Esper Reference Documentation

Version: 1.11.0

Table of Contents

1=, =0 2SRRI viii
1. TeChNOIOQY OVEN VIBWeeieiiis s s asn s anasasnsnnnsssnsnsnsnnnnnnnnnsnnnnns 1
1.1. Introduction to CEP and event Stream analYSiSccccvvviiieieeeeiiciiiieee e e e e 1

1.2. CEP and relational datalasescoooeooiiioiiiiiiiie e 1

1.3. The ESper enginefor CEPovviiiiie et r e e e e e e 1

1.4. Required 3rd Party LiDIarieSccueiiiiiiiieiii et 2

2. EVENt REDIESENTALIONS ..veveiiie ittt e e e e e e e e e e s e et e e e e e e e e s s s sabtareeeeeeeseasnrbraeeeeeas 3
2.1. Event Underlying JAVa ODJECLSccuueiiiiiiiiiee ittt 3

2.2. EVENE PrOperties ..o 3

2.3. DYyNamiC EVENt PrOPEIMIEScceivieiiiii ettt e e e e e e e s s st ae e e e e e e e e annneees 4

2.4. Plain-Old Java ODJECE EVENLScccoiiiiieiiiiiiie ettt e e 5
2.4.1. Java Object EVENt ProPETiESuvviieiie ettt e e et e e 5

2.5, JAVAULIL.IMEAD EVENLS ...ttt 7

2.6. org.w3c.dom.Node XML EVENLScoooeiiiiiii e, 8

3. ProCeSSING MO ...t e e e e et rr e e an 10
G ¢ I 1 0140 [o o 10

B2, INSEIT SEMBAIM ...ttt e e e e e bbbt et e e e e e e e s ab bbb b e et e e e e e s annbbbeeeeeeas 10
3.3.Insert and REMOVE SEFEAMocoei ittt e e e e e e e e e s eneaneeeeeens 11

3.4, FIlters a0 WHErE-ClAUSEScoiveiiieiiiiie ettt e e e e e e s snnaeeeean 12

R0 3T I T 0 T= AV T e (o1 RS 14
35,1 TIMEWINUOW ...ttt e e e e e ettt e e e e e e e e st bt e e e e e e e e e anneeees 14

A T 0= = = (o PRSP 15

3.6. Aggregation and GrOUDINGeeeiiiuuueeeeeeaeeseaatteeeeeeaaeeasaanneeeeeeeeeeesaaansseneeeeaeeessaansenneeeeens 16
3.6.1. Insert and REMOVE SITEAIMeiieiiiiiiieiiiiiee st ee ettt et e e e nnbaeeeeans 16

3.6.2. Output for EVENt BAICNESoviiiiiiiiiieeiie ettt 17

3.6.2.1. Un-aggregated and UN-groupedooociivieiiie it ceciineee e 17

3.6.2.2. Fully Aggregated and UN-groupedoeeeiiiieeieinieiee e 18

3.6.2.3. Aggregated and Un-Groupedcoevvviiiiiiiiiiiiiieececeeeecceeeeeee e 18

3.6.2.4. Fully Aggregated and GroUPEdcceeeeiiiiiriee it 18

3.6.2.5. Aggregated and GroUPEdeeeiiieeeiiiiiiiieeiee e e et e e e e e s eeneeeereaee e 18

3.7. EventBean QUENY RESUILSccccoiiiiiiiiii ettt e e e et e e e e e e s s st raeeeaeas 18

4. EQL REFEIENCE ClLAUSES ...ooiiiieeiiiiiiiiiiieee e e ettt e e e e e e s sttt e e e e e e e s e et eeeeeeaeeessanssaaaeeeaaeeesannnnnens 21
W (@ I g 11 (o (8 o o o T 21

4.2, EQL SYNEBX ..ttteeeiieeeiiiiititt ettt e ettt e e e e skttt e e e e e s s sk e et e e e e e e s e b r e e et e e e e e e a e e e eeas 21
L S o 1= o Y71 o T T T = 0o 22

4.2.2. USING COMMIENLSevviiiiiiieee e s sieiiiiee e e e e e e e s ettt e e e e e e e s s ssataaaeeeaaesssssnsntareraeaeessannnnenes 22

4.3. Choosing Event Properties And Events: the Select Clausecoocvviiiiiiiciniiieccieeee 23
4.3.1. Choosing all event properties: SElECt*occciiieiiee e 23

4.3.2. Choosing SPECITIC BVENE PrOPEITIESceieiiiiieeiiiiie ettt 23

A.3.3. EXPIESSIONS ...eeeiiieieieeiiiiieeee e e e e e ettt e e e e e e e e e e s et e e e e e eeeeessasabbaeeeeaaeeeaaaabrrreeeaaeeeaananrrees 23

4.3.4. Renaming VENT PrOPEITIESvveieiiiieieeiiiiiee e sttt e e et e e st e e e e e s snbe e e e s nnbeneeeans 24

4.3.5. Selecting istream and rstream EVENEScceevvviiiiiieieieeeeeeeeeeeeeeee e 24

4.4. Specifying Event Streams : the From ClaUSEvvveviieiiiiiiiieccee e 24
4.4.1. Filter-based eVent SIFEAIMSooieiiiiiiiee e e e e e e e e s ee e e e e e e e e e nneees 25

4.4.1.1. SPeCifying an @VENLLYPE ..o 25

4.4.1.2. SPecCifying filter Criterialccuvevieiieiee e 25

4.4.1.3. FIItEriNG RANGESuuviiiiiiiie ettt e s e e e e e e e s et e e e e e e e e ns 26

4.4.1.4. FItering SEtS Of VAIUEScccuvviiiiiiiiiee et 27

Esper 1.11.0

Esper - Java Event Stream Processor

4405, Flter LIMIAHONSuvveiiieeeiiiiiiieiee et e e e e e s e e e e e e s enneaaeeeaeeenans 27

4.4.2. Pattern-based eVent SEFEAIMScoiiiiiiieiiiiiee et 27
4.4.3. SPECITYING VIBWSeeiiiiiiiiie ittt ettt et e e et e e s e e e e s nabnneeeans 28

4.5. Specifying Search Conditions. the Where Clausecoevvveviviieiiiiiieieceeececeeeeeeeeeeeeeeeee e 28
4.6. Aggregates and grouping: the Group-by Clause and the Having Clauseccccccoeecvvvvveennn. 28
4.6.1. Using aggregate fFUNCHIONSccceuiiiiiiee et e e e e 28
4.6.2. Organizing statement results into groups: the Group-by clauseccccceeeeeiinnnee, 29
4.6.3. Selecting groups of events: the Having ClauSecccvveiiiiiiei i 31
4.6.4. How the stream filter, Where, Group By and Having clausesinteract 31
4.6.5. Comparing the Group By clause and the std:groupby VIeWcccccvvveveeeeeiiiinnnne, 32

4.7. Stabilizing and Limiting Output: the OUtPUL ClaUSEcceevvviiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeee e 33
4.7.1. OULPUL ClaUSE OPLIONSeeeeiiiiiieeeiiteie ettt st et e e s e e e s e e e s snbneeeeans 33
4.7.2. Group By, Having and Output clause interaCtionccccccvevreeeeiiiciiiieeeeee e 33

4.8. Sorting Output: the Order BY ClAUSEccceeiiiiiiiiiiiiee e ettt e e e a e e enarrnee e 34
4.9. Merging Streams and Continuous Insertion: the Insert Into Clauseccccccvvveeeviiiiiienennnn. 34
4.10. JOINING EVENE SITEAIMSvveiiiiieiiiiiiiitiee e e st e e e e e e st re e e e e e e e s s st b bea e e e e e e e s e snntrraeeeeeas 35
O 111 0T = SR 36
S ¥ oo 1 L= 1= 37
4.12.1. The'&XIStS KEYWOIToeeiiieeiiiciiiieeee ettt e e e e e et r e e e e e e s e nnnnees 38
4.12.2. TRE TN KEYWOIToeiiiiiiiie ettt e e e e e e e e aa 38
4.13. Joining Relational DataViaSQLeeiiieiiiiiiiiiiiiie e 38
4.13.1. Joining SQL QUENY RESUITSceeiiiiiiieiiiiiie ettt 39
4.13.2. Outer Joins With SOL QUENESeeeveeeiieieeeeeeeeeeeeeeeeeeeeeeeeeee e ee e 40
4.13.3. Using Patterns to Request (POIl) Datacooccuveeeiiiiiieeiiiiiee e 40
4.13.4. IDBC Implementation OVEINVIEWccovvviiiiiiiiiieeeeeeeeeeeeeeeeeee e e ee e ee e e eeeeeeeeeeeeeees 40
4.13.5. Oracle Drivers and No-Metadata Workaroundcooviiveeiiiiiiinennieee e 40

5. EQL REFEreNCe: PaterNS ...ttt e et e e e e e e e e e e e e e e e e nenneeeeeeas 42
5.1, EVENt PAtEIN OVEIVIEWeeiiiiiiiiie et sie e e ittt e ettt e e e st e e s snbte e e e s snnaeeaeennnneeeeans 42
5.2. HOW TO USE PALIEINS ... 42
I R = = 1S 1= G 42
5.2.2. SUDSCIibing tO Pattern EVENTSc.uvviiiiiiiiee e 43
5.2.3. Pulling Datafrom Paternsccccce e 43

5.3. OPEratOr PrECEAEINCEeveiiie e ettt e e e e s e e e e e e e e e e s et aareeaaaeeaans 44
5.4. Filter EXPresSsioNS 1N PaleNScooiiiiiiiiiiiiie ettt e e snne e 44
5.5, Patern OPEIAIOIS ...ceeviriiiiiieeeieeeeiteae e e ettt e e e e et e e e b s e e e e et eeeaeta s e s eeeaeeeesssaaaseeaaeeennnes 46
O D L EVEIY 46
5.5.1.1. Every Operator Example ..., 47

5.5.1.2. SENSOr EXAMPIE ...cooiiiiiie e 48

SIS T0Z2 Y oo PR SPRR 49

ST T | PP R T PPPRRN 49
ST 30 S\ Lo PRSPPI 49
5.5.5. FOHOWEH-DY ... e e e e st as 50

5.6. Patern GUEITScceiiieieiiie sttt e e s ettt e e e e s e et e e e e e e e s s ssste e e eaeeesesnntenaneeaaaeeaans 50
oI 200 R 1 0T R 1 1 o o PR 50

5.7, Patern ODSEIVEIS ... iee ettt e e e e e e e e e e s e et e e e e e e e e e aantrraareaaaeeaaans 51
oI 0 I 1 0T T 1= Y PSSP 51
O (1111< o8- SRR PPPRP 52

6. EQL REFEreNCE OPEIALOI'S ..oiieiiieiiitiiee ettt ettt e et a e e et e e ekt e e e e anb e e e e anr e e e e nanbrneeeans 54
6.1, AFItNMELIC OPEIALOIS ..uvveiiiie e i ittt e e e e e e s e e e e e s e e et e e e e e e e s s st ntraeeeeaeeessantrraeeeeaaeeaans 54
6.2. Logical ANd CompParsion OPEIAIONSeeeiurreeeiiiieieeeeieeeeesairreeesssbereessseeeeeasnne e e e e snbeeeeean 54
6.3. CoNCatenalion OPEIALOrSccceeeeee e 54
6.4, BINAIY OPEIEIONSveeeeiiiieie ettt e ettt e sttt e e ettt e e e ettt e e e asbb e e e e esbe e e e e anbbe e e e s anbaeeeeeanbneeeeans 55

Esper 1.11.0

Esper - Java Event Stream Processor

6.5. Array Definition OPEIEIONveiieiiiiieeeaiii ettt e et e e e e e s ase e e e s annr e e e e nnnreeeaan 55
B.6. The 'IN' KEYWOIToiiiieiiie et e e e e s s et e e e e e e e s e e atbbaeeeaaaeeean 56
6.7. The 'DEWEEN' KEYWOITooiiiiiiiie ittt e e e e e e nnbe e e e an 56
6.8. The'liKE KeYWOIdccoooiiieiie e, 57
6.9. The TegeXpP' KEYWOIToooiiiiiiieiiiiee ettt e e e nnbeeeeean 57
7. EQL Reference: FUNCLIONScoooeieeee e, 58
7.1. SIngle-row FUNCLION REFEIENCEuvviiiiie i a e e 58
7.1.1. The Case Control FIOW FUNCLIONoooiiiiiiiiie e 59
7.1.2. The CaSst FUNCLIONccuiiiieiiiiiee ettt st e e s e e s e e e nees 59
7.1.3. The CoaleSCe FUNCLIONccooiiiiiieee ettt e e e e s e e e e e s et eeeeas 60
7.1.4. The Current_Timestamp FUNCLION ..., 60
7.1.5. ThE EXISIS FUNCLION ..eiiiiieiiiiiiiiies ettt e e e e et e e e e e e s eennaraaeeeens 61
7.1.6. The INStance-Of FUNCLIONuuiiiiiie e e 61
7.1.7. The Min and MaX FUNCLIONScuviiiiiiiiiee ettt 62
7.1.8. The PrevioUS FUNCLIONcooiiiiiiii ettt e e e e e e eeeeas 62
7.1.8.1. Previous EVENt PEN GIOUDvvviiiieeeiiiiiiiiieee e e e e e e ecittre e e e e e e e s searnrnneeeaee e 62

7.1.8.2. RESIICHIONS ..ot iee ettt e s e e e e e e e e e e e e e e e e s e s ntnaaeeneaeeeeaas 63

7.1.8.3. Comparison to the prior FUNCLIONcccoooiiiiiii, 63

7.1.9. TR PIIOr FUNCLION ..ottt ettt e e 63

7.2. AQQregale FUNCLIONS ...ttt e e s e e e s e e e e e anneeeeens 64
7.3. USer-DefiNed FUNCLIONScooiiiiiieeiiitiee ettt et e e e e e s nnneeeeean 64
8. EQL REFEIBNCE VIBWS ..eiiiiieiiiiiiiiiie ettt e e e e e sttt et e e e e e s s sttt e e e e e e e e e s annteaeeeeaaeesannsnnneeeeens 66
8.1 WINUOW VIBWS ... ettt e sttt e e ettt e e e ettt e e e e st e e e e nte e e e e ansteeeeeannaeaeeennsneeeeans 66
8.1.1. Length window (Win:l@ngth)c.eoooiiiiiiiiiiiie e 66
8.1.2. Length window batch (win:length batch)c.cc 66
8.1.3. TIMeWIindow (WINTIME) ..ot e e e e eeaeas 66
8.1.4. Externally-timed window (Win:ext_timed)ccccooiiieiniiiieeiieee e 67
8.1.5. Time window batch (win:time _batCh)ceeviiiiiiii e 67

8.2. SHANUAII VIBW SELeeiieiiiiie ettt s e e e e e e e e s s et e e e e e e e e e an it rrareraaaeenaans 67
8.2.1. UNIQUE (SEAIUNITUE) ..veveeieeeeiiiiiiiiee e e e e e ettt e e e e e ettt e e e e e e s st re e e e e e e e s e e nrrreaeeeaas 67
8.2.2. Group BY (SIA:GrOUPDY) .eeeiiieieeiiiiie ettt 68
8.2.3. SIZE (SLAISIZE) ..ceeeeeeeeeeee e 69
8.2.4. Last (StA:IGSLEVENL) ...veeeiieee et as 69

8.3, S SHICS VIBWS .eiiiieeie et e ettt e e e e ettt e e e e e e e ettt e e e aeeesassste e eeaeeeeeannsrannneeaaeeaans 69
8.3.1. Univariate statistiCS (SLaliUNI)uvveeeeeeeiiiiiiiieiee e e et e e et e e e e s e arrraeeeeeas 69
8.3.2. REgressiON (SLaAL:lINESL)cciiieiieeiiiii e 70
8.3.3. Correlation (Stat:COrrel)coooeeeeeeeee e 70
8.3.4. Weighted average (Stat:weighted_aVvg)cccovvereieiiiiiieiiiiiee et 71
8.3.5. Multi-dimensional statistics (Stat:CubE)cceoeeeeieiiiii 71

8.4, EXIENSION VIBW SEL ..ottt ettt ettt e et e e s st e e e s e e e e nnbneeeeans 72
8.4.1. Sorted Window VIeW (EXEISOM)eeeieiiiiiieeeiiieee et 72

O o I L = 1= g o PP UPRRPRPR 73
0.1, API OVEIVIBIW .ottt ettt e e e e e e ettt et e e e s e et tee et e aeeesaasstsaeeeaaeeeesanssannenaaaeennans 73
9.2. ENGINEINSIANCESccoeeeeeeeeeee e, 73
9.3. The AdMINIStrative INTEITaCEvvieiiiiie e a e e 73
0.3.1. Creating SLALEMENTSoiiie et e e e ettt e e e e e e e e s e e e e e e e e e s eeneneeeeeeens 73
0.3.2. AAdING LISIENENSviiiiiiiie ettt e e e e e e r e e e e e s e atbraeeeaaas 74
0.3.3. USING ITEIBIONS ...t ettt e et e e e e e e e e e e e e 74
9.3.4. Managing StALEMENESceoeiiiiiiiieeeee e e e e e e e e e et e e e e e e e e s s b b e e e e e e e e s e s nrarareeeens 75
9.3.5. Runtime Engine Configurationcocueeeeiiiireeeiiiiee e e e 75

9.4. The RUNLIME INEITACEooii ittt e e e e e e e et e e e e e e e e n 75
9.5, TIME-KEEPING EVENES ...ttt e e e nnbeeeeean 76

Esper 1.11.0

Esper - Java Event Stream Processor

9.6. Events Received from the ENGINEcooiiiiiiiiiiie e 76
9.7. Engine Threading and CONCUITENCYccooiiiviiieieee e e e ceiiieeee e e e e e s s st ee e e e e e e s s sntabneeeaaaeeeans 78
9.8. Statement ODJECE MOTE!coiiiiie e 79
9.8.1. Buildingan Object Model ... 79
9.8.2. Building ComplexX EXPreESSIONSeuiiiiiiieeiiiiiieesitie ettt e s e e 80
9.8.3. BUIAING PALLEINSeeiiiiieeeiiiiieiie et e e e e e e e et e e e e e e e e neneeeeeeens 81
9.8.4. Building Complete StALEMENLSceeeeiiiiiiiiiee e e e e e e ee s 81

9.9. Prepared Statement and Substitution Parametersoooiiiiiieiiiiiieeiiiieee e 81
OO0 1T VT o] o [T 83
10.1. ProgrammatiC CONFIQUIBLIONvvieeiiiiiieesiiie ettt et e e e s e e 83
10.2. Configuration VI XML FIlEuu s nnnnnnes 83
10.3. XML Configuration FIlEeiiiiiiiee et 84
10.4. CoNfIQUIALION TEEIMSeiei ettt e e ettt e e e e e e et e e e e e e e e e snneeeeeeeaeeeeannneees 84
10.4.1. Events represented by JAVA CIESSESuvviiiiieeiiiiiiieeee e 84
10.4.1.1. Package of JAVAEVENE ClESSESc.uvviiiiiiiiieiiiiee e 84

10.4.1.2. Event type dliasto Java class mappingc.cocevvveeeeeeeeeiiiciiiieeeeee e e e 84

10.4.1.3. Non-JavaBean and Legacy Java Event Classesccccveeiiiiieeiniiiiee e, 85

10.4.1.4. Specifying Event Properties for Java Classescccccecvnimnnnnnnnnnnnnnnnnnnnnnnnn, 86

10.4.1.5. Turning off Code GENerationcccuvevieeeeiiiciiieiie e 86

10.4.1.6. Case Sensitivity and Property NameScoooiiiiieiiiiiie e 86

10.4.2. Events represented by javautil.Mapccceevveeeiiiiiiece e 87
10.4.3. Events represented by org.w3C.dOM.NOEcooiiiiiiiiiiiiiieiiee e 88
10.4.3.1. SCHEMARESOUICEeeeeiiiiieeeiiiiiie ettt et e et e e et e e e et e e e s e e e e nnneeeas 89

10.4.3.2. XPath PrOPEITY .cueeeieeiiiiiie ettt 89

10.4.3.3. Absolute or Deep Property ReSOIULIONuuuiuiiiiiieneenens 90

10.4.4. Class and package iMPOITSceiieeeiiiiiiiriiieeee e e seseiitree e e e e e s s s et e e e e e e e s s ennrrraeeeaeas 90
10.4.5. Relational DatahDaSE ACCESSeeiiieeeiiieiiieietee e e e e e eeteeee e e e e e e s s st e e e eaeessaaneeeeeeeeens 91
10.4.5.1. Connections obtained vVia DataSOUrCeccouiveeeeiiiieeeeiiiiieeesiieee e 91

