer factory class with the engine by supplying a namespace and name, via the engine

configuration file or the configuration API.

The code for the example observer object as shown in this chapter can be found in the test source folder in
package net.esper.regression.client by the name MyFileExistsObserver. The sample observer discussed
here very simply checks if a file exists, using the filename supplied by the pattern statement, and via the
java.io.File class.

11.5.1. Implementing an Observer Factory

An observer factory class is responsible for the following functions:

Extension and Plug-in

Esper 1.11.0 104

• Implement a setObserverParameters method that validates observer parameters.
• Implement a makeObserver method that constructs a new observer instance.

Observer factory classes subclass net.esper.pattern.observer.ObserverFactorySupport:

public class MyFileExistsObserverFactory extends ObserverFactorySupport { ...

The engine constructs one instance of the observer factory class for each time the observer is listed in a state-
ment.

The observer factory class implements the setObserverParameters method that is passed the parameters to the
observer as supplied by the statement. It verifies the observer parameters, similar to the code snippet shown
next. Our example file-exists observer takes a single string parameter:

public void setObserverParameters(List<Object> observerParameters)
throws ObserverParameterException {

String message = "File exists observer takes a single string filename parameter";
if (observerParameters.size() != 1) {
throw new ObserverParameterException(message);

}
if (!(observerParameters.get(0) instanceof String)) {
throw new ObserverParameterException(message);

}

filename = observerParameters.get(0).toString();
}

The pattern engine calls the makeObserver method to create a new observer instance. The example makeOb-

server method shown below passes parameters to the observer instance:

public EventObserver makeObserver(PatternContext context,
MatchedEventMap beginState,
ObserverEventEvaluator observerEventEvaluator,
Object stateNodeId,
Object observerState) {

return new MyFileExistsObserver(beginState, observerEventEvaluator, filename);
}

The ObserverEventEvaluator parameter allows an observer to indicate events, and to indicate change of truth
value to permanently false. Use this interface to indicate when your observer has received or witnessed an
event, or changed it's truth value to true or permanently false.

The MatchedEventMap parameter provides a Map of all matching events for the expression prior to the observ-
er's start. For example, consider a pattern as below:

a=MyEvent -> myplugin:my_observer(...)

The above pattern tagged the MyEvent instance with the tag "a". The pattern engine starts an instance of
my_observer when it receives the first MyEvent. The observer can query the MatchedEventMap using "a" as a
key and obtain the tagged event.

11.5.2. Implementing an Observer Class

An observer class has the following responsibilities:

• Provides a startObserve method that starts the observer.
• Provides a stopObserve method that stops the observer, called by the engine when the whole pattern is

stopped, or the sub-expression containing the observer is stopped.

Extension and Plug-in

Esper 1.11.0 105

Observer classes subclass net.esper.pattern.observer.ObserverSupport as shown here:

public class MyFileExistsObserver implements EventObserver { ...

The engine invokes the observer factory class to construct an instance of the observer class for each new sub-
expression instance within a statement.

An observer class must provide an implementation of the startObserve method that the pattern engine invokes
to start an observer instance. In our example, the observer checks for the presence of a file and indicates the
truth value to the remainder of the expression:

public void startObserve() {
File file = new File(filename);
if (file.exists()) {
observerEventEvaluator.observerEvaluateTrue(beginState);

}
else {
observerEventEvaluator.observerEvaluateFalse();

}
}

Note the observer passes the ObserverEventEvaluator an instance of MatchedEventMap. The observer can also
create one or more new events and pass these events through the Map to the remaining expressions in the pat-
tern.

11.5.3. Configuring Observer Namespace and Name

The observer factory class name as well as the namespace and name for the new observer must be added to the
engine configuration via the configuration API or using the XML configuration file. The configuration shown
below is XML however the same options are available through the configuration API:

<esper-configuration
<plugin-pattern-observer namespace="myplugin" name="file_exists"
factory-class="net.esper.regression.client.MyFileExistsObserverFactory" />

</esper-configuration>

The new observer is now ready to use in a statement. The next pattern statement checks every 10 seconds if the
given file exists, and indicates to the listener when the file is found.

select * from pattern [every timer:interval(10 sec) -> myplugin:file_exists("myfile.txt")]

Extension and Plug-in

Esper 1.11.0 106

Chapter 12. Examples, Tutorials, Case Studies
The tutorial and case studies are available on the public web site at ht-

tp://esper.codehaus.org/evaluating/evaluating.html.

12.1. Examples Overview

This chapter outlines the examples that come with Esper in the examples/src folder of the distribution. The
code for examples can be found in the net.esper.example packages.

In order to compile and run the samples please follow the below instructions:

1. Make sure Java 1.5 or greater is installed and the JAVA_HOME environment variable is set.

2. Open a console window and change directory to examples/etc.

3. Run "setenv.bat" (Windows) or "setenv.sh" (Unix) to verify your environment settings.

4. Run "compile.bat" (Windows) or "compile.sh" (Unix) to compile the examples.

5. Now you are ready to run the examples. Some examples require mandatory parameters. Further informa-
tion to running each example can be found in the "examples/etc" folder in file "readme.txt".

6. Modify the logger logging level in the "log4j.xml" configuration file changing DEBUG to INFO on a class
or package level to reduce the volume of text output.

JUnit tests exist for the example code. The JUnit test source code for the examples can be found in the ex-

amples/test folder. To build and run the example JUnit tests, use the Maven 2 goal test. The JUnit test
source code can also be helpful in understanding the example and in the use of Esper APIs.

12.2. Market Data Feed Monitor

This example processes a raw market data feed. It reports throughput statistics and detects when the data rate of
a feed falls off unexpectedly. A rate fall-off may mean that the data is stale and we want to alert when there is a
possible problem with the feed.

The classes for this example live in package net.esper.example.marketdatafeed. Run "run_mktdatafeed.bat"
(Windows) or "run_mktdatafeed.sh" (Unix) in the examples/etc folder to start the market data feed simulator.

12.2.1. Input Events

The input stream consists of 1 event stream that contains 2 simulated market data feeds. Each individual event
in the stream indicates the feed that supplies the market data, the security symbol and some pricing information:

String symbol;
FeedEnum feed;
double bidPrice;
double askPrice;

12.2.2. Computing Rates Per Feed

Esper 1.11.0 107

For the throughput statistics and to detect rapid fall-off we calculate a ticks per second rate for each market data
feed.