10.4.5.2. Connections obtained via DriverManagercccceeviieeeeiiiiiee e 91

10.4.5.3. Connections-level SELtINGSoooiiiii i 92

10.4.5.4. Connections [ifeCyCle SEtiNGSooouvveiiiiiiiie e 92

10.4.5.5. CAChE SELINGSuuuuuuiiiiiiii s nnsnnnsnnnnnnnnnnnnnnns 92

10.4.5.6. ColUMN Change CaSeuueieieeeeiiiiiiieiee e e e e s e e e e e e e e s e e e e e s e ennneees 93

10.4.5.7. SQL TYPES MEPPING ...uvveeeeiiiiieeeaiieee et e st e e e e e e e e s snre e e e s nnnneeas 93

10.4.5.8. Metadata OrigiNccooiiiiiiieiiee et e e e e s e e e e e e e s e e nneeees 9

10.4.6. Engine Settings related to Concurrency and Threadingocccveeviiiieeiiiieee e, 9
10.4.6.1. Preserving the order of events delivered to listenerscccccceeeenninnnnnnnnns 94

10.4.6.2. Preserving the order of eventsfor insert-into streams...........ccccccvvveeev e, 95

10.4.6.3. Internal Timer SEiNGScccoeiiiiiiiii s nnnnnnnnnes 95

10.4.7. Engine Settings related to Event Metadatacccvveveeeee i 95
10.4.7.1. Java Class Property Names and Case SenSitivitycccccvvveveeiiiieeeeninnnne. 95

10.4.8. Engine Settings related to VIiew RESOUICEScccvviieieeeee et 96
10.4.8.1. Sharing View Resources between Statementscccceeevviicivvviereeeeessennnnne 96

10.4.9. Engine Settings related t0 LOGGINGuuuuuiuiuiiiiineinnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnes 96
10.4.9.1. Execution Path DebUQ LOGOING ...coovvvrieiiiiiieeiiiiee e 96

T = g o =V To I 1 T T o PP 97
O Y= VPRSP PPPRP 97
11.2. Custom View IMpPlemMEntaiionccoiiiiioiiiie e 97
11.2.2. Implementing aVIiew FaCtoryooooiiiiiiiiiiee et 97
11.2.2. IMPIEMENEING B VIBW ...eoiiiiiiiieiiii ettt e e 98
11.2.3. Configuring View Namespace and NamEcccccciciiininnninnninninnnnnnnnnnnnnnnnnn. 100

11.3. Custom Aggregation FUNCLIONSccoiiuriieiiiiiie et e e 100

Esper 1.11.0

Esper - Java Event Stream Processor

11.3.1. Implementing an Aggregation FUNCLIONccooiiiiieiiiiiiec e 100
11.3.2. Configuring Aggregation FUNCLION NaMEcccviiiiiiiie e 102
11.4. CUSLOM PatterN GUAINvviiieiieeee ettt e e e s e ettt e e e e e e e e e e e e e e e s s ssnbeaneeeeeessannnneees 102
11.4.1. Implementing a GUard FaCLOrYcccccociiiiiiiiii e ennnnnannnes 102
11.4.2. Implementing @ GUAIA ClaSSccouiuiiieiiiiiie e 103
11.4.3. Configuring Guard Namespace and Namecccvuiiiiiiieeiiiiciieeee e 104
11.5. CUSLOM Patern ODSEIVENviiieiiiiiee ettt ettt e e e st e e e s anbe e e e s snbaeeeaans 104
11.5.1. Implementing an OBSErVEr FACIOTYccoiiiiiriieiiiiiieeiiiee e 104
11.5.2. Implementing an ObSErVer Classccccvviiiiie i 105
11.5.3. Configuring Observer Namespace and Nameceeviiirieiiiiieee i 106

12. Examples, Tutorials, Case SLUAIESccciiiiiiiiii s snnnsnnnnnnnnnnnnnnns 107
12.1. EXAMPIES OVEIVIEIW ...ttt et e et e s st e e e nbb e e e e e nnbaeeeean 107
12.2. Market Data FEEd IMONITONciiiieiiiiiiieie et e e e e e e eee e e e e e e e e nneees 107
12,20, INPUL EVENTS ... e e a b s e e e e e e et e e e e e e e e eeeba s 107
12.2.2. Computing RAES PEr FEEUviiiiiiiiii e 107
12.2.3. Detecting aFall-Off ... 108
12.2.4. EVENE QENEIBION ...eeiiiieeeiiiitteee e e e e e e ettt e e e e st e e e e e e e s s r e e e e e e e s e s nrrreeeeeeas 108
12.3. Transaction 3-EVent Chall&NgE nnnnnnnnes 108
12.3. 1 TREEVENLS ...ttt e s e s e e e e 108
12.3.2. COMDINEA BVENLooiieiiiiieee et e e e e e e e e e e e aeeeeeeas 109
12.3.3. Real time SUMMAary dalalveveiiieiiiiiiiiee e e 109
12.3.4. FINA PrODIEIMS ..ot 109
12.3.5. EVENE GENEIAION ..o e e e e e e e et e e e e e e e eaa 109
12.4. J2EE Self-Service Terminal Managementoooiiverioiiiiieeeniiieee s siiieeessineee e sineee e 110
I T 0| SR STRSR 110
12.4.2. Detecting Customer CheCk-iN ISSUEScciieeeiiiiiiiiiiiieee e 110
12.4.3. Absence Of STAUS EVENESeoiiiiiiiiieee e 111
12.4.4. Activity SUMMEAY Dala........cveviiiieiiiiiiiiee et e e 111
12.4.5. Sample Application for J2EE AppliCation SEIVErccccvveeiiiiiieeeiiiieee e 111
12.4.5.1. RUNNING the EXaAMPIEoviiieiiie e 111

12.4.5.2. Building the EXamPpleccooiiiiiiii e 112

12.4.5.3. Running the Event Simulator and RECEIVESccccccciininininnniniinnnnaennns 112

12.5. Assets Moving Across Zones - An RFID EXampleoovveiiiiiiiiiieiiee e 112
12.6. AutolD RFID Reader generating XML dOCUMENLSccooivrreeeiiiiiieiiiiieeeesiieee e sieeeeens 113
12,7, SEOCKTICKES ieeiiteiee ettt ettt e e e et e e e et e e e e nbe e e e s ssb e e e e s nnnbeeeeennbaeeeeans 113
R I = o 11V P> 2= SRR 113
12.9. QUAIITYOFSEIVICE ..eiiiiiiiiee ettt e et e e e e st e e s sse e e e e annseaeeeansaeeeeans 114
Nt O I 1= g = P ERRPR 114
12,10, SOCKTICK RS ..ottt e e e e e et e e e s snee e e e e ennneeeeennsaeeeeans 115
13, PEITOMMANCE .ottt e sttt e e e et e e e e st bt e e s st e e e e s anbbe e e e s nbneeeeans 116
13.1. PerformanCe RESUILScooeiiiiiiiiee ettt e e e e e e r e e e e e e e st aee e e e e e e e annneeees 116
G = g (o) 10= g oI T < T PERPR 116
13.2.1. Understand how to tune your Javavirtual machineccoocoveeiiiinieiniiiee e, 116
13.2.2. Compare Esper 10 other SOIULIONSciiiiiii e annnnnees 116
13.2.3. Select the underlying event rather than individual fieldscccccveveeeiiiiiiiieeennn. 117
13.2.4. Prefer stream-level filtering over post-data-window filteringc.cccccooeeeciieeennn. 117
13.2.5. Reduce the use of arithmetic in eXPreSSioNSccevvveeieiee e 118
13.2.6. Consider using EventPropertyGetter for fast access to event properties 118
13.2.7. Consider casting the underlying eventccccooeciiiiierii e 119
13.2.8. TUMN OFf 1OQOING .ot 119

13.3. Using the performanCe Kitccccooiiiiiiiiiiii e nennnnnnnnes 119
13.3.1. How to use the performanCe Kitcc.oooiiiiiiiiiiiii e 119

Esper 1.11.0

Esper - Java Event Stream Processor

13.3.2. How we use the performanCe Kitoooviiiiiiiiiii e 122
LA, REFEIBNCES ...ttt oot e e et e e a et e a e e b e e b n e 123
I T = 1= = o T SRR 123

Esper 1.11.0 Vii

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of custom applications.
Typicaly these applications must obtain the data to analyze, filter data, derive information and then indicate
this information through some form of presentation or communication. Data may arrive with high frequency re-
quiring high throughput processing. And applications may need to be flexible and react to changes in require-
ments while the data is processed. Esper is an event stream processor that aims to enable a short development
cycle from inception to production for these types of applications.

This document is aresource for software developers who develop event driven applications. It also contains in-
formation that is useful for business analysts and system architects who are evaluating Esper.

It is assumed that the reader is familiar with the Java programming language.

This document is relevant in al phases of your software development project: from design to deployment and
support.

If you are new to Esper, please follow these steps:

1. Read the tutorias, case studies and solution patterns available on the Esper public web site at ht -
tp:// esper. codehaus. org

2. Read Section 1.1, “Introduction to CEP and event stream anaysis’ if you are new to CEP and ESP
(complex event processing, event stream processing)

3. Read Chapter 2, Event Representations that explains the different ways of representing events to Esper
4. Read Chapter 3, Processing Model to gain insight into EQL continuous query results

5. Read Section 4.1, “EQL Introduction” for an introduction to event stream processing via EQL

6. Read Section 5.1, “Event Pattern Overview” for an overview over event patterns

7. Then glance over the examples Section 12.1, “ Examples Overview”

8. Finadly to test drive Esper performance, read Chapter 13, Performance

Esper 1.11.0 viii

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze and react to
events. Some typical examples of applications are:

» Business process management and automation (process monitoring, BAM, reporting exceptions)

» Finance (algorithmic trading, fraud detection, risk management)

¢ Network and application monitoring (intrusion detection, SLA monitoring)

» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air traffic)

What these applications have in common is the requirement to process events (or messages) in real-time or near
real-time. This is sometimes referred to as complex event processing (CEP) and event stream analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the logic required.

e High throughput - applications that process large volumes of messages (between 1,000 to 100k messages
per second)

* Low latency - applications that react in real-time to conditions that occur (from a few milliseconds to a few
seconds)

« Complex computations - applications that detect patterns among events (event correlation), filter events, ag-
gregate time or length windows of events, join event streams, trigger based on absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in which most datais
fairly static and complex queries are less frequent. Also, most databases store al data on disks (except for in-
memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the data 10 times per
second it must fire the query 10 times per second. This does not scale well to hundreds or thousands of queries
per second.

Database triggers can be used to fire in response to database update events. However database triggers tend to
be slow and often cannot easily perform complex condition checking and implement logic to react.

In-memory databases may be better suited to CEP applications then traditional relational database as they gen-
eraly have good query performance. Y et they are not optimized to provide immediate, real-time query results
required for CEP and event stream analysis.

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and running quer-
ies against stored data, the Esper engine allows applications to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur that match queries. The execution model is thus con-
tinuous rather then only when a query is submitted.

Esper 1.11.0 1

Technology Overview

Esper provides two principal methods or mechanisms to process events. event patterns and event stream quer-
ies.

Esper offers an event pattern language to specify expression-based event pattern matching. Underlying the pat-
tern matching engine is a state machine implementation. This method of event processing matches expected se-
quences of presence or absence of events or combinations of events. It includes time-based correlation of
events.

Esper aso offers event stream queries that address the event stream analysis requirements of CEP applications.
Event stream queries provide the windows, aggregation, joining and analysis functions for use with streams of
events. These queries are following the EQL syntax. EQL has been designed for similarity with the SQL query
language but differs from SQL in its use of views rather then tables. Views represent the different operations
needed to structure datain an event stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

1.4. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

« ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EQL syntax.
Credit goes to Terence Parr at http://www.antlr.org. The ANTLR licenseis in the lib directory. The library
isrequired for compile-time only.

e CGLIB isthe code generation library for fast method calls. This open source software is under the Apache
license. The Apache 2.0 licenseisin thelib directory.

¢ LOG4J and Apache commons logging are logging components. This open source software is under the
Apache license. The Apache 2.0 licenseisin thelib directory.

Esper requires the following 3rd-party libraries at compile-time and for running the test site:

e JUnitisagreat unit testing framework. Its license has also been placed in the lib directory. Thelibrary isre-
quired for build-time only.

* MySQL connector library is used for testing SQL integration and is required for running the automated test
suite.

Esper 1.11.0 2

Chapter 2. Event Representations

2.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. Event properties capture the
state information for an event. An event is represented by either a POJO (plain-old Java object), a
java.util.Mp or aXML document viaorg. w3c. dom Node.

In Esper, an event can be represented by any of the following underlying Java objects:

Table 2.1. Event Underlying Java Objects

Java Class Description

j ava. | ang. Obj ect Any Java POJO (plain-old java object) with getter methods
following JavaBean conventions; Legacy Java classes not fol-
lowing JavaBean conventions can also serve as events .

java.util.Map Map events are key-values pairs

or g. wdc. dom Node XML document object model (DOM)

2.2. Event Properties

Event properties capture the state information for an event. Event properties be simple as well as indexed,
mapped and nested event properties. The table below outlines the different types of properties and their syntax
in an event expression. This syntax allows statements to query deep JavaBean objects graphs, XML structures
and Map events.

Table 2.2. Typesof Event Properties

Type Description Syntax Example
Simple A property that has a single value that

may be retrieved. name sensor | d
Indexed An indexed property stores an ordered

collection of objects (all of the same name[index] sensor [0]

type) that can be individualy accessed
by an integer-valued, non-negative index
(or subscript).

Mapped A mapped property stores a keyed col-

lection of objects (all of the sametype). = name(’ key’) sensor (" Iight")
Nested A nested property is a property that lives

within another property of an event. name. nest ednane sensor. val ue

Combinations are aso possible For example, a vaid combination could be per-

Esper 1.11.0 3

Event Representations

son. address(' honme').street[0].

2.3. Dynamic Event Properties

Dynamic (unchecked) properties are event properties that need not be known at statement compilation time.
Such properties are resolved during runtime.

The idea behind dynamic properties is that for a given underlying event representation we don't always know
all properties in advance. An underlying event may have additional properties that are not known at statement
compilation time, that we want to query on. The concept is especially useful for events that represent rich, ob-
ject-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed, mapped and nes-
ted properties can aso be dynamic properties:
Table 2.3. Types of Event Properties

Type Syntax

Dynamic Simple

nane?

Dynamic Indexed
nane[i ndex] ?

Dynamic Mapped

nane(' key')?

Dynamic Nested
nane?. nest edPr opert yNane

Dynamic properties aways return the j ava. | ang. Ooj ect type. Also, dynamic properties return anul | vaue if
the dynamic property does not exist on events processed at runtime.

As an example, consider an OrderEvent event that provides an "item" property. The "item" property is of type
vj ect and holds areference to an instance of either a Service or Product.

Assume that both Service and Product classes provide a property named "price". Via a dynamic property we
can specify a query that obtains the price property from either object (Service or Product):

select itemprice? from O derEvent

As a second example, assume that the Service class contains a "serviceName" property that the Product class
does not possess. The following query returns the value of the "serviceName" property for Service objects. It
returns anul | -value for Product objects that do not have the "serviceName" property:

sel ect item serviceName? from O der Event

Consider the case where OrderEvent has multiple implementation classes, some of which have a "timestamp"
property. The next query returns the timestamp property of those implementations of the OrderEvent interface
that feature the property:

sel ect tinmestanp? from O der Event

Esper 1.11.0 4

Event Representations

The query as above returns a single column named "timestamp?" of type Obj ect .

When dynamic properties are nested, then all properties under the dynamic property are also considered dy-
namic properties. In the below example the query asks for the "direction™ property of the object returned by the
"detail" dynamic property:

sel ect detail?.direction from O der Event
/1 equivalent to
sel ect detail ?.direction? from O der Event

The functions that are often useful in conjunction with dynamic properties are:

e Thecast function casts the value of a dynamic property (or the value of an expression) to a given type.

* Theexi sts function checks whether a dynamic property exists. It returnst r ue if the event has a property of
that name, or falseif the property does not exist on that event.

* Theinstanceof function checks whether the value of a dynamic property (or the value of an expression) is
of any of the given types.

Dynamic event properties work with all event representations outlined next: Java objects, Map-based and XML
DOM-based events.

2.4. Plain-Old Java Object Events

Plain-old Java object events are object instances that expose event properties through JavaBeans-style getter
methods. Events classes or interfaces do not have to be fully compliant to the JavaBean specification; however
for the Esper engine to obtain event properties, the required JavaBean getter methods must be present.

Esper supports JavaBeans-style event classes that extend a superclass or implement one or more interfaces.
Also, Esper event pattern and EQL statements can refer to Javainterface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state change or action
that occurred in the past, the relevant event properties should not be changeable. However thisis not a hard re-
quirement and the Esper engine accepts events that are mutable as well.

The hashCode and equal s methods do not need to be implemented. The implementation of these methods by a
Java event class does not affect the behavior of the enginein any way.

Please see Chapter 10, Configuration on options for naming event types represented by Java object event
classes.

2.4.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans specification, and
some of which are uniquely supported by Esper:

» Smple properties have a single value that may be retrieved. The underlying property type might be a Java
language primitive (such as int, a simple object (such as a javalang.String), or a more complex object
whose class is defined either by the Java language, by the application, or by aclass library included with the
application.

¢ Indexed - Anindexed property stores an ordered collection of objects (all of the same type) that can be indi-

Esper 1.11.0 5

Event Representations

vidually accessed by an integer-valued, non-negative index (or subscript). Alternatively, the entire set of
values may be retrieved using an array.

« Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that accepts a String-
valued key a mapped property.

» Nested - A nested property is a property that lives within another Java object which itself is a property of an
event.

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed propertiesin this ex-
ample return Java objects but could also return Java language primitive types (such as int or String). The Ad-
dress object and Employee objects can themselves have properties that are nested within them, such as a street-
Name in the Address object or a name of the employee in the Employee object.

public class Enpl oyeeEvent ({
public String getFirstName();
publ i c Address get Address(String type);
publ i c Enpl oyee get Subordi nate(int index);
publ i c Enpl oyee[] get Al | Subordi nates();

Smple event properties require a getter-method that returns the property value. In this example, the get Fi r st -
Nane getter method returnsthef i r st Nane event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes an integer-
type key value and returns the property value, such as the get Subor di nat e method. Or a method that returns an
array-type such as the get Subor di nat es getter method, which returns an array of Employee. In an EQL or
event pattern statement, indexed properties are accessed viathe propert y[i ndex] Ssyntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns the property
value, such as the get Address method. In an EQL or event pattern statement, mapped properties are accessed
viathe property(' key') syntax.

Nested event properties require a getter-method that returns the nesting object. The get Addr ess and get Subor -
di nat e methods are mapped and indexed properties that return a nesting object. In an EQL or event pattern
statement, nested properties are accessed viathe pr opert y. nest edPr oper t y Syntax.

All event pattern and EQL statements allow the use of indexed, mapped and nested properties (or a combina
tion of these) anywhere where one or more event property names are expected. The below example shows dif-
ferent combinations of indexed, mapped and nested propertiesin filters of event pattern expressions:

every Enpl oyeeEvent (firstName=" nyNane')

every Enpl oyeeEvent (address(' hone'). street Nane=' Park Avenue')

every Enpl oyeeEvent (subordi nat e[0] . name="anot her Nane')

every Enpl oyeeEvent (al | Subor di nat es[1] . nanme="t hat Nane')

every Enpl oyeeEvent (subordi nate[0] . address(' hone'). street Name=' Vlater Street')

Similarly, the syntax can be used in EQL statements in all places where an event property name is expected,
such asin select lists, where-clauses or join criteria.

sel ect firstName, address('work'), subordinate[0].nanme, subordinate[1l].name
from Enpl oyeeEvent
where address('work').streetName = ' Park Ave'

Property names follows Java standards: the classj ava. beans. I ntrospect or and method get Beanl nf o returns
the property names as derived from the name of getter methods. In addition, Esper configuration provides aflag
to turn off case-sensitive property names. A samplelist of getter methods and property namesis:

Esper 1.11.0 6

Event Representations

Table 2.4. JavaBeans-style Getter M ethods and Property Names

Method Property Name Example

get Price() price
sel ect price from MyEvent

get NAVE() NAME

sel ect NAME from MyEvent
get | t enDesc() itemDesc

sel ect itenDesc from MyEvent
get) q

select g from MyEvent
get Q\() QN

sel ect QN from MyEvent
getan() an

sel ect gn from MyEvent
gets() S

sel ect s from MyEvent

Event properties that are enumeration values can be compared by means of the Enumeration val uedf method
onthej ava. | ang. Enumclass. An example could look as follows:

every MyEvent (enunPr op=Enuntl ass. val ueCf (' ENUM VALUE_1'))

Java classes that do not follow JavaBean conventions, such as legacy Java classes that expose public fields, or
methods not following naming conventions, require additional configuration. Via configuration it is also pos-
sible to control case sensitivity in property name resolution. The relevant section in the chapter on configura-
tion is Section 10.4.1.3, “Non-JavaBean and Legacy Java Event Classes’.

2.5.java. util.Map Events

Events can also be represented by objects that implement the j ava. uti | . Map interface. Event properties of vap
events are the values in the map accessible through the get method exposed by thej ava. uti | . Map interface.

The engine can processj ava. uti | . Map eventsviathe sendEvent (Map map, String event TypeAl i as) method
on the EPRuntime interface. Entries in the Map represent event properties. Keys must be of type
java.util.string for the engine to be able to look up event property names specified by pattern or EQL state-
ments.

Map event properties can be of any type. Map event properties that are Java application objects or that are of
typej ava. util . Map offer additional power:

» Properties that are Java application objects can be queried via the nested, indexed, mapped and dynamic
property syntax as outlined earlier.

e Properties that are of type vap allow Maps to be nested arbitrarily deep and thus can be used to represent
complex domain information. The nested, indexed, mapped and dynamic property syntax can be used to
query Maps within Maps..

Esper 1.11.0 7

Event Representations

In order to use Map events, the event type name and property names and types must be made known to the en-
gine via Configuration. Please see the examplesin Section 10.4.2, “ Events represented by java.util.Map”.

The code snippet below creates and processes a Map event. The example assumes the Car Locat i onUpdat eEvent
event type alias has been configured.

Map event = new HashMap();

event.put("carld", carld);
event.put("direction", direction);

epRunt i me. sendEvent (event, "CarlLocUpdateEvent");

The Car LocUpdat eEvent can now be used in a statement:

select carld from CarLocUpdat eEvent.win:time(1l mn) where direction = 1

The engine can aso query Java objects as valuesin a Map event via the nested property syntax. Thus Map events
can be used to aggregate multiple data structures into a single event and query the composite information in a
convenient way. The example below demonstrates a Map event with atransaction and an account object.

Map event = new HashMap();

event. put ("txn", txn);

event . put ("account”, account);

epRunti me. sendEvent (event, "TxnEvent");

An example statement could look as follows.

sel ect account.id, account.rate * txn.amount from TxnEvent.w n:tinme(60 sec) group by account.id

2.6. org. w3c. dom Node XML Events

Events can also be represented as or g. wac. dom Node instances and send into the engine via the sendEvent
method on EPRunt i me. Please note that configuration is required for alowing the engine to map the event type
aliasto Node element names. See Chapter 10, Configuration.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.
For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wdc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.

Let'slook at how asample XML document could be queried, given the sample XML below.

<?xm version="1.0" encodi ng="UTF-8""?>
<Sensor >
<I D>urn: epc: 1: 4. 16. 36<I D>
<Cbservati on Command="READ PALLET TAGS ONLY">
<I b>00000001<I| D>
<Tag>
<I D>urn: epc: 1: 2. 24. 400<I D>
</ Tag>
<Tag>
<I D>urn: epc: 1: 2. 24. 401<I| D>
</ Tag>
</ Gbservati on>

Esper 1.11.0 8

Event Representations

</ Sensor >

To configure the engine for processing Sensor documents, simply configure a Sensor Event event type alias for
the sensor element name via Configuration. Now the document can be queried as below.

select I D, Cbservation.|D, Observation.Command, Observation. Tag[0], count Tags
from Sensor Event . wi n: ti me(30 sec)

The equivalent X Path expressions to each of the properties are listed below.

* The equivalent XPath expression to bser verati on. | DiS/ Sensor/ Coser vati on/ | D

¢ Theequivalent XPath expression to Gbser ver at i on. Conmand IS/ Sensor / Cbser vat i on/ @onmand

e The equivalent XPath expression to Gbser verati on. Tag[0] iS/ Sensor/ Cbservati on/ Tag[position() =
1]

e The equivaent XPath expression to count Tags iScount (/ Sensor/ Cbser vat i on/ Tag) for returning a count
of tag elements. This assumes the count Tags property has been configured as an XPath property.

By specifying an event property such below:
nest edEl enent . mappedEl enent (' key') . i ndexedEl enent [1]

The equivalent XPath expression is as follows:

/ si npl eEvent / nest edEl enent / mappedEl enent [@ d=' key'] /i ndexedE!l enent [position() = 2]

Esper 1.11.0 9

Chapter 3. Processing Model

3.1. Introduction

The Esper processing model is continuous: Update listeners to statements receive updated data as soon as the
engine processes events for that statement, according to the statement's choice of event streams, views, filters
and output rates.

As outlined in Chapter 9, API Reference the interface for listenersisnet . esper. cli ent. Updat eLi st ener. Im-
plementations must provide a single updat e method that the engine invokes when results become available:

(Updatel istener w

update(EventBean]] newEvents.
EventBean[] aldEvents)

The engine provides statement results to update listeners by placing resultsin net . esper. event . Event Bean in-
stances. A typical listener implementation queries the Event Bean instances via getter methods to obtain the
statement-generated results.

(EventBean |
t;eﬂ.ﬁlnng properyMame) - Object

getUnderlying() ; Object
getEventType() | EventType

The get method on the Event Bean interface can be used to retrieve result columns by name. The property name
supplied to the get method can also be used to query nested, indexed or array properties of object graphs as dis-
cussed in more detail in Chapter 2, Event Representations.

The get Under | yi ng method on the Event Bean interface alows update listeners to obtain the underlying event
object. For wildcard selects, the underlying event is the event object that was sent into the engine via the
sendEvent method. For joins and select clauses with expressions, the underlying object implements
java.util . Map.

3.2. Insert Stream

In this section we look at the output of a very smple EQL statement. The statement selects an event stream
without using a data window and without applying any filtering, as follows:

select * from Wt hdrawal

This statement selects all wt hdr awal events. Every time the engine processes an event of type W t hdr anal oOr
any sub-type of wt hdrawal , it invokes all update listeners, handing the new event to each of the statement's
listeners.

The term insert stream denotes the new events arriving, and entering a data window or aggregation. The insert
stream in this example is the stream of arriving Withdrawal events, and is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in parenthesisis
the withdrawal amount, an event property that is used in the examples that discuss filtering.

Esper 1.11.0 10

Processing Model

UpdateListener

Incoming Events New Events Old Events
| |
W1(500) ——» W, | |
| |
| |
Wo(100) ——] W, | |
| |
| |
W3(200) —f W : :
| |
Wa(50) ———= Wa | |
| |
| |
Ws(150) ——m Wi : :
| |
W(300) —— Wi | |
| |

Time

Figure 3.1. Output example for a simple statement

The example statement above results in only new events and no old events posted by the engine to the state-
ment's listeners.

3.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next statement applies a
length window onto the Withdrawal event stream. The statement serves to illustrate the concept of data window
and events entering and leaving a data window:

sel ect * from Wthdrawal . wi n: | ength(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal events into
the length window. When the length window is full, the oldest Withdrawal event is pushed out the window.
The engine indicates to listeners all events entering the window as new events, and all events leaving the win-
dow as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events leaving a data
window, or changing aggregation values. In this example, the remove stream is the stream of Withdrawal
events that |eave the length window, and such events are posted to listeners as old events.

The next diagram illustrates how the length window contents change as events arrive and shows the events pos-
ted to an update listener.

Esper 1.11.0 11

Processing Model

UpdateListener

Incoming Events Length Window - 5 Events New Events Old Events
| |
W1(500) — W, | |
| |
| |
W2(100) — ! We | |
| |
| |
Wa(200) ——pm Ws : :
| |
Wa(50) — gl Wy | |
| |
| |
wow —» - ([e))w]mw]) | ow |
| |
W5(300) ——] G We |[w |[wa][we][w D Wis | W |
| |

Time

Figure 3.2. Output examplefor alength window

As before, al arriving events are posted as new events to listeners. In addition, when event W1 |leaves the
length window on arrival of event Wi, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time period. A time
window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds pass, the time window act-
ively pushes the oldest events out of the window resulting in one or more old events posted to update listeners.

Note EQL supports optional i st reamand r st r eamkeywords on select-clauses and on insert-into clauses. These
instruct the engine to only forward events that enter or leave data windows, or select only current or prior ag-
gregation values, i.e. the insert stream or the remove stream.

3.4. Filters and Where-clauses

Filters to event streams allow filtering events out of a given stream before events enter a data window. The
statement below shows afilter that selects Withdrawal events with an amount value of 200 or more.

select * from Wt hdrawal (anpbunt >=200) . wi n: | engt h(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length window and
are therefore not passed to update listeners. Filters are discussed in more detail in Section 4.4.1, “Filter-based
event streams” and Section 5.4, “Filter Expressions In Patterns’.

Esper 1.11.0 12

Processing Model

UpdateListenar

; Filter: Length Window — 5 Events New Events Old Events
Incoming Events Amount==200 | |
W(B00) g W, | |

| |

| |

W2(100) — X | |
| |

| |

W5(200) — we | |
| |

| |

Wa(50) — o >< | |
| |

| |

Wel150) — pol X | |
| |

| |

We(300) —] We | |
| |

Time

Figure 3.3. Output example for a statement with an event stream filter

The where-clause and having-clause in statements eliminate potential result rows at a later stage in processing,
after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed in more detail in
Section 4.5, “ Specifying Search Conditions: the Where Clause”.

sel ect * from Wthdrawal .w n:|ength(5) where anount >= 200

The where-clause applies to both new events and old events. As the diagram below shows, arriving events enter
the window however only events that pass the where-clause are handed to update listeners. Also, as events
leave the data window, only those events that pass the conditions in the where-clause are posted to listeners as
old events.

Esper 1.11.0 13

Processing Model

Updatel istener

-)
Incoming Events Length Window - 5 Events Amozlrl:te;ﬁﬂi} New Events Old Events
|
Wi(500) —— | Wi
|
|
Wa(100) —pol X |
|
|
x
oo —w (el) X
|
|
wowo —w - ([mmm]]) X |
|
W;(300) — o G Wi || Ws || Wi || wa || wa D | Ws W
|

Time

Figure 3.4. Output examplefor a statement with where-clause

The where-clause can contain complex conditions while event stream filters are more restrictive in the type of
filters that can be specified. The next statement's where-clause appliesthecei | function of thej ava. | ang. Mat h
Java library class in the where clause. The insert-into clause makes the results of the first statement available to
the second statement:

insert into Wthdrawal Filtered select * from Wthdrawal where Mth. ceil (anbunt) >= 200

select * fromWthdrawal Filtered

3.5. Time Windows

In this section we explain the output model of statements employing a time window view and a time batch
view.

3.5.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on the system
time. Time windows enable us to limit the number of events considered by a query, as do length windows.

As a practical example, consider the need to determine all accounts where the average withdrawal amount per
account for the last 4 seconds of withdrawals is greater then 1000. The statement to solve this problem is shown
below.

sel ect account, avg(anount)
fromWthdrawal . wi n:tine(4 sec)
group by account

havi ng amount > 1000

Esper 1.11.0 14

Processing Model

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume a query
that simply selects the event itself and does not group or filter events.

select * fromWthdrawal .win:tinme(4 sec)

The diagram starts at a given timet and displays the contents of thetimewindow att + 4 andt + 5 seconds
and so on.

UpdateListener

. Time Window — 4 seconds
Incoming Events New Events Old Events
At t+d At i+E A t+ES At t+3
1
| t+1
o
| +2
'
| =3
) |]]| W
w | .
™ TN
2

Wy g —

+6

E
EE
B

7

—_— | 1+8 R Wy

Figure 3.5. Output examplefor a statement with a time window

The activity asillustrated by the diagram:

1. Attimet + 4 seconds an event w arrives and enters the time window. The engine reports the new event
to update listeners.

2. Attimet + 5 seconds an event w arrives and enters the time window. The engine reports the new event
to update listeners.

3. Attimet + 6.5 seconds an event w arrives and enters the time window. The engine reports the new
event to update listeners.

4. Attimet + 8 seconds event w leaves the time window. The engine reports the event as an old event to
update listeners.

3.5.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update. Time win-
dows control the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of atime batch view. For the diagram, we assume asimple

Esper 1.11.0 15

Processing Model

query as below:

select * fromWthdrawal .win:tinme_batch(4 sec)

The diagram starts at agiventimet and displays the contents of thetimewindow att + 4 andt + 5 seconds
and so on.

UpdateListener

. Time Batch — 4 seconds
Incoming Events New Events Old Events
At t+d Ab1+3 Att+d ALHHES Att+E
!

N

e .
| 2

vy et e

B — Wiand Wy

t+5

+6

1+7

g R

- SR

Wyand W

Figure 3.6. Output examplefor a statement with a time batch view

The activity asillustrated by the diagram:

1. Attimet + 1 seconds anevent w arrives and enters the batch. No call to inform update listeners occurs.
2. Attimet + 3 seconds anevent w arrives and enters the batch. No call to inform update listeners occurs.

3. Attimet + 4 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports events w and W to update listeners.

4. Attimet + 6.5 seconds an event W arrives and enters the batch. No call to inform update listeners oc-
curs.

5. Attimet + 8 seconds the engine processes the batched events and a starts a new batch. The engine re-
ports the event W, as new data to update listeners. The engine reports the events w and W as old data (prior
batch) to update listeners.

3.6. Aggregation and Grouping

3.6.1. Insert and Remove Stream

Esper 1.11.0 16

Processing Model

Statements that aggregate events via aggregations functions also post remove stream events as aggregated val-
ues change.

Consider the following statement that alerts when 2 Withdrawal events have been received:

sel ect count(*) as nycount from Wthdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update listeners. The
value of the "mycount” property on that new event is 2. Additionally, when the engine encounters the third
Withdrawal event, it posts an old event to update listeners containing the prior value of the count. The value of
the "mycount” property on that old event isalso 2.

Theistreamor r st reamkeyword can be used to eliminate either new events or old events posted to listeners.
The next statement usesthei st r eamkeyword causing the engine to call the listener only once when the second
Withdrawal event is received:

sel ect istream count (*) as mycount from Wthdrawal having count(*) = 2

3.6.2. Output for Event Batches

The built-in data windows that act on batches of events are the wi n: ti me_bat ch and the wi n: | engt h_bat ch
views. Thewi n: ti me_bat ch data window collects events arriving during a given time interval and posts collec-
ted events as a batch to listeners at the end of the time interval. The wi n: | engt h_bat ch data window collects a
given number of events and posts collected events as a batch to listeners when the given number of events has
collected.

Let'slook at how atime batch window may be used:

sel ect account, anpunt from Wthdrawal .w n:tine_batch(1l sec)

The above statement collects events arriving during a one-second interval, at the end of which the engine posts
the collected events as new events (insert stream) to each listener. The engine posts the events collected during
the prior batch as old events (remove stream). The engine starts posting events to listeners one second after it
receives the first event and thereon.

For statements containing aggregation functions and/or a group by clause, the engine posts consolidated ag-
gregation results for an event batch. For example, consider the following statement:

sel ect sun(anpunt) as nysum from Wthdrawal .w n:tinme_batch(1l sec)

Following SQL (Standard Query Language) standards for queries against relational databases, the presence or
absence of aggregation functions and the presence or absence of the group by clause dictates the number of
rows posted by the engine to listeners at the end of a batch. The next sections outline the output model for
batched events under aggregation and grouping.

Note that output rate limiting also generates batches of events following the output model as discussed here.

Un-aggregated and Un-grouped
An example statement for the un-aggregated and un-grouped case is as follows:

select * fromWthdrawal .win:time_batch(1l sec)

Esper 1.11.0 17

Processing Model

At the end of atime interval, the engine posts to listeners one row for each event arriving during the time inter-
val.

Fully Aggregated and Un-grouped

If your statement only selects aggregation values and does not group, your statement may look as the example
below:

sel ect sum(anount)
fromWthdrawal . wi n:tine_batch(1l sec)

At the end of atimeinterval, the engine posts to listeners a single row indicating the aggregation result. The ag-
gregation result aggregates all events collected during the time interval.

Aggregated and Un-Grouped

If your statement selects non-aggregated properties and aggregation values, and does not group, your statement
may be similar to this statement:

sel ect account, sum(anount)
fromWthdrawal . wi n:tine_batch(1 sec)

At the end of atime interval, the engine posts to listeners one row per event. The aggregation result aggregates
all events collected during the time interval.

Fully Aggregated and Grouped

If your statement selects aggregation values and all non-aggregated propertiesin the sel ect clause are listed in
the gr oup by clause, then your statement may look similar to this example:

sel ect account, sun{anount)
fromWthdrawal . wi n:tine_batch(1 sec)
group by account

At the end of atime interval, the engine posts to listeners one row per unigue account number. The aggregation
result aggregates per unique account.

Aggregated and Grouped

If your statement selects non-aggregated properties and aggregation values, and groups only some properties
using the gr oup by clause, your statement may look as below:

sel ect account, accountNane, sun{anount)
fromWthdrawal . wi n:tine_batch(1l sec)
group by account

At the end of atime interval, the engine posts to listeners one row per event. The aggregation result aggregates
per unigue account.

3.7. Event Bean Query Results

The engine posts events to Updat eLi st ener implementations as net . esper. event . Event Bean instances. The
Event Bean represents arow (event) in your continuous query's result set.

Esper 1.11.0 18

Processing Model

Usetheit erat or method on EPSt at enent Statements to poll or read data out of statements, if you require read-
based access to statement result sets. Statement iterators also return Event Bean instances.

The Event Bean interface offers property type metadata via the get Event Type method returning an Event Type.
The Event Type provides property name, property type and underlying type information. This information can
be useful to dynamically interrogate query results. The underlying event that an Event Bean represents can be
obtained via the get Under | yi ng method. Please see Chapter 2, Event Representations for more information on
different event underlying objects.

Consider a statement that returns the symbol, count of events per symbol and average price per symbol for tick
events. Our sample statement may declare a fully-qualified Java class name as the event type:
org. sanmpl e. St ockTi ckEvent . Assume that this class exists and exposes a symbol property of type String, and
apri ce property of type (Java primitive) double.

sel ect synbol, avg(price) as avgprice, count(*) as nycount
from org. sanpl e. St ockTi ckEvent
group by synbo

The next table summarizes the property names and types as posted by the statement above:

Table 3.1. Properties offered by sample statement aggregating price

Name Type Description Java code snippet

synbol javalang.String | Vaue of symbol event property
event Bean. get (" synbol ")

avgpri ce javalang.Double Average price per symbol
event Bean. get ("avgpri ce")

mycount javalang.Long Number of events per symbol
event Bean. get (" mycount")

A code snippet out of a possible Updat eLi st ener implementation to this statement may look as below:

String synbol = (String) newkEvents[O].get("synbol");
Doubl e price= (Doubl e) newEvents[O0].get("avgprice");
Long count= (Long) newEvents[O0].get("mycount");

The engine supplies the boxed j ava. | ang. Doubl e and j ava. | ang. Long types as property values rather then
primitive Javatypes. Thisis because aggregated values can return anul | value to indicate that no datais avail-
able for aggregation. Also, in a select statement that computes expressions, the underlying event objects to
Event Bean instances are of typej ava. uti | . Map.

Consider the next statement that specifies awildcard selecting the same type of event:

select * from org. sanpl e. St ockTi ckEvent where price > 100

The property names and types provided by an Event Bean query result row, as posted by the statement above are
asfollows:

Table 3.2. Properties offered by sample wildcar d-select statement

Esper 1.11.0 19

Processing Model

Name Type Description Java code snippet

synbol javalang.String | Value of symbol event property
event Bean. get ("synbol ")

price double Vaue of price event property
event Bean. get ("price")

As an alternative to querying individual event properties via the get methods, the get Under | yi ng method on
Event Bean returns the underlying object representing the query result. In the sample statement that features a
wildcard-select, the underlying event object is of type or g. sanpl e. St ockTi ckEvent :

St ockTi ckEvent tick = (StockTi ckEvent) newEvents[O0]. get Underlying();

Esper 1.11.0 20

Chapter 4. EQL Reference: Clauses

4.1. EQL Introduction

The Event Query Language (EQL) is a SQL-like language with SELECT, FROM, WHERE, GROUP BY, HAVI NG and
ORDER BY clauses. Streams replace tables as the source of data with events replacing rows as the basic unit of
data. Since events are composed of data, the SQL concepts of correlation through joins, filtering and aggrega-
tion through grouping can be effectively leveraged. The | NSERT | NTO clause is recast as a means of forwarding
events to other streams for further downstream processing. External data accessible through JDBC may be
queried and joined with the stream data. Additional clauses such as the PATTERN and oUTPUT clauses are also
available to provide the missing SQL language constructs specific to event processing.