We can use an EQL statement that specifies a view onto the market data event stream that batches together 1
second of events. We specify the feed and a count of events per feed as output values. To make this data avail-
able for further processing, we insert output events into the TicksPerSecond event stream:

insert into TicksPerSecond
select feed, count(*) as cnt

from MarketDataEvent.win:time_batch(1 second)
group by feed

12.2.3. Detecting a Fall-off

We define a rapid fall-off by alerting when the number of ticks per second for any second falls below 75% of
the average number of ticks per second over the last 10 seconds.

We can compute the average number of ticks per second over the last 10 seconds simply by using the TicksPer-
Second events computed by the prior statement and averaging the last 10 seconds. Next, we compare the cur-
rent rate with the moving average and filter out any rates that fall below 75% of the average:

select feed, avg(cnt) as avgCnt, cnt as feedCnt
from TicksPerSecond.win:time(10 seconds)
group by feed

having cnt < avg(cnt) * 0.75

12.2.4. Event generator

The simulator generates market data events for 2 feeds, feed A and feed B. The first parameter to the simulator
is a number of threads. Each thread sends events for each feed in an endless loop. Note that as the Java VM
garbage collection kicks in, the example generates rate drop-offs during such pauses.

The second parameter is a rate drop probability parameter specifies the probability in percent that the simulator
drops the rate for a randomly chosen feed to 60% of the target rate for that second. Thus rate fall-off alerts can
be generated.

The third parameter defines the number of seconds to run the example.

12.3. Transaction 3-Event Challenge

The classes for this example live in package net.esper.example.transaction. Run "run_txnsim.bat"
(Windows) or "run_txnsim.sh" (Unix) to start the transaction simulator. Please see the readme file in the same
folder for build instructions and command line parameters.

12.3.1. The Events

The use case involves tracking three components of a transaction. It‘s important that we use at least three com-
ponents, since some engines have different performance or coding for only two events per transaction. Each
component comes to the engine as an event with the following fields:

• Transaction ID
• Time stamp

Examples, Tutorials, Case Studies

Esper 1.11.0 108

In addition, we have the following extra fields:

In event A:

• Customer ID

In event C:

• Supplier ID (the ID of the supplier that the order was filled through)

12.3.2. Combined event

We need to take in events A, B and C and produce a single, combined event with the following fields:

• Transaction ID
• Customer ID
• Time stamp from event A
• Time stamp from event B
• Time stamp from event C

What we‘re doing here is matching the transaction IDs on each event, to form an aggregate event. If all these
events were in a relational database, this could be done as a simple SQL join… except that with 10,000 events
per second, you will need some serious database hardware to do it.

12.3.3. Real time summary data

Further, we need to produce the following:

• Min,Max,Average total latency from the events (difference in time between A and C) over the past 30
minutes.

• Min,Max,Average latency grouped by (a) customer ID and (b) supplier ID. In other words, metrics on the
the latency of the orders coming from each customer and going to each supplier.

• Min,Max,Average latency between events A/B (time stamp of B minus A) and B/C (time stamp of C minus
B).

12.3.4. Find problems

We need to detect a transaction that did not make it through all three events. In other words, a transaction with
events A or B, but not C. Note that, in this case, what we care about is event C. The lack of events A or B could
indicate a failure in the event transport and should be ignored. Although the lack of an event C could also be a
transport failure, it merits looking into.

12.3.5. Event generator

To make testing easier, standard and to demonstrate how the example works, the example is including an event
generator. The generator generates events for a given number of transactions, using the following rules:

• One in 5,000 transactions will skip event A
• One in 1,000 transactions will skip event B
• One in 10,000 transactions will skip event C.
• Transaction identifiers are randomly generated
• Customer and supplier identifiers are randomly chosen from two lists

Examples, Tutorials, Case Studies

Esper 1.11.0 109

• The time stamp on each event is based on the system time. Between events A and B as well as B and C,
between 0 and 999 is added to the time. So, we have an expected time difference of around 500 milli-
seconds between each event

• Events are randomly shuffled as described below

To make things harder, we don‘t want transaction events coming in order. This code ensures that they come
completely out of order. To do this, we fill in a bucket with events and, when the bucket is full, we shuffle it.
The buckets are sized so that some transactions‘ events will be split between buckets. So, you have a fairly ran-
domized flow of events, representing the worst case from a big, distributed infrastructure.

The generator lets you change the size of the bucket (small, medium, large, larger, largerer). The larger the
bucket size, the more events potentially come in between two events in a given transaction and so, the more the
performance characteristics like buffers, hashes/indexes and other structures are put to the test as the bucket
size increases.

12.4. J2EE Self-Service Terminal Management

The example is about a J2EE-based self-service terminal managing system in an airport that gets a lot of events
from connected terminals. The event rate is around 500 events per second. Some events indicate abnormal situ-
ations such as 'paper low' or 'terminal out of order'. Other events observe activity as customers use a terminal to
check in and print boarding tickets.

12.4.1. Events

Each self-service terminal can publish any of the 6 events below.

• Checkin - Indicates a customer started a check-in dialog
• Cancelled - Indicates a customer cancelled a check-in dialog
• Completed - Indicates a customer completed a check-in dialog
• OutOfOrder - Indicates the terminal detected a hardware problem
• LowPaper - Indicates the terminal is low on paper
• Status - Indicates terminal status, published every 1 minute regardless of activity as a terminal heartbeat

All events provide information about the terminal that published the event, and a timestamp. The terminal in-
formation is held in a property named "term" and provides a terminal id. Since all events carry similar informa-
tion, we model each event as a subtype to a base class BaseTerminalEvent, which will provide the terminal in-
formation that all events share. This enables us to treat all terminal events polymorphically, that is we can treat
derived event types just like their parent event types. This helps simplify our queries.

All terminals publish Status events every 1 minute. In normal cases, the Status events indicate that a terminal is
alive and online. The absence of status events may indicate that a terminal went offline for some reason and
that may need to be investigated.

12.4.2. Detecting Customer Check-in Issues

A customer may be in the middle of a check-in when the terminal detects a hardware problem or when the net-
work goes down. In that situation we want to alert a team member to help the customer. When the terminal de-
tects a problem, it issues an OutOfOrder event. A pattern can find situations where the terminal indicates out-
of-order and the customer is in the middle of the check-in process:

select * from pattern [every a=Checkin ->
(OutOfOrder(term.id=a.term.id) and not

(Cancelled(term.id=a.term.id) or Completed(term.id=a.term.id)))]

Examples, Tutorials, Case Studies

Esper 1.11.0 110

12.4.3. Absence of Status Events

Since Status events arrive in regular intervals of 60 seconds, we can make us of temporal pattern matching us-
ing timer to find events that didn't arrive. We can use the every operator and timer:interval() to repeat an action
every 60 seconds. Then we combine this with a not operator to check for absence of Status events. A 65 second
interval during which we look for Status events allows 5 seconds to account for a possible delay in transmission
or processing:

select 'terminal 1 is offline' from pattern
[every timer:interval(60 sec) -> (timer:interval(65 sec) and not Status(term.id = 'T1'))]

output first every 5 minutes

12.4.4. Activity Summary Data

By presenting statistical information about terminal activity to our staff in real-time we enable them to monitor
the system and spot problems. The next example query simply gives us a count per event type every 1 minute.
We could further use this data, available through the CountPerType event stream, to join and compare against a
recorded usage pattern, or to just summarize activity in real-time.

insert into CountPerType
select type, count(*) as countPerType
from BaseTerminalEvent.win:time(10 minutes)
group by type
output all every 1 minutes

12.4.5. Sample Application for J2EE Application Server

The example code in the distribution package implements a message-driven enterprise java bean (MDB EJB).
We used an MDB as a convenient place for processing incoming events via a JMS message queue or topic. The
example uses 2 JMS queues: One queue to receive events published by terminals, and a second queue to indic-
ate situations detected via EQL statement and listener back to a receiving process.

This example has been packaged for deployment into a JBoss Java application server (see ht-
tp://www.jboss.org) with default deployment configuration. JBoss is an open-source application server avail-
able under LGPL license. Of course the choice of application server does not indicate a requirement or prefer-
ence for the use of Esper in a J2EE container. Other quality J2EE application servers are available and perhaps
more suitable to run this example or a similar application.

The complete example code can be found in the "examples/terminalsvc" folder of the distribution. The Java
package name is net.esper.example.terminalsvc.

Running the Example

The pre-build EAR file contains the MDB for deployment to a JBoss application server with default deploy-
ment options. The JBoss default configuration provides 2 queues that this example utilizes: queue/A and queue/
B. The queue/B is used to send events into the MDB, while queue/A is used to indicate back the any data re-
ceived by listeners to EQL statements.

The application can be deployed by copying the ear file in the "examples/terminalsvc/terminalsvc-ear" folder to
your JBoss deployment directory located under the JBoss home directory under "server/default/deploy".

The example contains an event simulator and an event receiver that can be invoked from the command line. See
the folder "examples/terminalsvc/etc" folder readme file and start scripts for Windows and Unix, and the docu-

Examples, Tutorials, Case Studies

Esper 1.11.0 111

mentation set for further information on the simulator.

Building the Example

This example requires Maven 2 to build. To build the example, change directory to the folder "examples/ter-
minalsvc" and type "mvn package". The instructions have been tested with JBoss AS 4.0.4.GA and Maven
2.0.4.

The Maven build packages the EAR file for deployment to a JBoss application server with default deployment
options.

Running the Event Simulator and Receiver

The example also contains an event simulator that generates meaningful events. The simulator can be run from
the directory "examples/terminalsvc/etc" via the command "run_terminalsvc_sender.bat" (Windows) and
"run_terminalsvc_sender.sh" (Linux). The event simulator generates a batch of at least 200 events every 1
second. Randomly, with a chance of 1 in 10 for each batch of events, the simulator generates either an OutO-
fOrder or a LowPaper event for a random terminal. Each batch the simulator generates 100 random terminal ids
and generates a Checkin event for each. It then generates either a Cancelled or a Completed event for each.
With a chance of 1 in 1000, it generates an OutOfOrder event instead of the Cancelled or Completed event for a
terminal.

The event receiver listens to the MDB-outcoming queue for alerts and prints these out to console. The receiver
can be run from the directory "examples/terminalsvc/etc" via the command "run_terminalsvc_receiver.bat"
(Windows) and "run_terminalsvc_receiver.sh" (Linux).

12.5. Assets Moving Across Zones - An RFID Example

This example out of the RFID domain processes location report events. Each location report event indicates an
asset id and the current zone of the asset. The example solves the problem that when a given set of assets is not
moving together from zone to zone, then an alert must be fired.

Each asset group is tracked by 2 statements. The two statements to track a single asset group consisting of as-
sets identified by asset ids {1, 2, 3} are as follows:

insert into CountZone_G1
select 1 as groupId, zone, count(*) as cnt
from LocationReport(assetId in 1, 2, 3).std:unique('assetId')
group by zone

select Part.zone from pattern [
every Part=CountZone_G1(cnt in (1,2)) ->
(timer:interval(10 sec) and not CountZone_G1(zone=Part.zone, cnt in (0,3)))]

The classes for this example can be found in package net.esper.example.rfid.

This example provides a Swing-based GUI that can be run from the command line. The GUI allows drag-
and-drop of three RFID tags that form one asset group from zone to zone. Each time you move an asset across
the screen the example sends an event into the engine indicating the asset id and current zone. The example de-
tects if within 10 seconds the three assets do not join each other within the same zone, but stay split across
zones. Run "run_rfid_swing.bat" (Windows) or "run_rfid_swing.sh" (Unix) to start the example's Swing GUI.

The example also provides a simulator that can be run from the command line. The simulator generates a num-
ber of asset groups as specified by a command line argument and starts a number of threads as specified by a

Examples, Tutorials, Case Studies

Esper 1.11.0 112

command line argument to send location report events into the engine. Run "run_rfid_sim.bat" (Windows) or
"run_rfid_sim.sh" (Unix) to start the RFID location report event simulator. Please see the readme file in the
same folder for build instructions and command line parameters.

12.6. AutoID RFID Reader generating XML documents

In this example an array of RFID readers sense RFID tags as pallets are coming within the range of one of the
readers. A reader generates XML documents with observation information such as reader sensor ID, observa-
tion time and tags observed. A statement computes the total number of tags per reader sensor ID within the last
60 seconds.