EQL statements are used to derive and aggregate information from one or more streams of events, and to join
or merge event streams. This section outlines EQL syntax. It aso outlines the built-in views, which are the
building blocks for deriving and aggregating information from event streams.

EQL statements contain definitions of one or more views. Similar to tables in an SQL statement, views define
the data available for querying and filtering. Some views represent windows over a stream of events. Other
views derive statistics from event properties, group events or handle unique event property values. Views can
be staggered onto each other to build a chain of views. The Esper engine makes sure that views are reused
among EQL statements for efficiency.

The built-in set of viewsis:

1. Views that represent moving event windows. win:length, win:length_batch, win:tinme,
Wi n:time_batch,w n:ext_tine,ext:sort_w ndow

2. Views for aggregation: st d: uni que, std: groupby, std: | astevent (note: the group-by clause and the
st d: gr oupby view are very similar in function, see view description for differences)

3. Views that derive statistics. std:size, stat:uni, stat:linest, stat:correl, stat:weighted_avg,
st at: cube

Esper can be extended by plugging-in custom developed views.

4.2. EQL Syntax

EQL queries are created and stored in the engine, and publish results as events are received by the engine or
timer events occur that match the criteria specified in the query. Events can also be pulled from running EQL
queries.

The sel ect clause in an EQL query specifies the event properties or events to retrieve. The fromclause in an
EQL query specifies the event stream definitions and stream names to use. The wher e-clause in an EQL query
specifies search conditions that specify which event or event combination to search for. For example, the fol-
lowing statement returns the average price for IBM stock ticks in the last 30 seconds.

sel ect avg(price) from StockTick.w n:tinme(30 sec) where synbol =' | BM

EQL queries follow the below syntax. EQL queries can be simple queries or more complex queries. A simple
select contains only a select clause and a single stream definition. Complex EQL queries can be build that fea-
ture a more elaborate select list utilizing expressions, may join multiple streams, may contain a where clause
with search conditions and so on.

Esper 1.11.0 21

EQL Reference: Clauses

[insert into insert_into_def]

sel ect select list

fromstreamdef [as nane] [, streamdef [as nane]] [,...]
[where search_condi tions]

[group by groupi ng_expression_|list]

[havi ng groupi ng_sear ch_condi ti ons]

[out put out put _speci fication]

[order by order_ by expression_list]

4.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter. Time periods
follow the syntax below.

tinme-period : [day-part] [hour-part] [m nute-part] [seconds-part] [mlliseconds-part]

day-part : nunber ("days" | "day")

hour-part : nunber ("hours" | "hour")

m nute-part : nunber ("mnutes" | "mnute" | "mn")

seconds-part : nunber ("seconds" | "second" | "sec")
mlliseconds-part : nunber ("milliseconds" | "millisecond" | "nmsec")

Some examples of time periods are:

10 seconds

10 m nutes 30 seconds

20 sec 100 nsec

1 day 2 hours 20 mi nutes 15 seconds 110 nilliseconds
0.5 mnutes

4.2.2. Using Comments

Comments can appear anywhere in the EQL or pattern statement text where whitespace is allowed. Comments
can be written in two ways. dash-dash (// ...) commentsand slash-star (/* ... */) comments.

Slash-slash comments extend to the end of the line:

/1 This conmment extends to the end of the line.
/1 Two forward slashes with no whitespace between them begin such conments.

select * fromMEvent // this is a slash-slash coment

/1 Al'l of this text together is a valid statenent.

Slash-star comments can span multiple lines:

[* This conment is a "slash-star" comment that spans multiple |ines.

* |t begins with the slash-star sequence with no space between the '/' and '*' characters.
* By convention, subsequent |ines can begin with a star and are aligned, but this is

* not required.

*/

select * from M/Event /* this also works */

Comments styles can also be mixed:

select fieldl, // first conment
/* second comment*/ field2
from MyEvent

Esper 1.11.0 22

EQL Reference: Clauses

4.3. Choosing Event Properties And Events: the Select Clause

The select clauseisrequired in all EQL statements. The select clause can be used to select all properties viathe
wildcard *, or to specify a list of event properties and expressions. The select clause defines the event type
(event property names and types) of the resulting events published by the statement, or pulled from the state-
ment.

The select clause also offers optional i st reamand r st r eamkeywords to control how events are posted to Up-
dat eLi st ener instances listening to the statement.

The syntax for the sel ect clause is summarized below.

select [rstream | istreani * | expression_list ...

4.3.1. Choosing all event properties: select *
The syntax for selecting all event propertiesin astream is:

select * from stream def

The following statement selects univariate statistics for the last 30 seconds of IBM stock ticks for price.

select * from StockTi ck(synbol="IBM).w n:tine(30 sec).stat:uni('price')

In ajoin statement, using the sel ect * Syntax selects event properties that contain the events representing the
joined streams themselves.

The * wildcard and expressions can aso be combined in asel ect clause. The combination selects all event
properties and in addition the computed values as specified by any additional expressions that are part of the
sel ect clause. Here is an example that selects all properties of stock tick events plus a computed product of
price and volume that the statement names 'pricevolume’:

select *, price * volune as pricevolune from StockTi ck(synbol =' | BM)

4.3.2. Choosing specific event properties
To chose the particular event propertiesto return:

sel ect event_property [, event_property] [, ...] from stream def

The following statement selects the count and standard deviation properties for the last 100 events of IBM
stock ticks for volume.

sel ect count, stdev from StockTi ck(synbol="IBM).w n:|ength(100).stat: uni('vol une')

4.3.3. Expressions

The select clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

Esper 1.11.0 23

EQL Reference: Clauses

The following statement selects the volume multiplied by price for atime batch of the last 30 seconds of stock
tick events.

sel ect volunme * price from StockTick.w n:tinme_batch(30 sec)

4.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

sel ect [event property | expression] as identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for the event prop-
erty.

sel ect volune * price as vol Price from StockTi ck. wi n: | engt h(100)

4.3.5. Selecting i streamand r st reamevents

The optional i st reamand r st r eamkeywords in the select clause define the event stream posted to listeners to
the statement.

If neither keyword is specified, the engine posts insert stream events viathe newevent s parameter to the updat e
method of Updat eLi st ener instances listening to the statement. The engine posts remove stream events to the
ol dEvents parameter of the updat e method. The insert stream consists of the events entering the respective
window(s) or stream(s) or aggregations, while the remove stream consists of the events leaving the respective
window(s) or the changed aggregation result. See Chapter 3, Processing Model for more information on insert
and remove streams.

By specifying the i st ream keyword you can instruct the engine to only post insert stream events via the
newEvent s parameter to the updat e method on listeners. The engine will then not post any remove stream
events, and the ol dEvent s parameter is aways anull value.

By specifying the r st ream keyword you can instruct the engine to only post remove stream events via the
newEvent s parameter to the updat e method on listeners. The engine will then not post any insert stream events,
and the ol devent s parameter isalso always anull value.

The following statement selects only the events that are leaving the 30 second time window.

select rstream* from StockTick.wi n:tinme(30 sec)

Thei streamand r st reamkeywords in the select clause are matched by same-name keywords available in the
insert into clause. While the keywords in the select clause control the event stream posted to listeners to the
statement, the same keywords in the insert into clause specify the event stream that the engine makes available
to other statements.

4.4. Specifying Event Streams : the From Clause

The fromclause is required in all EQL statements. It specifies one or more event streams. Each event stream
can optionally be given a name by means of the as syntax.

fromstreamdef [as nanme] [, streamdef [as nane]] [, ...]

Esper 1.11.0 24

EQL Reference: Clauses

The event stream definition stream_def as shown in the syntax above can consists of either a filter-based event
stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based and filter-based event
streams are al so supported.

Esper supports joins against relational databases for access to historical or reference data as explained in Sec-

tion 4.13, “Joining Relational Datavia SQL".

4.4.1. Filter-based event streams

For filter-based event streams, the event stream definition stream_def as shown in the from-clause syntax con-
sists of an event type, optional filter expressions and an optional list of views that derive data from a stream.
The syntax for afilter-based event stream is as below:

event _type ([filter _criterial) [.view spec] [.viewspec] [...]

The following EQL statement shows event type, filter criteria and views combined in one statement. It selects
all event properties for the last 100 events of IBM stock ticks for volume. In the example, the event type is the
fully qualified Java class name or g. esper . exanpl e. St ockTi ck. The expression filters for events where the
property synbol has a value of "IBM". The optiona view specifications for deriving data from the StockTick
events are a length window and a view for computing statistics on volume. The name for the event stream is
"volumeStats'.

select * from
or g. esper. exanpl e. St ockTi ck(synmbol =" I BM). w n: | engt h(100) . stat: uni (' vol ume') as volunmeStats

Esper filters out events in an event stream as defined by filter criteria before it sends events to subsequent
views. Thus, compared to search conditions in a where-clause, filter criteria remove unneeded events early. In
the above example, events with a symbol other then IBM do not enter the time window.

Specifying an event type

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardliess of the event's properties. The example below is
such afilter.

sel ect * from com nypackage. myevents. Rfi dEvent

Instead of the fully-qualified Java class name any other event name can be mapped via Configuration to a Java
class, making the resulting statement more readable:

select * from Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example | Rf i dReadabl e iS an inter-
face class.

select * fromorg.nyorg.rfid.|RfidReadabl e

Specifying filter criteria

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name:

Esper 1.11.0 25

EQL Reference: Clauses

select * from Rfi dEvent (cat egory="Peri shabl e")

All expressions can be used in filters, including static methods that return a boolean value:

sel ect * from Rfi dEvent (MyRFI DLi b. i sl nRange(x, y) or (x < 0 and y < 0))

Filter expressions can be separated via a single comma’, '. The comma represents alogical AND between filter
expressions:

select * from Rfi dEvent (zone=1, category=10)
...is equivalent to...
select * from Rfi dEvent (zone=1 and cat egor y=10)

The following operators are highly optimized through indexing and are the preferred means of filtering in high-
volume event streams:

e equals=

e notequas!=

e comparison operators< , >, >=, <=
* ranges

» usethebet ween keyword for a closed range where both endpoints are included
e usethein keyword andround () or sguare brackets[] to control how endpoints are included
« for inverted ranges use the not keyword and the bet ween or i n keywords
e list-of-values checks using the i n keyword or the not i n keywords followed by a comma-separated list of
values

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions that can be
indexed. Indexing filter values to match event properties of incoming events enables the engine to match in-
coming events faster. The above list of operators represents the set of operators that the engine can best convert
into indexes. The use of commaor logical and in filter expressions does not impact optimizations by the engine.

Filtering Ranges

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates whether an end-
point is included or excluded. The low point and the high-point of the range are separated by the colon : char-
acter.

¢ Open ranges that contain neither endpoint (1 ow: hi gh)

e Closed ranges that contain both endpoints [| ow: hi gh] . The equivalent 'between' keyword also defines a
closed range.

« Half-open ranges that contain the low endpoint but not the high endpoint [| ow: hi gh)

« Half-closed ranges that contain the high endpoint but not the low endpoint (I ow: hi gh]

The next statement shows afilter specifying arange for x and y values of RFID events. The range includes both
endpoints therefore uses[] hard brackets.

nmypackage. Rfi dEvent (x in [100:200], y in [0:100])

The bet ween keyword is equivalent for closed ranges. The same filter using the bet ween keyword is:

nmypackage. Rfi dEvent (x between 100 and 200, y between 0 and 50)

The not keyword can be used to determineif avalue falls outside a given range:

Esper 1.11.0 26

EQL Reference: Clauses

nypackage. Rfi dEvent (x not in [0:100])

The equivaent statement using the bet ween keyword is:

mypackage. Rf i dEvent (x not between O and 100)

Filtering Sets of Values

Thei n keyword for filter criteria determinesif agiven value matches any value in alist of values.
In this example we are interested in RFID events where the category matches any of the given values:

nmypackage. Rfi dEvent (category in (' Perishable', 'Container'))

By using thenot in keywords we can filter events with a property value that does not match any of the values
inalist of values:

nypackage. Rf i dEvent (category not in (' Household', 'Electrical'))

Filter Limitations

The following restrictions apply to filter criteria:

* Range and comparison operators require the event property to be of a numeric type.
» Aggregation functions are not allowed within filter expressions.
* Theprev previous event function and the pri or prior event function cannot be used in filter expressions.

4.4.2. Pattern-based event streams

Event pattern expressions can also be used to specify one or more event streams in an EQL statement. For pat-
tern-based event streams, the event stream definition stream_def consists of the keyword pat t er n and a pattern
expression in brackets []. The syntax for an event stream definition using a pattern expression is below. Asin
filter-based event streams, an optional list of views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view spec] [.view spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade events. The ex-
ample tags stock tick events with the name "tick" and trade events with the name "trade".

select * frompattern [every tick=StockTi ckEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types. The generated
events resemble a map with "tick” and "trade”" keys. For stock tick events, the "tick” key value is the underlying
stock tick event, and the "trade" key value is anull value. For trade events, the "trade" key value is the underly-
ing trade event, and the "tick" key valueisanull value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock tick or trade
events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sun(tick.price) + sum(trade.price) as total
frompattern [every tick=StockTi ckEvent or every trade=TradeEvent].w n:tine(30 sec)

Esper 1.11.0 27

EQL Reference: Clauses

Note that in the statement above ti ckPrice and tradePri ce can each be null values depending on the event
processed. Therefore, an aggregation function such assunttick. price + trade. price)) would aways return
null values as either of the two price properties are always a null value for any event matching the pattern. Use
the coalesce function to handle null values, for example: sun{coal esce(tick.price, 0) + co-
al esce(trade.price, 0)).

4.4.3. Specifying views

Views are used to derive or aggregate data. Views can be staggered onto each other. See the section Chapter 8,
EQL Reference: Views on the views available.

Views can optionally take one or more parameters. These parameters can consist of primitive constants such as
String, boolean or numeric types. Arrays are also supported as a view parameter types.

The below example serves to show views and staggering of views. It uses a car location event that contains in-
formation about the location of acar on a highway.

The first view st d: groupby(‘ carld') groups car location events by car id. The second view wi n: | engt h(4)
keeps a length window of the 4 last events, with one length window for each car id. The next view
std: groupby({' expressway', 'direction', 'segnment'}) groups each event by its expressway, direction
and segment property values. Again, the grouping is done for each car id considering the last 4 events only. The
last view st d: si ze() is used to report the number of events. Thus the below example reports the number of
events per car id and per expressway, direction and segment considering the last 4 events for each car id only.

sel ect * from CarLocEvent. std: groupby('carld).w n:length(4).
std: groupby({' expressway', 'direction', 'segnent'}).std:size()

4.5. Specifying Search Conditions: the Where Clause

The wher e clause is an optiona clause in EQL statements. Via the wher e clause event streams can be joined
and events can befiltered.

Comparison operators=, <, >, >=, <=, !=, <> is null, is not null and logical combinations via
and and or are supported in the where clause. The where clause can also introduce join conditions as outlined in
Section 4.10, “Joining Event Streams’. Where-clauses can also contain expressions. Some examples are listed
below.

..where fraud.severity = 5 and ambunt > 500

..where (orderltemorderld is null) or (orderltemclass != 10)
...where (orderltemorderld = null) or (orderltemclass <> 10)
..where itenCount / packageCount > 10

4.6. Aggregates and grouping: the Group-by Clause and the
Having Clause

4.6.1. Using aggregate functions

The aggregate functions are sum avg, count, max, min, nedian, stddev, avedev.YOU Can use aggregate
functions to calculate and summarize data from event properties. For example, to find out the total price for all
stock tick eventsin the last 30 seconds, type:

Esper 1.11.0 28

EQL Reference: Clauses

sel ect sum(price) from StockTi ckEvent.wi n:tinme(30 sec)

Here isthe syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to all events in an event stream window or other view, or to one or more
groups of events. From each set of events to which an aggregate function is applied, Esper generates a single
value.

Expr essi on isusualy an event property name. However it can also be a constant, function, or any combination
of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the price was
doubled:

sel ect avg(price * 2) from StockTi ckEvent.w n:ti me(30 seconds)

Y ou can use the optional keyword di sti nct with al aggregate functions to eliminate duplicate values before
the aggregate function is applied. The optional keyword al I which performs the operation on all events is the
default.

Y ou can use aggregation functionsin asel ect clause and in ahavi ng clause. Y ou cannot use aggregate func-
tionsin awher e clause, but you can use the where clause to restrict the events to which the aggregate is applied.
The next query computes the average and sum of the price of stock tick events for the symbol IBM only, for the
last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent . wi n: | engt h(10)
wher e synbol =' | BM

In the above example the length window of 10 elements is not affected by the where-clause, i.e. al events enter
and leave the length window regardless of their symbol. If we only care about the last 10 IBM events, we need
to add filter criteria as below.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent (synbol =" I BM). wi n: | engt h(10)
where synbol =' | BM

Y ou can use aggregate functions with any type of event property or expression, with the following exceptions:

1. Youcanusesum avg, nedian, stddev, avedev with numeric event propertiesonly

Esper ignores any null values returned by the event property or expression on which the aggregate function is
operating, except for the count (*) function, which counts null values as well. All aggregate functions return
null if the data set contains no events, or if all eventsin the data set contain only null values for the aggregated
expression.

4.6.2. Organizing statement results into groups: the Group-by clause

The group by clause is optional in all EQL statements. The group by clause divides the output of an EQL
statement into groups. Y ou can group by one or more event property names, or by the result of computed ex-
pressions. When used with aggregate functions, gr oup by retrieves the calculations in each subgroup. Y ou can
usegroup by without aggregate functions, but generally that can produce confusing results.

Esper 1.11.0 29

EQL Reference: Clauses

For example, the below statement returns the total price per symbol for all stock tick events in the last 30
seconds:

sel ect synmbol, sun{(price) from StockTi ckEvent.win:time(30 sec) group by symbol

The syntax of the group by clauseis:

group by arregate_free_expression [, arregate free_expression] [, ...]

Esper places the following restrictions on expressionsin the gr oup by clause:

1. Expressionsinthegroup by cannot contain aggregate functions
2. Event properties that are used within aggregate functions in the sel ect clause cannot also be used in a
group by expression

Y ou can list more then one expression in the group by clause to nest groups. Once the sets are established with
group by the aggregation functions are applied. This statement posts the median volume for all stock tick
events in the last 30 seconds per symbol and tick data feed. Esper posts one event for each group to statement
listeners:

sel ect synbol, tickDataFeed, mnedi an(vol une)
from St ockTi ckEvent . wi n: ti me(30 sec)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also listed in the
group by clause. The statement thus follows the SQL standard which prescribes that non-aggregated event
propertiesinthe sel ect list must match the gr oup by columns.

Esper also supports statements in which one or more event properties in the sel ect list are not listed in the
group by clause. The statement below demonstrates this case. It calculates the standard deviation for the last 30
seconds of stock ticks aggregating by symbol and posting for each event the symbol, tickDataFeed and the
standard deviation on price.

sel ect synbol, tickDataFeed, stddev(price) from StockTi ckEvent.w n:tine(30 sec) group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces one event per
incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the group by clause are not
listed in the sel ect list. This is an example that calculates the mean deviation per synmbol and ti ckDat aFeed
and posts one event per group with synbol and mean deviation of price in the generated events. Since tick-
DataFeed is not in the posted results, this can potentially be confusing.

sel ect synmbol, avedev(price)
from St ockTi ckEvent.win:ti me(30 sec)
group by synbol, tickDataFeed

Expressions are also allowed in the gr oup by list:

sel ect synbol * price, count(*) from StockTi ckEvent.wi n:time(30 sec) group by synbol * price

If the group by expression resulted in a null value, the null value becomes its own group. All null values are
aggregated into the same group. If you are using the count (expr essi on) aggregate function which does not
count null values, the count returns zero if only null values are encountered.