This example demonstrates how XML documents unmarshalled to org.w3c.dom.Node DOM document nodes
can natively be processed by the engine without requiring Java object event representations. The example uses
an XPath expression for an event property counting the number of tags observed by a sensor. The XML docu-
ments follow the AutoID (http://www.autoid.org/) organization standard.

The classes for this example can be found in package net.esper.example.autoid. As events are XML docu-
ments with no Java object representation, the example does not have event classes.

A simulator that can be run from the command line is also available for this example. The simulator generates a
number of XML documents as specified by a command line argument and prints out the totals per sensor. Run
"run_autoid.bat" (Windows) or "run_autoid.sh" (Unix) to start the autoid simulator. Please see the readme file
in the same folder for build instructions and command line parameters.

The code snippet below shows the simple statement to compute the total number of tags per sensor. The state-
ment is created by class net.esper.example.autoid.RFIDTagsPerSensorStmt.

select ID as sensorId, sum(countTags) as numTagsPerSensor
from AutoIdRFIDExample.win:time(60 seconds)
where Observation[0].Command = 'READ_PALLET_TAGS_ONLY'
group by ID

12.7. StockTicker

The StockTicker example comes from the stock trading domain. The example creates event patterns to filter
stock tick events based on price and symbol. When a stock tick event is encountered that falls outside the lower
or upper price limit, the example simply displays that stock tick event. The price range itself is dynamically cre-
ated and changed. This is accomplished by an event patterns that searches for another event class, the price lim-
it event.

The classes net.esper.example.stockticker.event.StockTick and PriceLimit represent our events. The
event patterns are created by the class net.esper.example.stockticker.monitor.StockTickerMonitor.

Summary:

• Good example to learn the API and get started with event patterns
• Dynamically creates and removes event patterns based on price limit events received
• Simple, highly-performant filter expressions for event properties in the stock tick event such as symbol and

price

12.8. MatchMaker

Examples, Tutorials, Case Studies

Esper 1.11.0 113

In the MatchMaker example every mobile user has an X and Y location, a set of properties (gender, hair color,
age range) and a set of preferences (one for each property) to match. The task of the event patterns created by
this example is to detect mobile users that are within proximity given a certain range, and for which the proper-
ties match preferences.

The event class representing mobile users is net.esper.example.matchmaker.event.MobileUserBean. The
net.esper.example.matchmaker.monitor.MatchMakingMonitor class contains the patterns for detecing
matches.

Summary:

• Dynamically creates and removes event patterns based on mobile user events received
• Uses range matching for X and Y properties of mobile user events

12.9. QualityOfService

This example develops some code for measuring quality-of-service levels such as for a service-level agreement
(SLA). A SLA is a contract between 2 parties that defines service constraints such as maximum latency for ser-
vice operations or error rates.

The example measures and monitors operation latency and error counts per customer and operation. When one
of our operations oversteps these constraints, we want to be alerted right away. Additionally, we would like to
have some monitoring in place that checks the health of our service and provides some information on how the
operations are used.

Some of the constraints we need to check are:

• That the latency (time to finish) of some of the operations is always less then X seconds.
• That the latency average is always less then Y seconds over Z operation invocations.

The net.esper.example.qos_sla.events.OperationMeasurement event class with its latency and status
properties is the main event used for the SLA analysis. The other event LatencyLimit serves to set latency lim-
its on the fly.

The net.esper.example.qos_sla.monitor.AverageLatencyMonitor creates an EQL statement that computes
latency statistics per customer and operation for the last 100 events. The DynaLatencySpikeMonitor uses an
event pattern to listen to spikes in latency with dynamically set limits. The ErrorRateMonitor uses the timer
'at' operator in an event pattern that wakes up periodically and polls the error rate within the last 10 minutes.
The ServiceHealthMonitor simply alerts when 3 errors occur, and the SpikeAndErrorMonitor alerts when a
fixed latency is overstepped or an error status is reported.

Summary:

• This example combines event patterns with EQL statements for event stream analysis.
• Shows the use of the timer 'at' operator and followed-by operator -> in event patterns
• Outlines basic EQL statements
• Shows how to pull data out of EQL statements rather then subscribing to events a statement publishes

12.10. LinearRoad

The Linear Road example is a very incomplete implementation of the Stream Data Management Benchmark [3]
by Standford University.

Examples, Tutorials, Case Studies

Esper 1.11.0 114

Linear Road simulates a toll system for the motor vehicle expressways of a large metropolitan area. The main
event in this example is a car location report which the class net.esper.example.linearroad.CarLocEvent

represents. Currently the event stream joins are performed by JUnit test classes in the examples/test folder.
See the net.esper.example.linearroad.TestAccidentNotify and the TestCarSegmentCount classes. Please
consider this a work in progress.

Summary:

• Shows more complex joins between event streams.

12.11. StockTick RSI

The RSI gives you the trend for a stock and for more complete explanation, you can visit the link: ht-
tp://www.stockcharts.com/education/IndicatorAnalysis/indic_RSI.html.

After a definite number of stock events, or accumulation period, the first RSI is computed. Then for each sub-
sequent stock event, the RSI calculations use the previous period’s Average Gain and Loss to determine the
“smoothed RSI”.

Summary:

• Uses a simple event pattern with a filter which feeds a listener that computes the RSI, which publishes
events containing the computed RSI.

Examples, Tutorials, Case Studies

Esper 1.11.0 115

Chapter 13. Performance
Esper has been highly optimized to handle very high throughput streams with very little latency between event
receipt and output result posting. It is also possible to use Esper on a soft-real-time or hard-real-time JVM to
maximize predictability even further.

This section describes performance best practices and explains how to assess Esper performance by using our
provided performance kit.

13.1. Performance Results

For a complete understanding of those results, consult the next sections.

Esper exceeds over 500 000 event/s on a dual CPU 2GHz Intel based hardware,
with engine latency below 3 microseconds average (below 10us with more than
99% predictability) on a VWAP benchmark with 1000 statements registered in the system
- this tops at 70 Mbit/s at 85% CPU usage.

Esper also demonstrates linear scalability from 100 000 to 500 000 event/s on this
hardware, with consistent results accross different statements.

Other tests demonstrate equivalent performance results
(straight through processing, match all, match none, no statement registered,
VWAP with time based window or length based windows).

Tests on a laptop demonstrated about 5x time less performance - that is
between 70 000 event/s and 200 000 event/s - which still gives room for easy
testing on small configuration.

13.2. Performance Tips

13.2.1. Understand how to tune your Java virtual machine

Esper runs on a JVM and you need to be familiar with JVM tuning. Key parameters to consider include minim-
um and maximum heap memory and nursery heap sizes. Statements with time-based or length-based data win-
dows can consume large amounts of memory as their size or length can be large.

For time-based data windows, one needs to be aware that the memory consumed depends on the actual event
stream input throughput. Event pattern instances also consume memory, especially when using the "every"
keyword in patterns to repeat pattern sub-expressions - which again will depend on the actual event stream in-
put throughput.

13.2.2. Compare Esper to other solutions

If you compare Esper performance to the performance of another solution, you need to ensure that your state-
ments have truly equivalent semantics. The is because between different vendors the event processing language
can be seem fairly similar whoever may, for all similarities, produce different results.

For example some vendor solution mandates the use of "bounded streams". The next statement shows one
vendor's event processing syntax:

// Other (name omitted) vendor solution statement:

Esper 1.11.0 116

select * from (select * from Market where ticker = 'GOOG') retain 1 event
// The above is NOT an Esper statement

The semantically equivalent statement in Esper is:

// Esper statement with the same semantics:
select * from MarketData(ticker='$').win:length(1)

As an example, a NOT semantically equivalent statement in Esper is:

// Esper statement that DOES ***NOT*** HAVE the same semantics
// No length window was used
select * from MarketData(ticker='$')

13.2.3. Select the underlying event rather than individual fields

By selecting the underlying event in the select-clause we can reduce load on the engine, since the engine does
not need to generate a new output event for each input event.

For example, the following statement returns the underlying event to update listeners:

// Better performance
select * from RFIDEvent

In comparison, the next statement selects individual properties. This statement requires the engine to generate
an output event that contains exactly the required properties:

// Less good performance
select assetId, zone, xlocation, ylocation from RFIDEvent

13.2.4. Prefer stream-level filtering over post-data-window filtering

Esper stream-level filtering is very well optimized, while filtering via the where-clause post any data windows
is not optimized. In very simple statements that don't have data windows this distinction can make a perform-
ance difference.

Consider the example below, which performs stream-level filtering:

// Better performance : stream-level filtering
select * from MarketData(ticker = 'GOOG')

The example below is the equivalent (same semantics) statement and performs post-data-window filtering
without a data window. The engine does not optimize statements that filter in the where-clause for the reason
that data window views are generally present.

// Less good performance : post-data-window filtering
select * from Market where ticker = 'GOOG'

Thus this optimization technique applies to statements without any data window.

When a data window is used, the semantics change. Let's look at an example to better understand the differ-
ence: In the next statement only GOOG market events enter the length window:

select avg(price) from MarketData(ticker = 'GOOG').win:length(100)

Performance

Esper 1.11.0 117

The above statement computes the average price of GOOG market data events for the last 100 GOOG market
data events.

Compare the filter position to a filter in the where clause. The following statement is NOT equivalent as all
events enter the data window (not just GOOG events):

select avg(price) from Market.win:length(100) where ticker = 'GOOG'

The statement above computes the average price of all market data events for the last 100 market data events,
and outputs results only for GOOG.

13.2.5. Reduce the use of arithmetic in expressions

Esper does not yet attempt to pre-evaluate arithmetic expressions that produce constant results.

Therefore, a filter expression as below is optimized:

// Better performance : no arithmetic
select * from MarketData(price>40)

While the engine cannot currently optimize this expression:

// Less good performance : with arithmetic
select * from MarketData(price+10>50)

13.2.6. Consider using EventPropertyGetter for fast access to event proper-
ties

The EventPropertyGetter interface is useful for obtaining an event property value without property name table
lookup given an EventBean instance that is of the same event type that the property getter was obtained from.

When compiling a statement, the EPStatement instance lets us know the EventType via the getEventType()
method. From the EventType we can obtain EventPropertyGetter instances for named event properties.

To demonstrate, consider the following simple statement:

select symbol, avg(price) from Market group by symbol

After compiling the statement, obtain the EventType and pass the type to the listener:

EPStatement stmt = epService.getEPAdministrator().createEQL(stmtText);
MyGetterUpdateListener listener = new MyGetterUpdateListener(stmt.getEventType());

The listener can use the type to obtain fast getters for property values of events for the same type:

public class MyGetterUpdateListener implements StatementAwareUpdateListener {
private final EventPropertyGetter symbolGetter;
private final EventPropertyGetter avgPriceGetter;

public MyGetterUpdateListener(EventType eventType) {
symbolGetter = eventType.getGetter("symbol");
avgPriceGetter = eventType.getGetter("avg(price)");

}

Last, the update method can invoke the getters to obtain event property values:

Performance

Esper 1.11.0 118

public void update(EventBean[] eventBeans, EventBean[] oldBeans, EPStatement epStatement, EPServiceProvider epServiceProvider) {
String symbol = (String) symbolGetter.get(eventBeans[0]);
long volume = (Long) volumeGetter.get(eventBeans[0]);
// some more logic here

}

13.2.7. Consider casting the underlying event

When an application requires the value of most or all event properties, it can often be best to simply select the
underlying event via wildcard and cast the received events.

Let's look at the sample statement:

select * from MarketData(symbol regexp 'E[a-z]')

An update listener to the statement may want to cast the received events to the expected underlying event class:

public void update(EventBean[] eventBeans, EventBean[] eventBeans) {
MarketData md = (MarketData) eventBeans[0].getUnderlying();
// some more logic here

}

13.2.8. Turn off logging

Since Esper 1.10, even if you don't have a log4j configuration file in place, Esper will make sure to minimize
execution path logging overhead. For prior versions, and to reduce logging overhead overall, we recommend
the "WARN" log level or the "INFO" log level.

Please see the log4j configuration file in "etc/infoonly_log4j.xml" for example log4j settings.

13.3. Using the performance kit

13.3.1. How to use the performance kit

The benchmark application is basically an Esper event server build with Esper that listens to remote clients
over TCP. Remote clients send MarketData(ticker, price, volume) streams to the event server. The Esper event
server is started with 1000 statements of one single kind (unless otherwise written), with one statement per tick-
er symbol, unless the statement kind does not depend on the symbol. The statement prototype is provided along
the results with a '$' instead of the actual ticker symbol value. The Esper event server is entirely multithreaded
and can leverage the full power of 32bit or 64bit underlying hardware multi-processor multi-core architecture.