Esper 1.11.0 30

EQL Reference: Clauses

You can use awher e clause in a statement with gr oup by. Events that do not satisfy the conditions in the wher e
clause are eliminated before any grouping is done. For example, the statement below posts the number of stock
ticksin the last 30 seconds with avolume larger then 100, posting one event per group (symbol).

sel ect synbol, count(*) from StockTi ckEvent.win:ti me(30 sec) where volume > 100 group by synbol

4.6.3. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng clause sets condi-
tionsfor the group by clause in the same way wher e sets conditions for the sel ect clause, except wher e cannot
include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total price per symbol
for the last 30 seconds of stock tick events for only those symbols in which the total price exceeds 1000. The
havi ng clause eliminates all symbolswhere the total priceis egqual or less then 1000.

sel ect synbol, sum(price)

from St ockTi ckEvent . wi n: ti me(30 sec)
group by synbol

havi ng sun(price) > 1000

To include more then one condition in the havi ng clause combine the conditions with and, or or not. Thisis
shown in the statement below which selects only groups with a total price greater then 1000 and an average
volume less then 500.

sel ect synbol, sun(price), avg(vol une)

from St ockTi ckEvent.win:ti me(30 sec)

group by synbol

havi ng sum(price) > 1000 and avg(vol une) < 500

Esper places the following restrictions on expressions in the havi ng clause:

1. Any expressionsthat contain aggregate functions must also occur in the sel ect clause

A statement with the havi ng clause should also have a group by clause. If you omit gr oup- by, al the events
not excluded by the wher e clause return as a single group. In that case havi ng acts like awher e except that hav-
i ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The example below
posts events where the price is less then the current running average price of all stock tick eventsin the last 30
seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent.wi n: ti me(30 sec)
havi ng price < avg(price)

4.6.4. How the stream filter, Where, Group By and Having clauses interact

When you include filters, the wher e condition, the gr oup by clause and the havi ng condition in an EQL state-
ment the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is used). The
filter discards any events not meeting filter criteria.
2. Thewher e clause excludes events that do not meet its search condition.

Esper 1.11.0 31

EQL Reference: Clauses

3. Aggregate functionsin the select list calculate summary values for each group.
4, Thehavi ng clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and havi ng clauses in one statement with a
sel ect clause containing an aggregate function.

sel ect tickDataFeed, stddev(price)

from St ockTi ckEvent (synbol =' | BM). wi n: | engt h(10)
where vol ume > 1000

group by tickDat aFeed

havi ng stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream St ockTi ckEvent . In the example above only
events with symbol IBM enter the length window over the last 10 events, all other events are simply discarded.
The wher e clause removes any events posted by the length window (events entering the window and event
leaving the window) that do not match the condition of volume greater then 1000. Remaining events are ap-
plied to the st ddev standard deviation aggregate function for each tick data feed as specified in the gr oup by
clause. Each ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
passforti ckDat aFeed groups with a standard deviation of price greater then 0.8.

4.6.5. Comparing the Group By clause and the std:groupby view

The group by clause as well as the built-in std:groupby view are similar in their ability to group events. This
section explains the key differencesin their behavior and use.

The group by clause works together with aggregation functions in your statement to produce an aggregation
result per group. In greater detail, this means that when a new event arrives, the engine applies the expressions
in the group by clause to determine a grouping key. If the engine has not encountered that grouping key before
(anew group), the engine creates a set of new aggregation results for that grouping key and performs the ag-
gregation changing that new set of aggregation results. If the grouping key points to an existing set of prior ag-
gregation results (an existing group), the engine performs the aggregation changing the prior set of aggregation
results for that group.

The std:groupby view is a built-in view that also groups events. The view is described in greater detail in Sec-
tion 8.2.2, “Group By (std:groupby)”. Its primary use is to creste a separate data window per group, or more
generally to create separate instances of all its sub-views for each grouping key encountered.

The next example shows two queries that produce equivalent results. The query using the group by clause is
generally preferable as is easier to read. The second form introduces the st at : uni view which computes uni-
variate statistics for a given property:

sel ect synbol, sun{price) from StockTi ckEvent group by synbol
/1l ... is equivalent to ...
sel ect synbol, sum from StockTi ckEvent. std: groupby(' synbol').stat: uni('price')

The next example shows two queries that are NOT equivalent as the length window is ungrouped in the first
query, and grouped in the second query:

sel ect symbol, sun{price) from StockTi ckEvent.wi n:length(10) group by synbol
/1 ... NOT equivalent to ...
sel ect synmbol, sun(price) from StockTi ckEvent. std: groupby(' synbol').wi n:|ength(10)

The key difference between the two statements is that in the first statement the length window is ungrouped and
appliesto al events regardless of group. While in the second query each group gets its own instance of alength
window. For example, in the second query events arriving for symbol "ABC" get alength window of 10 events,

Esper 1.11.0 32

EQL Reference: Clauses

and events arriving for symbol "DEF" get their own length window of 10 events.

4.7. Stabilizing and Limiting Output: the Output Clause

4.7.1. Output Clause Options

The out put clause isoptional in Esper and is used to control or stahilize the rate at which events are output. For
example, the following statement batches old and new events and outputs them at the end of every 90 second
interval.

sel ect * from St ockTi ckEvent.w n: | ength(5) output every 90 seconds

Here isthe syntax for output rate limiting:

output [all | first | last] every nunber [minutes | seconds | events]

Theal | keyword is the default and specifies that all events in a batch should be output. The batch size can be
specified in terms of time or number of events.

The first keyword specifies that only the first event in an output batch is to be output. Using the first
keyword instructs the engine to output the first matching event as soon as it arrives, and then ignore matching
events for the time interval or number of events specified. After the time interval elapsed, or the number of
matching events has been reached, the next first matching event is output again and the following interval the
engine again ignores matching events.

Thel ast keyword specifies to only output the last event at the end of the given time interval or after the given
number of matching events have been accumulated.

Thetimeinterval can also be specified in terms of minutes; the following statement isidentical to the first one.

select * from StockTi ckEvent.wi n: | ength(5) output every 1.5 m nutes

A second way that output can be stabilized is by batching events until a certain number of events have been col-
lected. The next statement only outputs when either 5 (or more) new or 5 (or more) old events have been
batched.

sel ect * from StockTi ckEvent.win:ti me(30 sec) output every 5 events

Additionally, event output can be further modified by the optional 1 ast keyword, which causes output of only
the last event to arrive into an output batch.

select * from StockTi ckEvent.win:time(30 sec) output |ast every 5 events

Using thefirst keyword you can be notified at the start of the interval. The allows to watch for situations such
as arate falling below athreshold and only be informed every now and again after the specified output interval,
but be informed the moment it first happens.

select * from T TickRate.win:tine(30 seconds) where rate<100 output first every 60 seconds

4.7.2. Group By, Having and Output clause interaction

Esper 1.11.0 33

EQL Reference: Clauses

The out put clause interacts in two ways with the gr oup by and havi ng clauses. First, in the out put every n
events case, the number n refers to the number of events arriving into the group by cl ause. That is, if the
group by clause outputs only 1 event per group, or if the arriving events don't satisfy the havi ng clause, then
the actual number of events output by the statement could be fewer than n.

Second, the I ast and al I keywords have special meanings when used in a statement with aggregate functions
and the group by clause. The | ast keyword specifies that only groups whose aggregate values have been up-
dated with the most recent batch of events should be output. The al I keyword (the default) specifies that the
most recent data for all groups seen so far should be output, whether or not these groups' aggregate values have
just been updated.

By adding an output rate limiting clause to a statement that contains a group by clause we can control output of
groups to obtain one row for each group, generating an event per group at the given output frequency:

sel ect synmbol, sum(price) from StockTi ckEvent group by synbol output every 5 seconds

4.8. Sorting Output: the Order By Clause

Theorder by clauseisoptional in Esper. It is used for ordering output events by their properties, or by expres-
sions involving those properties. For example, the following statement outputs batches of 5 or more stock tick
events that are sorted first by price and then by volume.

sel ect synbol from StockTi ckEvent.w n:tine(60 sec)
out put every 5 events
order by price, volune

Hereisthe syntax for the order by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

Esper places the following restrictions on the expressions in the or der by clause:

1. All aggregate functions that appear in the or der by clause must also appear inthe sel ect expression.

Otherwise, any kind of expression that can appear in the sel ect clause, as well as any alias defined in the se-
I ect clause, isalso valid in the order by clause.

4.9. Merging Streams and Continuous Insertion: the Insert Into
Clause

Theinsert into clauseis optional in Esper. This clause can be specified to make the results of a statement
available as an event stream for use in further statements. The clause can aso be used to merge multiple event
streams to form a single stream of events.

insert into Conbi nedEvent
sel ect A custonerld as custld, A timestanp - B.tinmestanp as |atency
fromEventAwin:tine(30 min) AL EventB.win:tine(30 mn) B
where A txnld = B.txnld

Theinsert into clausein above statement generates events of type Conbi nedEvent . Each generated Conbi ne-
devent event has 2 event properties named "custld" and "latency". The events generated by above statement
can be used in further statements. The below statement uses the generated events:

Esper 1.11.0 34

EQL Reference: Clauses

sel ect custld, sun(latency)
from Conbi nedEvent . wi n: ti me(30 min)
group by custld

Theinsert into clause can consist of just an event type dlias, or of an event type alias and 1 or more event
property names. The syntax for thei nsert into clauseisasfollows:

insert [istream| rstrean] into event_type_alias [(property_nane [, property_nane])]

Thei st ream(default) and r st r eamkeywords are optional. If no keyword or thei st r eamkeyword is specified,
the engine supplies the insert stream events generated by the statement. The insert stream consists of the events
entering the respective window(s) or stream(s). If the r st reamkeyword is specified, the engine supplies the re-
move stream events generated by the statement. The remove stream consists of the events leaving the respect-
ive window(s).

The event _type_al i as is an identifier that names the events generated by the engine. The identifier can be
used in statements to filter and process events of the given name.

The engine also alows listeners to be attached to a statement that contain ani nsert i nt o clause.

To merge event streams, simply use the same event _type_al i as identifier in al EQL statements that merge
their result event streams. Make sure to use the same number and names of event properties and event property
types match up.

Esper places the following restrictionson thei nsert i nt o clause:

1. The number of elements in the sel ect clause must match the number of elements in the i nsert into
clauseif the clause specifies alist of event property names

2. If the event type dias has already been defined by a prior statement or configuration, and the event prop-
erty names and types do not match, an exception is thrown at statement creation time.

The example statement below shows the alternative form of thei nsert into clause that explicitly defines the
property names to use.

insert into Conmbi nedEvent (custld, |atency)
sel ect A custonerld, A timestanp - B.timestanp

The r st reamkeyword can be useful to indicate to the engine to generate only remove stream events. This can
be useful if we want to trigger actions when events leave a window rather then when events enter a window.
The statement below generates Combi nedEvent events when EventA and EventB leave the window after 30
minutes (1800 seconds).

insert rstreaminto Conbi nedEvent
sel ect A custonerld as custld, Atinmestanp - B.tinmestanp as | atency
fromEventAwin:time(30 nmin) A, EventB.win:tine(30 nin) B
where A txnld = B.txnld

4.10. Joining Event Streams

Two or more event streams can be part of the f r omclause and thus both streams determine the resulting events.
The where-clause lists the join conditions that Esper uses to relate events in the two or more streams. Reference
and historical data such as stored in your relational database can also be included in joins. Please see Sec-
tion 4.13, “Joining Relational Datavia SQL” for details.

Esper 1.11.0 35

EQL Reference: Clauses

Each point in time that an event arrives to one of the event streams, the two event streams are joined and output
events are produced according to the where-clause.

This example joins 2 event streams. The first event stream consists of fraud warning events for which we keep
the last 30 minutes (1800 seconds). The second stream is withdrawal events for which we consider the last 30
seconds. The streams are joined on account number.

sel ect fraud. account Nunmber as accnt Num fraud.warning as warn, w thdraw anobunt as anount,
max(fraud.timestanp, withdraw timestanp) as tinmestanp, 'w thdraw Fraud' as desc
from net. esper. exanpl e. at m Fr audWar ni ngEvent . wi n: ti ne(30 min) as fraud,
net . esper. exanpl e. atm Wt hdrawal Event. wi n:ti me(30 sec) as w thdraw
wher e fraud. account Number = w t hdr aw. account Nunber

Joins can also include one or more pattern statements as the next example shows:

sel ect * from FraudWarni ngEvent.win:tinme(30 nmin) as fraud,
pattern [every w=Wthdrawal Event -> Pl NChangeEvent (acct=w. acct)] as withdraw
wher e fraud. account Number = w t hdraw. w. account Nunber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern consists of every
withdrawal event that is followed by a PIN change event for the same account number. It joins the two event
streams on account number.

4.11. Outer Joins

Esper supports left outer joins, right outer joins and full outer joins between an unlimited number of event
streams. Outer joins can aso join reference and historical data as explained in Section 4.13, “ Joining Relational
Datavia SQL".

If the outer join is aleft outer join, there will be an output event for each event of the stream on the left-hand
side of the clause. For example, in the left outer join shown below we will get output for each event in the
stream RfidEvent, even if the event does not match any event in the event stream OrderList.

sel ect * from net.esper.exanple.rfid. Rfi dEvent.win:tine(30 sec) as rfid
left outer join
net . esper. exanpl e.rfid. OrderList.wn:|ength(10000) as orderli st
on rfid.itemd = orderList.itemd

Similarly, if the join is a Right Outer Join, then there will be an output event for each event of the stream on the
right-hand side of the clause. For example, in the right outer join shown below we will get output for each event
in the stream OrderList, even if the event does not match any event in the event stream RfidEvent.

select * fromnet. esper.exanple.rfid. RfidEvent.win:tinme(30 sec) as rfid
right outer join
net. esper.exanpl e.rfid. OrderList.wn:length(10000) as orderli st
on rfid.itemd = orderList.itemd

For al types of outer joins, if the join condition is not met, the select list is computed with the event properties
of the arrived event while al other event properties are considered to be null.

select * fromnet. esper.exanple.rfid. RfidEvent.win:tinme(30 sec) as rfid
full outer join
net . esper. exanpl e.rfid. OrderList.wn:|ength(10000) as orderli st
on rfid.itemd = orderList.itemd

The last type of outer join is afull outer join. In afull outer join, each point in time that an event arrives to one

Esper 1.11.0 36

EQL Reference: Clauses

of the event streams, one or more output events are produced. In the example below, when either an RfidEvent
or an OrderList event arrive, one or more output event is produced.

4.12. Subqueries

A subquery is a sel ect within another statement. Esper supports subqueries in the select-clause and in the
where-clause of EQL statements. Subqueries provide an aternative way to perform operations that would oth-
erwise reguire complex joins. Subgueries can aso make statements more readable then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery, the inner query is
not correlated to the outer query. Here is an example simple subquery within a select-clause:

sel ect assetld, (select zone from ZoneC osed. std: | astevent) as |astC osed from RFlI DEvent

If the inner query is dependent on the outer query, we will have a correlated subquery. An example of a correl-
ated subquery is shown below. Notice the where-clause in the inner query, where the condition involves a
stream from the outer query:

select * from Rfi dEvent as RFID where 'Dock 1' =
(sel ect nane from Zones. std: uni que(' zoneld') where zoneld = RFID. zonel d)

The example above shows a subquery in the where-clause. The statement selects RFID events in which the
zone name matches a string constant based on zone id. The statement uses the view st d: uni que to guarantee
that only the last event per zone id is held from processing by the subquery.

The next example is a correlated subquery within a select-clause. In this statement the select-clause retrieves
the zone name by means of a subquery against the Zones set of events correlated by zoneid:

sel ect zoneld, (select nane from Zones. std: uni que(' zonel d')
where zoneld = RFID. zoneld) as nanme from RFI DEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns anul | value as the
subquery result. To limit the number of events returned by a subquery consider using one of the views
std: | ast event, st d: uni que and st d: gr oupby.

The select clause of a subguery also alows wildcard selects, which return as an event property the underlying
event object of the event type as defined in the from-clause. An example:

select (select * from MarketData.std:|lastevent()) as nd
frompattern [every tiner:interval (10 sec)]

The output events to the statement above contain the underlying MarketData event in a property named "md".
The statement populates the last MarketData event into a property named "md" every 10 seconds following the
pattern definition, or populates anul | value if no MarketData event has been encountered so far.

The following restrictions apply to subqueries:

1. The subquery stream definition must define a data window or other view to limit subquery results, redu-
cing the number of events held for subquery execution

2. Aggregation functions cannot be used in subqueries. Instead, the insert-into clause can be used to provide
aggregation results for use in subqueries

3. Subqueries can only consist of a select-clause, a from-clause and a where-clause. The group-by and hav-
ing-clauses, as well asjoins, outer-joins and output rate limiting are not permitted within subqueries.

Esper 1.11.0 37

EQL Reference: Clauses

Performance of your statement containing one or more subqueries principally depends on two parameters. First,
if your subguery correlates one or more columns in the subquery stream with the enclosing statement's streams
via equals '=', the engine automatically builds the appropriate indexes for fast row retrieval based on the key
values correlated (joined). The second parameter is the number of rows found in the subquery stream and the
complexity of the filter criteria (where-clause), as each row in the subquery stream must evaluate against the
where-clause filter.

4.12.1. The 'exi sts' keyword

Theexi sts condition is considered "to be met" if the subquery returns at least onerow. Thenot exi sts condi-
tion is considered true if the subquery returns no rows.

Let'stake alook at asimple example. The following is an EQL statement that uses the exi st s condition:

sel ect assetld from RFl DEvent as RFID
where exists (select * from Asset. std: uni que(assetld) where assetld = RFID. asset | d)

This select statement will return all RFID events where there is at least one event in Assets unique by asset id
with the same asset id.

4.12.2. The 'in' keyword

The i n subquery condition is true if the value of an expression matches one or more of the values returned by
the subquery. Consequently, the not i n condition is true if the value of an expression matches none of the val-
ues returned by the subquery.

The next statement demonstrates the use of thei n subquery condition:

sel ect assetld from RFl DEvent as RFID
where zone in (select zone from ZoneUpdate.win:time(10 mn) where status = 'closed')

The above statement demonstrated the i n subquery to select RFID events for which the zone status is in a
closed state.

4.13. Joining Relational Data via SQL

This chapter outlines how reference data and historical data that are stored in a relational database can be quer-
ied via SQL within EQL statements.

Esper can join and outer join al types of event streams to stored data. In order for such data sources to become
accessible to Esper, some configuration is required. The Section 10.4.5, “Relational Database Access’ explains
the required configuration for database access in greater detail, and includes information of configuring a query
result cache.

The following restrictions currently apply:

* Only one event stream and one SQL query can be joined; Joins of two or more event streams with an SQL
query are not yet supported.

e Sub-viewson an SQL query are not allowed; That is, one cannot create atime or length window on an SQL
guery. However one can usetheinsert i nt o Syntax to make join results available to a further statement.

e Your database software must support JDBC prepared statements that provide statement meta data at com-
pilation time. Most major databases provide this function.

Esper 1.11.0 38

EQL Reference: Clauses

» JDBC drivers must support the getM etadata feature

The next sections assume basic knowledge of SQL (Structured Query Language).

4.13.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of the database and
a parameterized SQL query. The syntax to use in the from-clause of an EQL statement is:

sql : dat abase_nanme [" paraneterized_sql _query "]

The engine uses the database name identifier to obtain configuration information in order to establish a data-
base connection, as well as settings that control connection creation and removal. Please see Section 10.4.5,
“Relational Database Access’ to configure an engine for database access.

Following the database name is the SQL query to execute. The SQL query can contain one or more substitution
parameters. The SQL query string is placed in single brackets[and . The SQL query can be placed in either
single quotes (') or double quotes (). The SQL query grammer is passed to your database software unchanged,
allowing you to write any SQL query syntax that your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${ event_property_name} . The engine resolves
event_property name at statement execution time to the actual event property value supplied by the eventsin
the joined event stream.

The engine determines the type of the SQL query output columns by means of the result set metadata that your
database software returns for the statement. The actual query results are obtained via the get bj ect on
java.sql . Resul t Set .

The sample EQL statement below joins an event stream consisting of Cust oner Cal | Event events with the res-
ults of an SQL query against the database named My Cust oner DB and table Cust oner :

sel ect custld, cust_nane from CustonerCall Event,
sql : MyCustonerDB [' sel ect cust_nane from Custoner where cust_id = ${custld} ']

The example above assumes that Cust oner Cal | Event supplies an event property named cust 1 d. The SQL
query selects the customer name from the Customer table. The where-clause in the SQL matches the Customer
table column cust _i d with the value of cust1d in each cust omer Cal | Event event. The engine executes the
SQL query for each new cust oner Cal | Event encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event. Else the engine
generates one output event for each row returned by the SQL query. An outer join as described in the next sec-
tion can be used to control whether the engine should generate output events even when the SQL query returns
NO rows.

The next example adds a time window of 30 seconds to the event stream Cust oner Cal | Event . It also renames
the selected properties to customerName and customerld to demonstrate how the naming of columnsin an SQL
query can be used in the select clause in the EQL query. And the example uses explicit stream names viathe as

keyword.
sel ect custonerld, customerNane from
Cust oner Cal | Event.win: ti me(30 sec) as cce,

sql : MyCustonerDB ["sel ect cust_id as custonmerld, cust_nanme as custonmer Nanme from Cust oner
where cust_id = ${cce.custld}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events enter the window,

Esper 1.11.0 39

EQL Reference: Clauses

and remove stream (rstream) events as events leave the window. The engine executes the given SQL query for
each cust oner Cal | Event in both the insert stream and the remove stream. As a performance optimization, the
i streamor rstreamkeywords in the select-clause can be used to instruct the engine to only join insert stream
or remove stream events, reducing the number of SQL query executions.