The kit also prints out when starting up the event size and the theoretical maximal throughput you can get on a
100 Mbit/s and 1 Gbit/s network. Keep in mind a 100 Mbit/s network will be overloaded at about 400 000
event/s when using our kit despite the small size of events.

Results are posted on our Wiki page at http://docs.codehaus.org/display/ESPER/Esper+performance. Reported
results do not represent best ever obtained results. Reported results may help you better compare Esper to other
solutions (for latency, throughput and CPU utilization) and also assess your target hardware and JVMs.

The Esper event server, client and statement prototypes are provided in the source repository esper/

trunk/examples/benchmark/ . Refer to http://xircles.codehaus.org/projects/esper/repo for source access.

Performance

Esper 1.11.0 119

http://docs.codehaus.org/display/ESPER/Esper+performance
http://xircles.codehaus.org/projects/esper/repo

A built is provided for convenience (without sources) as an attachment to the Wiki page at ht-
tp://docs.codehaus.org/pages/viewpageattachments.action?pageId=8356191. It contains Ant script to start cli-
ent, server in simulation mode and server. For real measurement we advise to start from a shell script (because
Ant is pipelining stdout/stderr when you invoke a JVM from Ant - which is costly). Sample scripts are provided
for you to edit and customize.

If you use the kit you should:

1. Choose the statement you want to benchmark, add it to etc/statements.properties under your own
KEY and use the -mode KEY when you start the Esper event server.

2. Prepare your runServer.sh/runServer.cmd and runClient.sh/runclient.cmd scripts. You'll need to drop re-
quired jar libraries in lib/ , make sure the classpath is configured in those script to include build and etc

. The required libraries are Esper (any compatible version, we have tested started with Esper 1.7.0) and its
dependencies as in the sample below (with Esper 1.10) :

classpath on Unix/Linux (on one single line)
etc:build:lib/esper-1.10.0.jar:lib/commons-logging-1.0.3.jar:lib/cglib-full-2.0.2.jar

:lib/antlr-2.7.5.jar:lib/log4j-1.2.8.jar
@rem classpath on Windows (on one single line)
etc;build;lib\esper-1.10.0.jar;lib\commons-logging-1.0.3.jar;lib\cglib-full-2.0.2.jar

;lib\antlr-2.7.5.jar;lib\log4j-1.2.8.jar

Note that ./etc and ./build have to be in the classpath. At that stage you should also start to set min and
max JVM heap. A good start is 1GB as in -Xms1g -Xmx1g

3. Write the statement you want to benchmark given that client will send a stream MarketData(String ticker,
int volume, double price), add it to etc/statements.properties under your own KEY and use the -mode

KEY when you start the Esper event server. Use '$' in the statement to create a prototype. For every sym-
bol, a statement will get registered with all '$' replaced by the actual symbol value (f.e. 'GOOG')

4. Ensure client and server are using the same -Desper.benchmark.symbol=1000 value. This sets the number
of symbol to use (thus may set the number of statement if you are using a statement prototype, and gov-
erns how MarketData event are represented over the network. Basically all events will have the same size
over the network to ensure predictability and will be ranging between S0AA and S999A if you use 1000 as a
value here (prefix with S and padded with A up to a fixed length string. Volume and price attributes will
be randomized.

5. Establish a performance baseline in simulation mode (without clients). Use the -rate 1x5000 option to
simulate one client (one thread) sending 5000 evt/s. You can ramp up both the number of client simulated
thread and their emission rate to maximize CPU utilization. The right number should mimic the client
emission rate you will use in the client/server benchmark and should thus be consistent with what your cli-
ent machine and network will be able to send. On small hardware, having a lot of thread with slow rate
will not help getting high throughput in this simulation mode.

6. Do performance runs with client/server mode. Remove the -rate NxM option from the runServer script or
Ant task. Start the server with -help to display the possible server options (listen port, statistics, fan out
options etc). On the remote machine, start one or more client. Use -help to display the possible client op-
tions (remote port, host, emission rate). The client will output the actual number of event it is sending to
the server. If the server gets overloaded (or if you turned on -queue options on the server) the client will
likely not be able to reach its target rate.

Usually you will get better performance by using server side -queue -1 option so as to have each client
connection handled by a single thread pipeline. If you change to 0 or more, there will be intermediate
structures to pass the event stream in an asynchronous fashion. This will increase context switching, al-

Performance

Esper 1.11.0 120

http://docs.codehaus.org/pages/viewpageattachments.action?pageId=8356191
http://docs.codehaus.org/pages/viewpageattachments.action?pageId=8356191

though if you are using many clients, or are using the -sleep xxx (xxx in milliseconds) to simulate a
listener delay you may get better performance.

The most important server side option is -stat xxx (xxx in seconds) to print out throughput and latency
statistics aggregated over the last xxx seconds (and reset every time). It will produce both internal Esper
latency (in nanosecond) and also end to end latency (in millisecond, including network time). If you are
measuring end to end latency you should make sure your server and client machine(s) are having the same
time with f.e. ntpd with a good enough precision. The stat format is like:

---Stats - engine (unit: ns)
Avg: 2528 #4101107

0 < 5000: 97.01% 97.01% #3978672
5000 < 10000: 2.60% 99.62% #106669
10000 < 15000: 0.35% 99.97% #14337
15000 < 20000: 0.02% 99.99% #971
20000 < 25000: 0.00% 99.99% #177
25000 < 50000: 0.00% 100.00% #89
50000 < 100000: 0.00% 100.00% #41
100000 < 500000: 0.00% 100.00% #120
500000 < 1000000: 0.00% 100.00% #2
1000000 < 2500000: 0.00% 100.00% #7
2500000 < 5000000: 0.00% 100.00% #5
5000000 < more: 0.00% 100.00% #18

---Stats - endToEnd (unit: ms)
Avg: -2704829444341073400 #4101609

0 < 1: 75.01% 75.01% #3076609
1 < 5: 0.00% 75.01% #0
5 < 10: 0.00% 75.01% #0
10 < 50: 0.00% 75.01% #0
50 < 100: 0.00% 75.01% #0

100 < 250: 0.00% 75.01% #0
250 < 500: 0.00% 75.01% #0
500 < 1000: 0.00% 75.01% #0
1000 < more: 24.99% 100.00% #1025000

Throughput 412503 (active 0 pending 0 cnx 4)

This one reads as:

"Throughput is 412 503 event/s with 4 client connected. No -queue options
was used thus no event is pending at the time the statistics are printed.
Esper latency average is at 2528 ns (that is 2.5 us) for 4 101 107 events
(which means we have 10 seconds stats here). Less than 10us latency
was achieved for 106 669 events that is 99.62%. Latency between 5us
and 10us was achieved for those 2.60% of all the events in the interval."