4,13.2. Outer Joins With SQL Queries

Y ou can use outer joins to join data obtained from an SQL query and control when an event is produced. Use a
left outer join, such asin the next statement, if you need an output event for each event regardless of whether or
not the SQL query returns rows. If the SQL query returns no rows, the join result populates null values into the
selected properties.

sel ect custld, custNanme from
Cust oner Cal | Event as cce
left outer join
sql : MyCustoner DB ["sel ect cust_id, cust_nanme as custNane
from Customer where cust_id = ${cce.custld}"] as cq
on cce.custld = cq.cust_id

The statement above always generates at least one output event for each Cust oner Cal | Event , containing all
columns selected by the SQL query, even if the SQL query does not return any rows. Note the on expression
that is required for outer joins. The on acts as an additional filter to rows returned by the SQL query.

4.13.3. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can aso be applied together in useful ways. One such use is to poll or re-
quest data from a database at regular intervals. The next statement is an example that shows a pattern that fires
every 5 seconds to query the NewQrder table for new orders:

insert into NewOrders
sel ect orderld, orderAmunt from
pattern [every tinmer:interval (5 sec)],
sql : MyCustoner DB [' sel ect orderld, orderAmpunt from NewOrders']

4.13.4. JDBC Implementation Overview

The engine translates SQL queriesinto JDBC j ava. sql . Prepar edSt at enent Statements by replacing ${ name}
parameters with '? placeholders. It obtains name and type of result columns from the compiled Pr epar ed-
St at enent meta data when the EQL statement is created.

The engine supplies parameters to the compiled statement via the set j ect method on Pr epar edSt at enent .
The engine uses the get bj ect method on the compiled statement Pr epar edSt at ement to obtain column val-
ues.

4.13.5. Oracle Drivers and No-Metadata Workaround

Certain JDBC database drivers are known to not return metadata for precompiled prepared SQL statements.
This can be a problem as metadata is required by Esper. Esper obtains SQL result set metadata to validate an
EQL statement and to provide column types for output events. JDBC drivers that do not provide metadata for
precompiled SQL statements require a workaround. Such drivers do generally provide metadata for executed
SQL statements, however do not provide the metadata for precompiled SQL statements.

Esper 1.11.0 40

EQL Reference: Clauses

Please consult the Chapter 10, Configuration for the configuration options available in relation to metadata re-
trieval.

To obtain metadata for an SQL statement, Esper can alternatively fire a SQL statement which returns the same
column names and types as the actual SQL statement but without returning any rows. This kind of SQL state-
ment is referred to as a sample statement in below workaround description. The engine can then use the sample
SQL statement to retrieve metadata for the column names and types returned by the actual SQL statement.

Applications can provide a sample SQL statement to retrieve metadata via the net adat asql keyword:

sqgl : dat abase_nane ["paraneterized_sql _query" metadatasql "sql _neta_query"]

The sgl_meta_query must be an SQL statement that returns the same number of columns, the same type of
columns and the same column names as the parameterized_sgl_query, and does not return any rows.

Alternatively, applications can choose not to provide an explicit sasmple SQL statement. If the EQL statement
does not use the net adat asgl Syntax, the engine applies lexical analysisto the SQL statement. From the lexical
analysis Esper generates a sample SQL statement adding a restrictive clause "where 1=0" to the SQL statement.

Alternatively, applications can add the following tag to the SQL statement: ${ $ESPER- SAMPLE- WHERE} . If the
tag exists in the SQL statement, the engine does not perform lexical analysis and simply replaces the tag with
the SQL where-clause "where 1=0". Therefore this workaround is applicable to SQL statements that cannot be
correctly lexically analyzed. The SQL text after the placeholder is not part of the sample query. For example:

sel ect mycol from sqgl:nmyDB [
'sel ect mycol from nytesttabl e ${$ESPER- SAMPLE- WHERE} where'], ...

Esper 1.11.0 41

Chapter 5. EQL Reference: Patterns

5.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition. Patterns can
also be time-based.

Pattern expressions can consist of filter expressions combined with pattern operators. Expressions can contain
further nested pattern expressions by including the nested expression(s) in () round brackets.

There are 5 types of operators.

Operators that control pattern subexpression repetition: every

Logical operators: and, or, not

Temporal operators that operate on event order: - > (followed-by)

Guards are where-conditions that control the lifecycle of subexpressions. Examplesareti mer: wi t hi n.
Observers observe time events as well as other events. Examplesaretiner:interval andtimer: at .

bk wdNE

5.2. How to use Patterns

5.2.1. Pattern Syntax

Thisis an example pattern expression that matches on every Ser vi ceMeasur enent events in which the value of
thel at ency event property is over 20 seconds, and on every Ser vi ceMeasur enent event in which the success
property isfalse. Either one or the other condition must be true for this pattern to match.

every (spi ke=Servi ceMeasur enent (| at ency>20000) or error=Servi ceMeasur enent (success=f al se))

In the example above, the pattern expression starts with an every operator to indicate that the pattern should
fire for every matching events and not just the first matching event. Within the every operator in round brack-
etsis a nested pattern expression using the or operator. The left hand of the or operator is a filter expression
that filters for events with a high latency value. The right hand of the operator contains a filter expression that
filters for events with error status. Filter expressions are explained in Section 5.4, “Filter Expressions In Pat-
terns’.

The example above assigned the tags spi ke and er r or to the eventsin the pattern. The tags are important since
the engine only places tagged events into the output event(s) that a pattern generates, and that the engine sup-
plies to listeners of the pattern statement. The tags can further be selected in the select-clause of an EQL state-
ment as discussed in Section 4.4.2, “ Pattern-based event streams”.

Patterns can aso contain comments within the pattern as outlined in Section 4.2.2, “Using Comments’.

Pattern statements are created via the EPAdni ni strat or interface. The EPAdni ni strat or interface allows to
create pattern statements in two ways: Pattern statements that want to make use of the EQL sel ect clause or
any other EQL constructs use the cr eat eEQL method to create a statement that specifies one or more pattern ex-
pressions. EQL statements that use patterns are described in more detail in Section 4.4.2, “Pattern-based event
streams’. Use the syntax as shown in below example.

EPAdmi ni strator admi n = EPServi ceProvi der Manager . get Def aul t Provi der () . get EPAdmi ni strator () ;

String event Nanme = Servi ceMeasurenent. cl ass. get Nanme() ;

Esper 1.11.0 42

EQL Reference: Patterns

EPSt at enent myTri gger = admin.createEQ.("select * frompattern [" +
"every (spike=" + eventNane + "(|atency>20000) or error=" + eventNane + "(success=false))]");

Pattern statements that do not need to make use of the EQL sel ect clause or any other EQL constructs can use
the cr eat ePat t er n method, asin below example.

EPSt at enent nyTrigger = adm n. createPattern(
"every (spike=" + eventNane + "(|atency>20000) or error=" + eventNane + "(success=false))");

5.2.2. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The listener inter-
faceisthenet . esper. client. Updat eLi st ener interface.

The example below shows an anonymous implementation of the net. esper. cli ent. Updat eLi st ener inter-
face. We add the anonymous listener implementation to the nyPat t er n statement created earlier. The listener
code simply extracts the underlying event class.

nmyPat t er n. addLi st ener (new Updat eLi st ener ()
{

public voi d update(Event Bean[] newEvents, EventBean[] ol dEvents)

{

Servi ceMeasur enent spi ke = (Servi ceMeasurenent) newEvents[0].get("spi ke");
Servi ceMeasurenment error = (Servi ceMeasurenent) newkEvents[O].get("error");
. I/ either spike or error can be null, depending on which occurred
. I/ add nore |ogic here

}
1)

Listeners receive an array of Event Bean instances in the newEvent s parameter. There is one Event Bean instance
passed to the listener for each combination of events that matches the pattern expression. At least one Event -
Bean instance is always passed to the listener.

The properties of each Event Bean instance contain the underlying events that caused the pattern to fire, if
events have been named in the filter expression via the nane=event Type syntax. The property name is thus the
name supplied in the pattern expression, while the property type is the type of the underlying class, in this ex-
ample Ser vi ceMeasur enent .

5.2.3. Pulling Data from Patterns

Data can also be pulled from pattern statements via the i terat or () method. If the pattern had fired at least
once, then the iterator returns the last event for which it fired. The hasNext () method can be used to determine
if the pattern had fired.

if (myPattern.iterator().hasNext())

{
Servi ceMeasurenment event = (Servi ceMeasurenment) view. iterator().next().get("alert");
. I/ sone nore code here to process the event
}
el se
{
. // no matching events at this tine
}

Esper 1.11.0 43

EQL Reference: Patterns

5.3. Operator Precedence

The operators at the top of this table take precedence over operators lower on the table.

Table5.1. Pattern Operator Precedence

Precedence Operator Description Example
1 Guard post- where tinmer:within (or

fix plug-in pattern guard) M/Event where timer:within(l sec)
2 unary every, not

every MyEvent
timer:interval (5 min) and not MyEvent

3 and and

every (MyEvent and MyQt her Event)
4 or or

every (MyEvent or MyQt her Event)
5 followed-by ->

every (MyEvent -> M/Qt her Event)

If you are not sure about the precedence, please consider placing parenthesis () around your subexpressions.
Parenthesis can a so help make expressions easier to read and understand.

Note that we are also providing the EQL grammar as a HTML file as part of the documentation set on the
project website.

The following table outlines sample equivaent expressions, with and without the use of parenthesis for subex-
pressions.

Table5.2. Equivalent Pattern Expressions

Expression Equivalent Reason

every A or B (every A) or B The every operator has higher precedence then the or oper-
ator

every A->BorC (every A) ->(Bor C) The or operator has higher precedence then the f ol | oved-
by operator

AandBorC (AandB)orC The and operator has higher precedence then the or operat-
or

5.4. Filter Expressions In Patterns

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardliess of the event's properties. The example below is
such afilter. Note that this event pattern would stop firing as soon as the first RfidEvent is encountered.

Esper 1.11.0 44

EQL Reference: Patterns

com nypackage. myevent s. Rf i dEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the ever y keyword.

every com nmypackage. nyevents. Rf i dEvent

The example above specifies the fully-qualified Java class name as the event type. Via configuration, the event
pattern above can be simplified by using the aias that has been defined for the event type.

every RfidEvent

Interfaces and superclasses are also supported as event types. In the below example | Rf i dReadabl e is an inter-
face class, and the statement matches any event that implements this interface:

every org. myorg.rfid.|Rfi dReadabl e

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name:

Rfi dEvent (cat egor y="Peri shabl e")

All expressions can be used in filters, including static method invocations that return a boolean value:

Rfi dEvent (MyRFI DLi b. i sl nRange(x, y) or (x<0 and y < 0))

Filter expressions can be separated via a single comma ', '. The comma represents a logical AND between ex-
pressions:

Rfi dEvent (zone=1, category=10)
...is equivalent to...
Rfi dEvent (zone=1 and cat egor y=10)

The following set of operators are highly optimized through indexing and are the preferred means of filtering
high-volume event streams:

e equals=

e notequals!=

e comparison operators< , > , >=, <=
e ranges

» usethebet ween keyword for a closed range where both endpoints are included
e usethein keyword and round () or square brackets[] to control how endpoints are included
e forinverted ranges use the not keyword and the bet ween or i n keywords
» list-of-values checks using the i n keyword or thenot i n keywords followed by a comma-separated list of
values

At compile time as well as at run time, the engine scans new filter expressions for subexpressions that can be
indexed. Indexing filter values to match event properties of incoming events enables the engine to match in-
coming events faster. The above list of operators represents the set of operators that the engine can best convert
into indexes. The use of commaor logical and in filter expressions does not impact optimizations by the engine.

For more information on filters please see Section 4.4.1, “Filter-based event streams”.

Filter criteria can also refer to events matching prior named events in the same expression. Below pattern is an
example in which the pattern matches once for every RfidEvent that is preceded by an RfidEvent with the same

Esper 1.11.0 45

EQL Reference: Patterns

assetid.
every A=Rfi dEvent -> B=Rfi dEvent (asset| d=A assetld)

The syntax shown above alows filter criteriato reference prior results by specifying the event name tag of the
prior event, and the event property name. This syntax can be used in al filter operators or expressionsincluding
ranges and thei n set-of-values check:

every A=Rfi dEvent ->
B=Rfi dEvent (MyLi b. i sl nRadi us(A. x, Ay, X, y) and zone in (1, A zone))

5.5. Pattern Operators

5.5.1. Every

The every operator indicates that the pattern subexpression should restart when the subexpression qualified by
the every keyword evaluates to true or false. Without the ever y operator the pattern subexpression stops when
the pattern subexpression evaluates to true or false.

Thus the ever y operator works like a factory for the pattern subexpression contained within. When the pattern
subexpression within it fires and thus quits checking for events, the every causes the start of a new pattern
subexpression listening for more occurances of the same event or set of events.

Every time a pattern subexpression within an every operator turns true the engine starts a new active subex-
pression looking for more event(s) or timing conditions that match the pattern subexpression. If the every oper-
ator is not specified for a subexpression, the subexpression stops after the first match was found.

This pattern fires when encountering event A and then stops looking.

A

This pattern keeps firing when encountering event A, and doesn't stop looking.

every A

Let's consider an example event sequence as follows.

A, B, C1 B, A, D, A, B, E A F B,

Table5.3.'Every' operator examples

Example Description

every (A->B) Detect event A followed by event B. At the time when B occurs the pattern
matches, then the pattern matcher restarts and looks for event A again.

1. Matcheson B, for combination {Al, Bl}
2. Matcheson B, for combination {Az, B3}
3. MatchesonB 4 for combination { A +B 4}

every A -> B The pattern fires for every event A followed by an event B.

Esper 1.11.0 46

EQL Reference: Patterns

Example Description

1. Matcheson B, for combination {A1’ Bl}
2. Matcheson B, for combination {Az, BS} and {AS, BS}
3. MatchesonB 4 for combination { A . B 4}

A -> every B The pattern fires for an event A followed by every event B.

Matcheson B, for combination{A , B }.
Matches on B, for combination {Al, Bz}'
Matches on B, for combination {Ar B3}
Matches on B, for combination{A , B}

Eal R A
W N P

every A -> every B The pattern fires for every event A followed by every event B.

Matches on B, for combination {Al, Bl}.

Matches on B, for combination {A , B,}.

Matches on B, for combination {Al, BS} and {Az, BS} and {A3, Bs}
Matches on B, for combination {Al, B4} and {Az' B4} and {Ag, B4} and
{A, B}

Eal RN o
rWON e

The examples show that it is possible that a pattern fires for multiple combinations of events that match a pat-
tern expression. Each combination is posted as an Event Bean instance to the updat e method in the Updat eL-
i st ener implementation.

Let's consider the every operator in conjunction with a subexpression that matches 3 events that follow each
other:

every (A->B -> (O

The pattern first looks for event A. When event A arrives, it looks for event B. After event B arrives, the pattern
looks for event C. Finally when event C arrives the pattern fires. The engine then starts looking for event A

again.

Assume that between event B and event C a second event A, arrives. The pattern would ignore the A, entirely
since it's then looking for event C. As observed in the prior example, the ever y operator restarts the subexpres-
sionA -> B -> conly when the subexpression fires.

In the next statement the ever y operator applies only to the A event, not the whole subexpression:

every A->B->C

This pattern now matches for any event A that is followed by an event B and then event C, regardless of when
the event A arrives. Oftentimes this can be practical in combination with the and not syntax and the
timer:within Syntax asthe next example shows.

Every Operator Example

In this example we consider a generic pattern in which the pattern must match for each A event followed by aB
and followed by a C event, in which both B and C must arrive within 1 hour of the A event. The first approach
to the pattern is as follows:

every A -> (B -> C) where tinmer:within(1l hour)

Esper 1.11.0 47

EQL Reference: Patterns

Consider the following sequence of events arriving:
AL A, B G B, G

First, the pattern as above never stops looking for A events since the every operator instructs the pattern to
keep looking for A events.

When A 1 arrives, the pattern starts a new subexpression that keeps Al in memory and looks for any B event. At
the same time, it also keeps looking for more A events.

When A, arrives, the pattern starts a new subexpression that keeps A, in memory and looks for any B event. At
the same time, it also keeps looking for more A events.

After the arrival of A2, there are 3 subexpressions active:

1. Thefirst active subexpression with Al in memory, looking for any B event
2. The second active subexpression with A, in memory, looking for any B event
3. A third active subexpression, looking for the next A event

In the pattern above, we have specified a 1-hour lifetime for subexpressions looking for B and C events. Thus,
if no B and no C event arrive within 1 hour after AL the first subexpression goes away. If no B and no C event
arrive within 1 hour after A, the second subexpression goes away. The third subexpression however stays
around looking for more A events.

The pattern as shown above thus matches on arrival of C, for combination {A , B, C;} and for combination
{A2, Bl, Cl}, provided that Bl and C1 arrive within an hour of A1 and Az.

Y ou may now ask how to match on {Ar B, Cl} and {Az’ B, Cz} instead, since you may need to correlate on
agiven property.

The pattern as discussed above matches every A event followed by the first B event followed by the next C
event, and doesn't specifically qualify the B or C eventsto look for based on the A event. To look for specific B
and C events in relation to a given A event, the correlation must use one or more of the properties of the A
event, such asthe "id" property:

every a=A -> (B(id=a.id -> C(id=a.id)) where tiner:wthin(l hour)

The pattern as shown above thus matches on arrival of C, for combination {Al, B, Cl} and on arrival of C, for
combination{A_, B,, C.}.

Sensor Example

This example looks at temperature sensor events named Sample. The pattern detects when 3 sensor events in-
dicate a temperature of more then 50 degrees uninterrupted within 90 seconds of the first event, considering
events for the same sensor only.

every sanpl e=Sanpl e(tenp > 50) ->
((Sanpl e(sensor=sanpl e. sensor, tenp > 50) and not Sanpl e(sensor=sanpl e. sensor, tenp <= 50))
->

(Sanpl e(sensor =sanpl e. sensor, tenp > 50) and not Sanpl e(sensor=sanpl e. sensor, tenp <= 50))
) where tiner:w thin(90 seconds))

The pattern starts a new subexpression in the round braces after the first followed-by operator for each time a
sensor indicated more then 50 degrees. Each subexpression then lives a maximum of 90 seconds. Each subex-
pression ends if a temperature of 50 degress or less is encountered for the same sensor. Only if 3 temperature

Esper 1.11.0 48

EQL Reference: Patterns

eventsin arow indicate more then 50 degrees, and within 90 seconds of the first event, and for the same sensor,
does this pattern fire.

5.5.2. And

Similar to the Java & & operator the and operator requires both nested pattern expressions to turn true before the
whole expression turnstrue (ajoin pattern).

Pattern matches when both event A and event B are found.

A and B

Pattern matches on any sequence A followed by B and C followed by D, or C followed by D and A followed by
B

(A->B) and (C-> D

Note that in an and pattern expression it is not possible to correlate events based on event property values. For
example, thisisan invalid pattern:

/1 This is NOT valid
a=A and B(id = a.id)

The above expression is invalid as it relies on the order of arrival of events, however in an and expression the
order of events is not specified and events fulfill an and condition in any order. The above expression can be
changed to use the followed-by operator:

/1 This is valid

a=A -> B(id = a.id)

/'l anot her exanple using 'and'...

a=A -> (B(id = a.id) and C(id = a.id))

5.5.3.Or

Similar to the Java “||" operator the or operator requires either one of the expressions to turn true before the
whole expression turns true.

Look for either event A or event B. Asaways, A and B can itself be nested expressions as well.

A or B

Detect all stock ticks that are either above or below a threshold.

every (StockTick(synbol="IBM, price < 100) or StockTick(synmbol="1BM, price > 105)

5.5.4. Not

The not operator negates the truth value of an expression. Pattern expressions prefixed with not are automatic-
ally defaulted to true.

This pattern matches only when an event A is encountered followed by event B but only if no event C was en-
countered before event B.

Esper 1.11.0 49

EQL Reference: Patterns

(A->B) and not C

5.5.5. Followed-by

The followed by - > operator specifies that first the left hand expression must turn true and only then is the right
hand expression evaluated for matching events.

Look for event A and if encountered, look for event B. As aways, A and B can itself be nested event pattern
expressions.

A->B

Thisis a pattern that fires when 2 status events indicating an error occur one after the other.