"End to end latency was ... in this case likely due to client clock difference
we ended up with unusable end to end statistics."

Consider the second output paragraph on end-to-end latency:

---Stats - endToEnd (unit: ms)
Avg: 15 #863396

0 < 1: 0.75% 0.75% #6434
1 < 5: 0.99% 1.74% #8552
5 < 10: 2.12% 3.85% #18269
10 < 50: 91.27% 95.13% #788062
50 < 100: 0.10% 95.22% #827

100 < 250: 4.36% 99.58% #37634
250 < 500: 0.42% 100.00% #3618
500 < 1000: 0.00% 100.00% #0
1000 < more: 0.00% 100.00% #0

This would read:

"End to end latency average is at 15 milliseconds for the 863 396 events
considered for this statistic report. 95.13% ie 788 062 events were handled

Performance

Esper 1.11.0 121

(end to end) below 50ms, and 91.27% were handled between 10ms and 50ms."

13.3.2. How we use the performance kit

We use the performance kit to track performance progress across Esper versions, as well as to implement op-
timizations. You can track our work on the Wiki at http://docs.codehaus.org/display/ESPER/Home

Performance

Esper 1.11.0 122

 http://docs.codehaus.org/display/ESPER/Home

Chapter 14. References

14.1. Reference List

• Luckham, David. 2002. The Power of Events. Addison-Wesley.
• The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide.
• Arasu, Arvind, et.al.. 2004. Linear Road: A Stream Data Management Benchmark, Stanford University ht-

tp://www.cs.brown.edu/research/aurora/Linear_Road_Benchmark_Homepage.html.

Esper 1.11.0 123

	Esper - Java Event Stream Processor
	Table of Contents
	Preface
	Chapter 1. Technology Overview
	1.1. Introduction to CEP and event stream analysis
	1.2. CEP and relational databases
	1.3. The Esper engine for CEP
	1.4. Required 3rd Party Libraries

	Chapter 2. Event Representations
	2.1. Event Underlying Java Objects
	2.2. Event Properties
	2.3. Dynamic Event Properties
	2.4. Plain-Old Java Object Events
	2.4.1. Java Object Event Properties

	2.5. java.util.Map Events
	2.6. org.w3c.dom.Node XML Events

	Chapter 3. Processing Model
	3.1. Introduction
	3.2. Insert Stream
	3.3. Insert and Remove Stream
	3.4. Filters and Where-clauses
	3.5. Time Windows
	3.5.1. Time Window
	3.5.2. Time Batch

	3.6. Aggregation and Grouping
	3.6.1. Insert and Remove Stream
	3.6.2. Output for Event Batches
	Un-aggregated and Un-grouped
	Fully Aggregated and Un-grouped
	Aggregated and Un-Grouped
	Fully Aggregated and Grouped
	Aggregated and Grouped

	3.7. EventBean Query Results

	Chapter 4. EQL Reference: Clauses
	4.1. EQL Introduction
	4.2. EQL Syntax
	4.2.1. Specifying Time Periods
	4.2.2. Using Comments

	4.3. Choosing Event Properties And Events: the Select Clause
	4.3.1. Choosing all event properties: select *
	4.3.2. Choosing specific event properties
	4.3.3. Expressions
	4.3.4. Renaming event properties
	4.3.5. Selecting istream and rstream events

	4.4. Specifying Event Streams : the From Clause
	4.4.1. Filter-based event streams
	Specifying an event type
	Specifying filter criteria
	Filtering Ranges
	Filtering Sets of Values
	Filter Limitations

	4.4.2. Pattern-based event streams
	4.4.3. Specifying views

	4.5. Specifying Search Conditions: the Where Clause
	4.6. Aggregates and grouping: the Group-by Clause and the Having Clause
	4.6.1. Using aggregate functions
	4.6.2. Organizing statement results into groups: the Group-by clause
	4.6.3. Selecting groups of events: the Having clause
	4.6.4. How the stream filter, Where, Group By and Having clauses interact
	4.6.5. Comparing the Group By clause and the std:groupby view

	4.7. Stabilizing and Limiting Output: the Output Clause
	4.7.1. Output Clause Options
	4.7.2. Group By, Having and Output clause interaction

	4.8. Sorting Output: the Order By Clause
	4.9. Merging Streams and Continuous Insertion: the Insert Into Clause
	4.10. Joining Event Streams
	4.11. Outer Joins
	4.12. Subqueries
	4.12.1. The 'exists' keyword
	4.12.2. The 'in' keyword

	4.13. Joining Relational Data via SQL
	4.13.1. Joining SQL Query Results
	4.13.2. Outer Joins With SQL Queries
	4.13.3. Using Patterns to Request (Poll) Data
	4.13.4. JDBC Implementation Overview
	4.13.5. Oracle Drivers and No-Metadata Workaround

	Chapter 5. EQL Reference: Patterns
	5.1. Event Pattern Overview
	5.2. How to use Patterns
	5.2.1. Pattern Syntax
	5.2.2. Subscribing to Pattern Events
	5.2.3. Pulling Data from Patterns

	5.3. Operator Precedence
	5.4. Filter Expressions In Patterns
	5.5. Pattern Operators
	5.5.1. Every
	Every Operator Example
	Sensor Example

	5.5.2. And
	5.5.3. Or
	5.5.4. Not
	5.5.5. Followed-by

	5.6. Pattern Guards
	5.6.1. timer:within

	5.7. Pattern Observers
	5.7.1. timer:interval
	5.7.2. timer:at

	Chapter 6. EQL Reference: Operators
	6.1. Arithmatic Operators
	6.2. Logical And Comparsion Operators
	6.3. Concatenation Operators
	6.4. Binary Operators
	6.5. Array Definition Operator
	6.6. The 'in' Keyword
	6.7. The 'between' Keyword
	6.8. The 'like' Keyword
	6.9. The 'regexp' Keyword