St at usEvent (status="' ERROR) -> Stat usEvent (status=" ERROR)

5.6. Pattern Guards

Guards are where-conditions that control the lifecycle of subexpressions. Custom guard functions can also be
used. The section Chapter 11, Extension and Plug-in outlines guard plug-in development in greater detail.

Take as an exampl e the following pattern expression:

MyEvent where tinmer.w thin(10 sec)

In this pattern the ti mer: wi t hi n guard controls the subexpression that is looking for MyEvent events. The
guard terminates the subexpression looking for MyEvent events after 10 seconds after start of the pattern. Thus
the pattern alerts only once when the first MyEvent event arrives within 10 seconds after start of the pattern.

The every keyword requires additional discussion since it also controls subexpression lifecycle. Let's add the
every keyword to the example pattern:

every MyEvent where tiner.w thin(10 sec)

The difference to the pattern without every is that each MyEvent event that arrives now starts a new subexpres-
sion, including a new guard, looking for a further MyEvent event. The result is that, when a MyEvent arrives
within 10 seconds after pattern start, the pattern execution will look for the next MyEvent event to arrive within
10 seconds after the previous one.

By placing parentheses around the ever y keyword and its subexpression, we can have the ever y under the con-
trol of the guard:

(every MyEvent) where tiner.wthin(1l0 sec)
In the pattern above, the guard terminates the subexpression looking for al MyEvent events after 10 seconds

after start of the pattern. This pattern alerts for all MyEvent events arriving within 10 seconds after pattern start,
and then stops.

5.6.1. timer:within

Thetimer: wit hi n guard acts like a stopwatch. If the associated pattern expression does not turn true within the

Esper 1.11.0 50

EQL Reference: Patterns

specified time period it is stopped and permanently false. The ti mer: wi t hi n guard takes a time period (see
Section 4.2.1, “ Specifying Time Periods’) or a number of seconds as a parameter.

This pattern firesif an A event arrives within 5 seconds after statement creation.

A where tiner:within (5 seconds)

This pattern fires for all A eventsthat arrive within 5 seconds. After 5 seconds, this pattern stops matching even
if more A eventsarrive.

(every A) where tinmer:within (5 seconds)

This pattern is similar to the first pattern but here every time A arrives within 5 seconds, the pattern begins
looking for A for another 5 seconds. As long as A events arrive within 5 seconds after the last A, the pattern
does not stop matching.

every (A where timer:within (5 sec))

This pattern matches for any one A or B event in the next 5 seconds.

(Aor B) where tiner:within (5 sec)

This pattern matches for any 2 errors that happen 10 seconds within each other.

every (StatusEvent(status='ERROR) -> StatusEvent(status='ERROR) where tinmer:within (10 sec))

The following guards are equivalent:

tinmer:within(2 mnutes 5 seconds)
tinmer:wthin(125 sec)
timer:w thin(125)

5.7. Pattern Observers

Observers observe time-based events for which the thread-of-control originates by the engine timer thread.
Custom observers can also be developed that observe timer events or other engine-external events. The section
Chapter 11, Extension and Plug-in outlines observer plug-in development in greater detail.

5.7.1. timer:interval

Thetinmer:interval observer waits for the defined time before the truth value of the observer turns true. The
observer takes atime period (see Section 4.2.1, “Specifying Time Periods’) or a number of seconds as a para-
meter.

After event A arrived wait 10 seconds then indicate that the pattern matches.

A -> tiner:interval (10 seconds)

The pattern below fires every 20 seconds.

every tiner:interval (20 sec)

The next example pattern fires for every event A that is not followed by an event B within 60 seconds after

Esper 1.11.0 51

EQL Reference: Patterns

event A arrived. B must have the same "id" property value as A.

every a=A -> (tinmer:interval (60 sec) and not B(id=a.id))

5.7.2. timer:at

Thetimer: at observer is similar in function to the Unix “crontab” command. At a specified time the expres-
sionturnstrue. The at operator can also be made to pattern match at regular intervals by using an ever y operat-
orinfront of theti nmer: at operator.

Thesyntaxis. tiner:at (minutes, hours, days of month, nonths, days of week [, seconds]).

The value for seconds is optional. Each element allows wildcard * values. Ranges can be specified by means of
lower bounds then acolon ‘:’ then the upper bound. The division operator */ x can be used to specify that every
Xip, valueisvalid. Combinations of these operators can be used by placing these into square brackets([]).

This expression pattern matches every 5 minutes past the hour.
every tinmer:at(5, *, *, *, *)

The below ti rmer: at pattern matches every 15 minutes from 8am to 5pm on even numbered days of the month
aswell ason thefirst day of the month.

timer:at (*/15, 8:17, [*/2, 1], *, *)

The below table outlines the fields, valid values and keywords available for each field:

Table 5.4. Properties offered by sample statement aggregating price

Field Name Mandatory? Allowed Values Additional Keywords
Minutes yes 0-59
Hours yes 0-23
Days Of Month yes 1-31 last, weekday, |astweekday
Months yes 1-12
Days Of Week yes 0 (Sunday) - 6 last
(Saturday)
Seconds no 0-59

The keyword | ast used in the days-of-month field means the last day of the month (current month). To specify
the last day of another month, a value for the month field has to be provided. For example: tiner:at (*, *,
| ast, 2, *) isthelast day of February.

The | ast keyword in the day-of-week field by itself simply means Saturday. If used in the day-of-week field
after another value, it means "the last xxx day of the month" - for example "5 last" means "the last friday of the
month". So the last Friday of the current month will be: tiner:at(*, *, *, *, 5 last).Andthelast Friday
of June: tinmer:at(*, *, *, 6, 5 last).

The keyword weekday is used to specify the weekday (Monday-Friday) nearest the given day. Variant could in-

Esper 1.11.0 52

EQL Reference: Patterns

clude month like in: timer:at(*, *, 30 weekday, 9, *) which is Friday September 28th (no jump over
month).

The keyword | ast weekday is a combination of two parameters, the | ast and the weekday keywords. A typical
example could be: tiner:at(*, *, *, |astweekday, 9, *) which will define Friday September 28th
(example year is 2007).

Esper 1.11.0 53

Chapter 6. EQL Reference: Operators

Esper arithmatic and logical operator precedence follows Java standard arithmatic and logical operator preced-
ence.

6.1. Arithmatic Operators
The below table outlines the arithmatic operators available.

Table 6.1. Syntax and results of arithmatic operators

Operator Description

+ -

As unary operators they denote a positive or
negative expression. As binary operators they
add or subtract.

Multiplication and division are binary operat-
ors.

%
Modulo binary operator.

6.2. Logical And Comparsion Operators

The below table outlines the logical and comparison operators available.

Table 6.2. Syntax and results of logical and comparison operators

Operator Description

NOT
Returns true if the following condition is

false, returnsfalseif itistrue.

OR
Returns true if either component condition is

true, returnsfalseif both are false.

AND
Returns true if both component conditions are

true, returns false if either isfase.

=1 !=1 <1 > <:1 >=|
Comparison.

6.3. Concatenation Operators

Esper 1.11.0 54

EQL Reference: Operators

The below table outlines the concatenation operators available.

Table 6.3. Syntax and results of concatenation operators

Operator Description

Concatenates character strings

6.4. Binary Operators

The below table outlines the binary operators available.

Table 6.4. Syntax and results of binary operators

Operator Description

&
Bitwise AND if both operands are numbers;

conditionad AND if both operands are
boolean

Bitwise OR if both operands are numbers;
conditional OR if both operands are boolean

Bitwise exclusive OR (XOR)

6.5. Array Definition Operator

The{ and} curly braces are array definition operators following the Java array initialization syntax. Arrays can
be useful to pass to user-defined functions or to select array datain a select clause.

Array definitions consist of zero or more expressions within curly braces. Any type of expression is allowed
within array definitions including constants, arithmatic expressions or event properties. Thisis the syntax of an
array definition:

{ [expression [,expression...]] }

Consider the next statement that returns an event property named act i ons. The engine populates the act i ons
property as an array of j ava. | ang. String vaues with a length of 2 elements. The first element of the array
contains the obser vati on property value and the second element the conmand property value of RFI DEvent
events.

sel ect {observation, conmand} as actions from RFI DEvent

The engine determines the array type based on the types returned by the expressions in the array definiton. For
example, if all expressions in the array definition return integer values then the type of the array is
java.lang. I nteger[]. If the types returned by all expressions are compatible number types, such as integer

Esper 1.11.0 55

EQL Reference: Operators

and double vaues, the engine coerces the array element values and returns a suitable type,
java.lang. Doubl e[] in this example. The type of the array returned is obj ect[] if the types of expressions
cannot be coerced or return object values. Null values can also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

select * from RFI DEvent where Filter.nyFilter(zone, {1,2,3})

6.6. The 'in' Keyword

Thei n keyword determines if a given value matches any value in alist. The syntax of the keyword is:

test_expression [not] in (expression [,expression...])

The test_expression is any valid expression. The keyword is followed by a list of expressions to test for a
match. The optional not keyword specifies that the result of the predicate be negated.

The result of an i n expression is of type Bool ean. If the value of test expression is equal to any expression
from the comma-separated list, the result value is t rue. Otherwise, the result value is f al se. All expressions
must be of the same type as or a compatible type to test_expression.

The next example shows how thei n keyword can be applied to select certain command types of RFID events:

sel ect * from RFI DEvent where command in (' OBSERVATI ON', ' SIGNAL')

The statement is equivalent to:

sel ect * from RFI DEvent where command = ' OBSERVATI ON' or command = ' SI GNAL'

6.7. The 'bet wveen' Keyword

The bet ween keyword specifies arange to test. The syntax of the keyword is:

test _expression [not] between begi n_expressi on and end_expression

The test_expression is any valid expression and is the expression to test for in the range defined by be-
gin_expression and end_expression. Thenot keyword specifies that the result of the predicate be negated.

The result of abet ween expression is of type Bool ean. If the value of test_expression is greater then or equal to
the value of begin_expression and less than or equal to the value of end_expression, theresultistrue.

The next example shows how the bet ween keyword can be used to select events with a price between 55 and 60
(inclusive).

sel ect * from StockTi ckEvent where price between 55 and 60

The equivalent expression without bet ween is:

select * from StockTi ckEvent where price >= 55 and price <= 60

And also equivalent to:

select * from StockTi ckEvent where price between 60 and 55

Esper 1.11.0 56

EQL Reference: Operators

6.8. The 'li ke' Keyword

The Ii ke keyword provides standard SQL pattern matching. SQL pattern matching alows you to use ' _* to
match any single character and * % to match an arbitrary number of characters (including zero characters). In
Esper, SQL patterns are case-sensitive by default. The syntax of 1 i ke is:

test_expression [not] like pattern_expression [escape string |literal]

The test_expression is any valid expression yielding a String-type or a numeric result. The optiona not
keyword specifies that the result of the predicate be negated. Thel i ke keyword is followed by any valid stand-
ard SQL pattern_expression yielding a String-typed result. The optional escape keyword signals the escape
character to escape' _* and' % valuesin the pattern.

The result of a like expression is of type Bool ean. If the value of test expression matches the pat-
tern_expression, theresult value ist r ue. Otherwise, the result valueisf al se.

An examplefor thel i ke keyword is below.

sel ect * from PersonLocati onEvent where nane |ike '%ack%

The escape character can be defined as follows. In this example the where-clause matches events where the suf-
fix property isasingle' _* character.

sel ect * from PersonLocati onEvent where suffix like '"!_' escape '!’

6.9. The 'regexp' Keyword

Theregexp keyword is aform of pattern matching based on regular expressions implemented through the Java
java. util.regex package. The syntax of regexp is:

test _expression [not] regexp pattern_expression

The test_expression is any valid expression yielding a String-type or a numeric result. The optional not
keyword specifies that the result of the predicate be negated. The r egexp keyword is followed by any valid reg-
ular expression pattern_expression yielding a String-typed result.

The result of aregexp expression is of type Bool ean. If the value of test_expression matches the regular ex-
pression pattern_expression, the result value ist r ue. Otherwise, the result valueisf al se.

An example for ther egexp keyword is below.

sel ect * from PersonLocati onEvent where nanme regexp '*Jack*'

Esper 1.11.0 57

Chapter 7. EQL Reference: Functions

7.1. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement. These func-
tions can appear anywhere where expressions are allowed.

Esper alows static Java library methods as single-row functions, and also features built-in single-row functions.

Esper auto-imports the following Java library packages:

e javalang.*
e javamath.*
e javatext.*
* javautil.*

Thus Java static library methods can be used in all expressions as shown in below example:

sel ect synbol, WMath.round(vol une/ 1000)
from St ockTi ckEvent . wi n: time(30 sec)

In general, arbitrary Java class names have to be fully qualified (e.g. javalang.Math) but Esper provides a
mechanism for user-controlled imports of classes and packages as outlined in Chapter 10, Configuration.

The below table outlines the built-in single-row functions available.

Table 7.1. Syntax and results of single-row functions

Single-row Function Result

case val ue Returns resul t where the first val ue equals
when conpare_val ue then result
[when conpare_val ue then result ...]
[el se result]

conpar e_val ue.

end
case Returnstheresul t for the first condition that
when condition then result istrue.

[when condition then result ...]
[el se result]

end
cast (expression, type_nane) Casts the result of an expression to the given
type.
coal esce(expression, expression [, expression ...]) Returnsthefirst non-nul | valueinthelist, or
nul | if there are no non-nul | values.
current _timestanmp[()] Returns the current engine time as al ong mil-

lisecond value. Reserved keyword with op-
tiona parenthesis.

Esper 1.11.0 58

EQL Reference: Functions

Single-row Function Result
exi st s(dynani c_property_nane) Returns true if the dynamic property exists
for the event, or false if the property does not
exist.
i nst anceof (expression, type_name [, type_name ...]) Returns true if the expression returns an ob-

ject whose type is one of the types listed.

max(expressi on, expression [, expression ...]) Returns the highest numeric value among the
2 or more comma-separated expressions.

m n(expression, expression [, expression ...]) Returns the lowest numeric value among the
2 or more comma-separated expressions.

prev(expression, event_property) Returns a property value of a previous event,
relative to the event order within a data win-
dow

prior(integer, event_property) Returns a property value of a prior event, rel-

ative to the natura order of arrival of events

7.1.1. The case Control Flow Function

The case control flow function has two versions. The first version takes a value and a list of compare values to
compare against, and returns the result where the first value equals the compare value. The second version
takes alist of conditions and returns the result for the first condition that istrue.

Thereturn type of acase expression is the compatible aggregated type of all return values.

The example below shows the first version of a case statement. It has a string return type and returns the
value 'one'.

sel ect case 1 when 1 then 'one' when 2 then 'two' else '"nore' end from...

The second version of the case function takes alist of conditions. The next example has a Bool ean return type
and returns the boolean value true.

sel ect case when 1>0 then true else false end from...

7.1.2. The cast Function

The cast function casts the return type of an expression to a designated type. The function accepts two para-
meters: The first parameter is the property hame or expression that returns the value to be casted. The second
parameter is the type to cast to.

Valid parameters for the second (type) parameter are:

e Any of the Javabuilt-intypes. int, long, byte, short, char, double, float, string, wherestring

Esper 1.11.0 59

EQL Reference: Functions

isashort notation for j ava. | ang. Stri ng. The type nameis not case-sensitive. For example:

cast (price, double)

» Thefully-qualified class name of the classto cast to, for example:

cast (product, org. myproducer. Product)

The cast function is often used to provide a type for dynamic (unchecked) properties. Dynamic properties are
properties whose type is not known at compile type. These properties are always of typej ava. | ang. Obj ect .

The cast function as shown in the next statement casts the dynamic "price" property of an "item" in the Or-
derEvent to adouble value.

select cast(item price?, double) from O derEvent

The cast function returnsanul I valueif the expression result cannot be casted to the desired type, or if the ex-
pression result itself isnul | .

The cast function adheres to the following type conversion rules:

» For dal numeric types, the cast function utilitzesj ava. | ang. Nunber to convert numeric types, if required.
» Forcaststostring orjava. | ang. String, thefunction callst oSt ri ng on the expression result.
e For casts to other abjects including application objects, the cast function considers a Java class's super-

classes aswell as all directly or indirectly-implemented interfaces by superclasses.

7.1.3. The coal esce Function

The result of the coal esce function is the first expression in alist of expressions that returns a non-null value.
The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo':

sel ect coal esce(null, '"foo') from...

7.1.4. The current _Ti mest anp Function

The current _timestanp function is a reserved keyword and requires no parameters. The result of the cur -
rent _ti mest anp function isthel ong-type millisecond value of the current engine system time.

The function returns the current engine timestamp at the time of expression evaluation. When using external-
timer events, the function provides the last value of the externally-supplied time at the time of expression evalu-
ation.

This example selects the current engine time:

select current_tinmestanp from WEvent
/1 equivalent to
select current _tinmestanp from WEvent

Esper 1.11.0 60

EQL Reference: Functions

7.1.5. The Exi sts Function

The exi st s function returns a boolean value indicating whether the dynamic property, provided as a parameter
to the function, exists on the event. The exi st s function accepts a single dynamic property hame as it's only
parameter.

The exi st s function is for use with dynamic (unchecked) properties. Dynamic properties are properties whose
typeis not known at compile type. Dynamic properties return a null value if the dynamic property does not ex-
ists on an event, or if the dynamic property exists but the value of the dynamic property isnull.

The exi st's function as shown next returns true if the "item" property contains an object that has a "service-
Name" property. It returns false if the "item" property is null, or if the "item" property does not contain an ob-
ject that has a property named "serviceName" :

sel ect exists(item serviceNanme?) from O der Event

7.1.6. The 1 nstance- & Function

Thei nstanceof function returns a boolean value indicating whether the type of value returned by the expres-
sion is one of the given types. The first parameter to the i nst anceof function is an expression to evaluate. The
second and subsequent parameters are Java type names.

The function determines the return type of the expression at runtime by evaluating the expression, and com-
pares the type of object returned by the expression to the defined types. If the type of object returned by the ex-
pression matches any of the given types, the function returns t r ue. If the expression returned nul | or a type
that does not match any of the given types, the function returnsf al se.

Thei nst anceof function is often used in conjunction with dynamic (unchecked) properties. Dynamic proper-
ties are properties whose type is not known at compile type.

This example usesthei nst anceof function to select different properties based on the type:

sel ect case when instanceof (item com myconpany. Service) then servi ceNane?
when instanceof (item com nmyconpany. Product) then product Nane? end
from O der Event

Thei nst anceof function returnsf al se if the expression tested by instanceof returned null.

Vaid parameters for the type parameter list are:

e Any of the Java built-intypes. i nt, long, byte, short, char, double, float, string, Wherestring
is a short notation for j ava. | ang. Stri ng. The type name is not case-sensitive. For example, the next func-
tion testsif the dynamic "price" property is either of type float or type double:

i nstanceof (price?, double, float)

e Thefully-quaified class name of the classto cast to, for example:

i nst anceof (product, org.nyproducer. Product)

The function considers an event class's superclasses as well as al the directly or indirectly-implemented inter-
faces by superclasses.

Esper 1.11.0 61

EQL Reference: Functions

7.1.7. The M n and max Functions

The i n and max function take two or more parameters that itself can be expressions. The ni n function returns
the lowest numeric value among the 2 or more comma-separated expressions, while the max function returns the
highest numeric value. The return type is the compatible aggregated type of all return values.

The next example shows the max function that has a Doubl e return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from...

The nmi n function returns the lowest value. The statement below uses the function to determine the smaller of
two timestamp values.

sel ect synmbol, mn(ticks.tinmestanp, news.tinestanp) as mnT
from St ockTi ckEvent.win:time(30 sec) as ticks, NewsEvent.win:tine(30 sec) as news
where ticks.synbol = news.synbol

7.1.8. The previ ous Function

The pr ev function returns the property value of a previous event. The first parameter denotes the i-th previous
event in the order established by the data window. The second parameter is a property name for which the func-
tion returns the value for the previous event.

This example selects the value of the pri ce property of the 2nd-previous event from the current Trade event.

sel ect prev(2, price) from Trade. w n: | ength(10)

Since the prev function takes the order established by the data window into account, the function works well
with sorted windows. In the following example the statement selects the symbol of the 3 Trade events that had
the largest, second-largest and third-largest volume.

sel ect prev(0, synbol), prev(l, synbol), prev(2, synbol)
from Trade. ext:sort(vol ume, true, 10)

Thei-th previous event parameter can also be an expression returning an Integer-type value. The next statement
joins the Trade data window with an RankSel ecti onEvent event that provides ar ank property used to ook up
acertain position in the sorted Trade data window:

sel ect prev(rank, synmbol) from Trade. ext:sort(volume, true, 10), RankSel ecti onEvent

And the expression count (*) - 1 alowsusto select the oldest event in the length window:

sel ect prev(count(*) - 1, price) from Trade.w n: | ength(100)

The prev function returnsanul | value if the data window does not currently hold the i-th previous event. The
example below illustrates this using a time batch window. Here the pr ev function returns a null value for any
events in which the previous event is not in the same batch of events. Note that the pri or function as discussed
below can be used if anull value is not the desired result.

sel ect prev(1l, synbol) from Trade.w n:tine_batch(1 mi n)

Previous Event per Group

Esper 1.11.0 62

EQL Reference: Functions

The combination of prev function and group-by view returns the property value for a previous event in the giv-
en group.