	Chapter 7. EQL Reference: Functions
	7.1. Single-row Function Reference
	7.1.1. The Case Control Flow Function
	7.1.2. The Cast Function
	7.1.3. The Coalesce Function
	7.1.4. The Current_Timestamp Function
	7.1.5. The Exists Function
	7.1.6. The Instance-Of Function
	7.1.7. The Min and Max Functions
	7.1.8. The Previous Function
	Previous Event per Group
	Restrictions
	Comparison to the prior Function

	7.1.9. The Prior Function

	7.2. Aggregate Functions
	7.3. User-Defined Functions

	Chapter 8. EQL Reference: Views
	8.1. Window views
	8.1.1. Length window (win:length)
	8.1.2. Length window batch (win:length_batch)
	8.1.3. Time window (win:time)
	8.1.4. Externally-timed window (win:ext_timed)
	8.1.5. Time window batch (win:time_batch)

	8.2. Standard view set
	8.2.1. Unique (std:unique)
	8.2.2. Group By (std:groupby)
	8.2.3. Size (std:size)
	8.2.4. Last (std:lastevent)

	8.3. Statistics views
	8.3.1. Univariate statistics (stat:uni)
	8.3.2. Regression (stat:linest)
	8.3.3. Correlation (stat:correl)
	8.3.4. Weighted average (stat:weighted_avg)
	8.3.5. Multi-dimensional statistics (stat:cube)

	8.4. Extension View Set
	8.4.1. Sorted Window View (ext:sort)

	Chapter 9. API Reference
	9.1. API Overview
	9.2. Engine Instances
	9.3. The Administrative Interface
	9.3.1. Creating Statements
	9.3.2. Adding Listeners
	9.3.3. Using Iterators
	9.3.4. Managing Statements
	9.3.5. Runtime Engine Configuration

	9.4. The Runtime Interface
	9.5. Time-Keeping Events
	9.6. Events Received from the Engine
	9.7. Engine Threading and Concurrency
	9.8. Statement Object Model
	9.8.1. Building an Object Model
	9.8.2. Building Complex Expressions
	9.8.3. Building Patterns
	9.8.4. Building Complete Statements

	9.9. Prepared Statement and Substitution Parameters

	Chapter 10. Configuration
	10.1. Programmatic Configuration
	10.2. Configuration via XML File
	10.3. XML Configuration File
	10.4. Configuration Items
	10.4.1. Events represented by Java Classes
	Package of Java Event Classes
	Event type alias to Java class mapping
	Non-JavaBean and Legacy Java Event Classes
	Specifying Event Properties for Java Classes
	Turning off Code Generation
	Case Sensitivity and Property Names

	10.4.2. Events represented by java.util.Map
	10.4.3. Events represented by org.w3c.dom.Node
	Schema Resource
	XPath Property
	Absolute or Deep Property Resolution

	10.4.4. Class and package imports
	10.4.5. Relational Database Access
	Connections obtained via DataSource
	Connections obtained via DriverManager
	Connections-level settings
	Connections lifecycle settings
	Cache settings
	LRU Cache
	Expiry-time Cache

	Column Change Case
	SQL Types Mapping
	Metadata Origin

	10.4.6. Engine Settings related to Concurrency and Threading
	Preserving the order of events delivered to listeners
	Preserving the order of events for insert-into streams
	Internal Timer Settings

	10.4.7. Engine Settings related to Event Metadata
	Java Class Property Names and Case Sensitivity

	10.4.8. Engine Settings related to View Resources
	Sharing View Resources between Statements

	10.4.9. Engine Settings related to Logging
	Execution Path Debug Logging

	Chapter 11. Extension and Plug-in
	11.1. Overview
	11.2. Custom View Implementation
	11.2.1. Implementing a View Factory
	11.2.2. Implementing a View
	11.2.3. Configuring View Namespace and Name

	11.3. Custom Aggregation Functions
	11.3.1. Implementing an Aggregation Function
	11.3.2. Configuring Aggregation Function Name

	11.4. Custom Pattern Guard
	11.4.1. Implementing a Guard Factory
	11.4.2. Implementing a Guard Class
	11.4.3. Configuring Guard Namespace and Name

	11.5. Custom Pattern Observer
	11.5.1. Implementing an Observer Factory
	11.5.2. Implementing an Observer Class
	11.5.3. Configuring Observer Namespace and Name

	Chapter 12. Examples, Tutorials, Case Studies
	12.1. Examples Overview
	12.2. Market Data Feed Monitor
	12.2.1. Input Events
	12.2.2. Computing Rates Per Feed
	12.2.3. Detecting a Fall-off
	12.2.4. Event generator

	12.3. Transaction 3-Event Challenge
	12.3.1. The Events
	12.3.2. Combined event
	12.3.3. Real time summary data
	12.3.4. Find problems
	12.3.5. Event generator

	12.4. J2EE Self-Service Terminal Management
	12.4.1. Events
	12.4.2. Detecting Customer Check-in Issues
	12.4.3. Absence of Status Events
	12.4.4. Activity Summary Data
	12.4.5. Sample Application for J2EE Application Server
	Running the Example
	Building the Example
	Running the Event Simulator and Receiver

	12.5. Assets Moving Across Zones - An RFID Example
	12.6. AutoID RFID Reader generating XML documents
	12.7. StockTicker
	12.8. MatchMaker
	12.9. QualityOfService
	12.10. LinearRoad
	12.11. StockTick RSI

	Chapter 13. Performance
	13.1. Performance Results
	13.2. Performance Tips
	13.2.1. Understand how to tune your Java virtual machine
	13.2.2. Compare Esper to other solutions
	13.2.3. Select the underlying event rather than individual fields
	13.2.4. Prefer stream-level filtering over post-data-window filtering
	13.2.5. Reduce the use of arithmetic in expressions
	13.2.6. Consider using EventPropertyGetter for fast access to event properties
	13.2.7. Consider casting the underlying event
	13.2.8. Turn off logging

	13.3. Using the performance kit
	13.3.1. How to use the performance kit
	13.3.2. How we use the performance kit

	Chapter 14. References
	14.1. Reference List