Let'slook at an example. Assume we want to obtain the price of the previous event of the same symbol as the
current event.

The statement that follows solves this problem. It declares a group-by view grouping on the symbol property
and atime window of 1 minute. As aresult, when the engine encounters a new symbol value that it hasn't seen
before, it creates a new time window specifically to hold events for that symbol. Consequently, the previous
function returns the previous event within the respective time window for that event's symbol value.

select prev(l, price) as prevPrice from Trade. std: groupby('synbol').win:tinme(1l mn)

In a second example, assume we need to return, for each event, the current top price per symbol. We can use
the pr ev to obtain the highest price from a sorted data window, and use the group-by view to group by symbol:

sel ect prev(0, price) as topPricePer Synbol
from Trade. std: groupby(' synbol ').ext:sort('price', false, 1)

Restrictions

The following restrictions apply to the prev functions and its results:

e Thefunction alwaysreturnsanul | value for remove stream (old data) events
e The function requires a data window view, or a group-by and data window view, without any additional
sub-views. Data window views are: length window, time and time batch window and sorted window

Comparison to the prior Function

The prev function is similar to the pri or function. The key differences between the two functions are as fol-
lows:

e The prev function returns previous events in the order provided by the data window, while the pri or func-
tion returns prior eventsin the order of arrival as posted by a stream's declared views.

e The prev function regquires a data window view while the pri or function does not have any view require-
ments.

* Theprev function returns the previous event grouped by a criteria by combining the st d: gr oupby view and
adata window. The pri or function returns prior events posted by the last view regardless of data window
grouping.

e Theprev function returnsanul | value for remove stream events, i.e. for events leaving a data window. The
pri or function does not have this restriction.

7.1.9. The prior Function

The pri or function returns the property value of a prior event. The first parameter is an integer value that de-
notes the i-th prior event in the natural order of arrival. The second parameter is a property name for which the
function returns the value for the prior event.

This example selects the value of the pri ce property of the 2nd-prior event to the current Trade event.

select prior(2, price) from Trade

Thepri or function can be used on any event stream or view and does not have any specific view requirements.

Esper 1.11.0 63

EQL Reference: Functions

The function operates on the order of arrival of events by the event stream or view that provides the events.

The next statement uses a time batch window to compute an average volume for 1 minute of Trade events,
posting results every minute. The select-clause employsthe pri or function to select the current average and the
average before the current average:

sel ect average, prior(1l, average)
from TradeAverages. wi n: ti me_batch(1 min).stat:uni('volume')

7.2. Aggregate Functions

The syntax of the aggregation functions and the results they produce are shown in below table.

Table 7.2. Syntax and results of aggregate functions

Aggregate Function Result

sum([all|distinct] expression)
Totals the (distinct) values in the expression, returning a value of | ong,
doubl e, float or integer typedepending on the expression

avg([all|distinct] expression)
Average of the (distinct) values in the expression, returning a value of
doubl e type

count([all|distinct] expression)
Number of the (distinct) non-null values in the expression, returning a
value of | ong type

count(*)
Number of events, returning avalue of | ong type

max([all|distinct] expression)
Highest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

min([all|distinct] expression)
Lowest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

median([all|distinct] expression)
Median (distinct) value in the expression, returning a value of doubl e
type

stddev([all|distinct] expression)
Standard deviation of the (distinct) values in the expression, returning a
value of doubl e type

avedev([all|distinct] expression)
Mean deviation of the (distinct) values in the expression, returning a
value of doubl e type

7.3. User-Defined Functions

A user-defined function can be invoked anywhere as an expression itself or within an expresson. The function

Esper 1.11.0 64

EQL Reference: Functions

must simply be a public static method that the classloader can resolve at statement creation time. The engine re-
solves the function reference at statement creation time and verifies parameter types.

The example below assumes a class Myd ass that exposes a public static method myFunct i on accepting 2 para-
meters, and returing a numeric type such as doubl e.

select 3 * Myd ass. nyFunction(price, volunme) as myVal ue
from St ockTi ck.win:ti ne(30 sec)

User-defined functions also take array parameters as this example shows. The section on Section 6.5, “Array
Definition Operator” outlinesin more detail the types of arrays produced.

sel ect * from RFI DEvent where com nmyconpany.rfid. M/Checker.islnzZone(zone, {10, 20, 30})

Esper 1.11.0 65

Chapter 8. EQL Reference: Views

This chapter outlines the views that are built into Esper. All views can be arbitrarily combined as many of the
examples below show. The section on Chapter 3, Processing Model provides additional information on the re-
lationship of views, filtering and aggregation.

8.1. Window views

8.1.1. Length window (wi n: | engt h)

This view is amoving length window extending the specified number of elementsinto the past. The view takes
asingle numeric parameter that defines the window size:

wi n: | engt h(si ze)
The below example calculates univariate statistics on price for the last 5 stock ticks for symbol IBM.

select * from StockTi ckEvent (synbol ="' IBM). wi n:length(5).stat:uni('price")

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. The statistics on price is calculated only for the last 10 events for each symbol.

select * from StockTi ckEvent. std: groupby(' synbol').w n:length(10).stat:uni (' price')

8.1.2. Length window batch (wi n: | engt h_bat ch)

This window view buffers events and rel eases them when a given minimum number of events has been collec-
ted. The view takes the number of eventsto batch as a parameter:

wi n: | engt h_bat ch(si ze)

The next statement buffers events until a minimum of 5 events have collected. Listeners to updates posted by
this view receive updated information only when 5 or more events have collected.

select * from StockTi ckEvent.wi n: | engt h_bat ch(5)

8.1.3. Time window (wi n: ti ne)

This view is a moving time window extending from the specified time interval into the past based on the sys-
tem time. This view takes atime period (see Section 4.2.1, “ Specifying Time Periods’) or a number of seconds
as a parameter:

win:time(time period)
wi n:time(nunber of seconds)

For the IBM stock tick eventsin the last 1 second, calculate statistics on price.

sel ect * from St ockTi ckEvent (synbol =" IBM).win:tinme(1l sec).stat:uni('price')

Esper 1.11.0 66

EQL Reference: Views

The same statement rewritten to use a parameter supplying number-of-secondsis:

sel ect * from St ockTi ckEvent (synbol =" IBM).w n:time(1).stat:uni (' price')

The following time windows are equivalent specifications:

win:time(2 mnutes 5 seconds)
win:time(l25 sec)
win:tinme(125)

8.1.4. Externally-timed window (wi n: ext _ti med)
Similar to the time window, this view is a moving time window extending from the specified time interval into
the past, but based on the millisecond time value supplied by an event property. The view takes two parameters:

the name of the event property to return the long-typed timestamp value, and a time period or a number of
seconds:

win:time(timestanp_property_nane, tine_period)
win:time(ti mestanp_property_nane, number_of _seconds)

This view holds stock tick events of the last 10 seconds based on the timestamp property in St ockTi ckEvent .

sel ect * from StockTi ckEvent.w n: ext_tined('tinestanp', 10 seconds)

8.1.5. Time window batch (wi n: ti ne_bat ch)

Thiswindow view buffers events and rel eases them every specified time interval in one update. The view takes
atime period or anumber of seconds as a parameter.

wi n:time_batch(tine_period)
Wi n: ti me_bat ch(nunber _of _seconds)

The below example batches events into a5 second window releasing new batches every 5 seconds. Listenersto
updates posted by this view receive updated information only every 5 seconds.

select * from StockTi ckEvent.wi n:time_batch(5 sec)

8.2. Standard view set

8.2.1. Unique (st d: uni que)

The uni que view is aview that includes only the most recent among events having the same value for the spe-
cified field:

st d: uni que(event _property_nane)

The view acts as a length window of size 1 for each distinct value of the event property. It thus posts as old
events the prior event of the same property value, if any.

Esper 1.11.0 67

EQL Reference: Views

The below example creates a view that retains only the last event per symbal.

sel ect * from StockTi ckEvent. std: uni que(' synbol ')

8.2.2. Group By (std: groupby)

This view groups events into sub-views by the value of the specified field. The view takes a single property
name to supply the group-by values, or alist of property names as the synopsis shows:

st d: gr oupby(property_nane)
st d: groupby({property_nanme [, property_name ...] })

This example calculates statistics on price separately for each symbol.

sel ect * from StockTi ckEvent. std: groupby(' synbol').stat:uni('price')

The group-by view can also take multiple fields to group by. This example calculates statistics on price for each
symbol and feed.

select * from StockTi ckEvent. std: groupby({' synbol', 'feed'}).stat:uni (' price')

The order in which the group-by view appears within sub-views of a stream controls the data the engine derives
from events for each group. The next 2 statements demonstrate this using alength window.

This example keeps alength window of 10 events of stock trade events, with a separate length window for each
symbol. The engine calculates statistics on price for the last 10 events for each symbol. During runtime, the en-
gine actually allocates a separate length window for each new symbol arriving.

select * from StockTi ckEvent. std: groupby(' synbol').w n: |l ength(10).stat:uni (' price')

By putting the group-by view in position after the length window, we can change the semantics of the query.
The query now returns the statistics on price per symbol for only the last 10 events across all symbols. Here the
engine alocates only one length window for all events.

sel ect * from St ockTi ckEvent.w n: | engt h(10). std: groupby(' synbol ') .stat: uni('price')

We have learned that by placing the group-by view before other views, these other views become part of the
grouped set of views. The engine dynamically alocates a new view instance for each subview, every time it en-
counters a new group key such a a new value for symbol. Therefore, in
st d: groupby(' synbol '). wi n: | engt h(10) the engine allocates a hew length window for each distinct symbol.
However inwi n: | engt h(10) . st d: gr oupby (' synbol) the engine maintains a single length window.

Multiple group-by views can also be used in the same statement. The statement below groups by symbol and
feed. As the statement declares the time window after the group-by view for symbols, the engine alocates a
new time window per symbol however reports statistics on price per symbol and feed. The query results are
statistics on price per symbol and feed for the last 1 minute of events per symbol (and not per feed).

select * from StockTi ckEvent. std: groupby(' synbol').win:tine(l m nute)
.std: groupby('feed').stat:uni('price')

Last, we consider the permutation where the time window is declared after the group-by. Here, the query results
are statistics on price per symbol and feed for the last 1 minute of events per symbol and feed.

Esper 1.11.0 68

EQL Reference: Views

select * from StockTi ckEvent. std: groupby({' synbol', 'feed'})
.win:tine(l mnute).stat:uni('price')

8.2.3. Size (st d: si ze)

Thisview simply posts the number of events received from a stream or view. The synopsisis simply:

std: si ze()

The view posts a single long-typed property named si ze. The view posts the prior size as old data, and the cur-
rent size as new data to update listeners of the view. Viatheit erat or method of the statement the size value
can aso be polled (read).

When combined with a data window view, the size view reports the current and prior number of eventsin the
data window. This example reports the number of tick events within the last 1 minute:

sel ect size from StockTi ckEvent.win:time(l mn).std:size()

The size view is also useful in conjunction with a group-by view to count the number of events per group. The
EQL below returns the number of events per symbol.

sel ect size from StockTi ckEvent. st d: groupby(' synbol').std: size()

When used without a data window, the view simply counts the number of events:

sel ect size from StockTi ckEvent. std: si ze()
All views can be used with pattern statements as well. The next EQL snippet shows a pattern where we look for

tick events followed by trade events for the same symbol. The size view counts the number of occurances of the
pattern.

sel ect size frompattern[every s=StockTi ckEvent -> TradeEvent (synbol =s. synbol)] . std: si ze()

8.2.4. Last (std: | ast event)

This view exposes the last element of its parent view:

std: | astevent ()

The view acts as alength window of size 1. It thus posts as old events the prior event in the stream, if any.
This example statement retains statistics calculated on stock tick price for the symbol IBM.

sel ect * from St ockTi ckEvent (synbol =" IBM).stat:uni ('price').std:|astevent()

8.3. Statistics views

8.3.1. Univariate statistics (st at: uni)

This view calculates univariate statistics on an event property. The view takes a single event property name as a

Esper 1.11.0 69

EQL Reference: Views

parameter. The event property must be of numeric type:

stat:uni (event _property_nane)

Table 8.1. Univariate statistics derived properties

Property Name Description

count Number of values

sum Sum of values

aver age Average of values

vari ance Variance

st dev Sample standard deviation (square root of variance)
st devpa Population standard deviation

The below example selects the standard deviation on price for stock tick events for the last 10 events.

sel ect stdev from StockTi ckEvent.wi n: | ength(10).stat:uni (' price')

8.3.2. Regression (stat:linest)

This view calculates regression on two event properties. The view takes two event property hames as paramet-
ers. The event properties must be of numeric type:

stat:linest(event_property_name_1, event_property nane_2)

Table 8.2. Regression derived properties

Property Name Description
sl ope Slope
Yl nt er cept Y Intercept

Calculate dope and y-intercept on price and offer for all eventsin the last 10 seconds.

sel ect slope, Yintercept from StockTi ckEvent.w n:tinme(10 seconds).stat:linest('price', 'offer")

8.3.3. Correlation (stat: correl)

This view calculates the correlation value on two event properties. The view takes two event property names as
parameters. The event properties must be of numeric type:

stat:correl (event _property _nane_1, event_property_nanme_2)

Table 8.3. Correlation derived properties

Esper 1.11.0 70

EQL Reference: Views

Property Name Description

correl ation Correlation between two event properties

Calculate correlation on price and offer over all stock tick eventsfor IBM.

select correlation from StockTi ckEvent (synbol ="' IBM).stat:correl ('price', 'offer')

8.3.4. Weighted average (st at : wei ght ed_avg)

This view returns the weighted average given a weight field and a field to compute the average for. The view
takes two event property names as parameters. The event properties must be of numeric type:

stat:wei ghted _avg(event _property nane_field, event_property nane_wei ght)

Table 8.4. Weighted aver age derived properties

Property Name Description

aver age Weighted average

A statement that derives the volume-weighted average price for the last 3 seconds:

sel ect average
from St ockTi ckEvent (synbol =" IBM). wi n:tinme(3 seconds).stat:weighted_avg(' price', 'volune')

8.3.5. Multi-dimensional statistics (st at: cube)

This view works similar to the st d: gr oupby views in that it groups information by one or more event proper-
ties. The view accepts 3 or more parameters: The first parameter to the view defines the univariate statistics
values to derive. The second parameter is the property name to derive data from. The remaining parameters
supply the event property names to use to derive dimensions.

stat:cube(val ues_to_derive, property_nane_datapoi nt, property_nanme_col um)

stat:cube(values_to_derive, property_nane_datapoi nt, property_nane_col um,
property_nanme_r ow)

stat:cube(val ues_to_derive, property_nane_dat apoi nt, property_name_col um,
property_name_row, property_name_page)

Table 8.5. Multi-dim derived properties

Property Name Description

cube The cube following the net . esper . vi ew. st at . ol ap. Cube interface

The example below derives the count, average and standard deviation latency of service measurement events
per customer.

sel ect cube from Servi ceMeasurenent. stat: cube({‘count’, ‘average’, ‘stdev’'},

Esper 1.11.0 71

EQL Reference: Views

"latency', 'custoner')

This example derives the average latency of service measurement events per customer, service and error status

for eventsin the last 30 seconds.

sel ect * from Servi ceMeasurenent. w n: | engt h(30000) . st at: cube({‘ average’},
‘latency', 'customer', 'service', 'status')

8.4. Extension View Set

8.4.1. Sorted Window View (ext: sort)

This view sorts by values of the specified event properties and keeps only the top events up to the given size.

The syntax to sort on asingle event property is as follows.

std:sort(property_name, is_descending, size)
To sort on amultiple event properties the syntax is as follows.

sort({ property_nane, is_descending [, property _nanme, is_descending ...] }, size)

The view below sorts on price descending keeping the lowest 10 prices and reporting statistics on price.

select * from StockTi ckEvent.ext:sort('price', false, 10).stat:uni('price')

The following example sorts events first by price in descending order, and then by symbol name in ascending
(alphabetical) order, keeping only the 10 events with the highest price (with ties resolved by a phabetical order

of symbol).

select * from StockTi ckEvent.ext:sort({' price', true, 'synbol', false}, 10)

Esper 1.11.0

72

Chapter 9. APl Reference

9.1. API Overview

Esper has 2 primary interfaces that this section outlines. The administrative interface and the runtime interface.

Use Esper's administrative interface to create and manage EQL and pattern statements, and set runtime config-
urations, as discussed in Section 4.1, “EQL Introduction” and Section 5.1, “ Event Pattern Overview”.

Use Esper's runtime interface to send events into the engine, emit events and get statistics for an engine in-
stance.

The JavaDoc documentation is also a great source for API information.

9.2. Engine Instances

Each instance of an Esper engine is completely independent of other engine instances and has its own adminis-
trative and runtime interface.

An instance of the Esper engine is obtained via static methods on the EPSer vi cePr ovi der Manager class. The
get Def aul t Provi der method and the get Provi der (String URI) methods return an instance of the Esper en-
gine. The latter can be used to obtain multiple instances of the engine for different URI values. The EPSer vi ce-

Provi der Manager determines if the URI matches all prior URI values and returns the same engine instance for
the same URI value. If the URI has not been seen before, it creates a new engine instance.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the default engine in-
stance return the same instance.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;

This code snippet gets an Esper engine for URI RFI DPr ocessor 1. Subsequent calls to get an engine with the
same URI return the same instance.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der (" RFI DProcessor 1") ;

An existing Esper engine instance can be reset viathei ni ti al i ze method on the EPSer vi cePr ovi der instance.
This stops and removes all statements in the Engine.

9.3. The Administrative Interface

9.3.1. Creating Statements

Create event pattern expression and EQL statements via the administrative interface EPAdmi ni strat or .
This code snippet gets an Esper engine then creates an event pattern and an EQL statement.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPAdni ni strator admi n = epServi ce. get EPAdm ni strator();

EPSt at enent 10secRecur Tri gger = admi n. createPattern(

Esper 1.11.0 73

APl Reference

“every timer:at(*, *, *, *, *, */10)");

EPSt at enent count Stmt = admi n. cr eat eEQL(
"sel ect count (*) from Market Dat aBean.win:time(60 sec)");

Note that event pattern expressions can also occur within EQL statements. This is outlined in more detail in
Section 4.4.2, “Pattern-based event streams”.

The cr eat e methods on EPAdni ni st rat or are overloaded and allow an optional statement name to be passed to
the engine. A statement name can be useful for retrieving a statement by name from the engine at a later time.
The engine assigns a statement name if no statement name is supplied on statement creation.

The creat ePat t ern and cr eat eEQL methods return EPSt at ement instances. Statements are automatically star-
ted and active when created. A statement can also be stopped and started again viathe st op and st art methods
shown in the code snippet below.

count St nt . st op() ;
count Stnt.start();

9.3.2. Adding Listeners

We can subscribe to updates posted by a statement via the addLi st ener and r emovelLi st ener methods on EP-
St at ement . We need to provide an implementation of the Updat eLi st ener Or the St at enent Awar eUpdat eL-
i stener interface to the statement:

Updat eLi st ener myLi stener = new MyUpdat eLi st ener();
count St nt . addLi st ener (myLi st ener) ;

EQL statements and event patterns publish old data and new data to registered Updat eLi st ener listeners. New
data published by statements is the events representing the new values of derived data held by the statement.
Old data published by statements constists of the events representing the prior values of derived data held by
the statement.

A second listener interface is the Stat enent Awar eUpdat eLi st ener interface. A St at enent Awar eUpdat el-
i stener isespecially useful for registering the same listener object with multiple statements, as the listener re-
ceives the statement instance and engine instance in addition to new and old data when the engine indicates
new results to alistener.

St at enment Awar eUpdat eLi st ener myLi st ener = new MySt mt Awar eUpdat eLi st ener () ;
st at enent . addLi st ener (myLi st ener) ;

To indicate results the engine invokes this method on st at ement Awar eUpdat eLi st ener listeners. up-
dat e(Event Bean[] newkvents, EventBean[] ol dEvents, EPStatenent statenment, EPServiceProvider
epServi ceProvi der)

9.3.3. Using lterators

Subscribing to events posted by a statement is following a push model. The engine pushes data to listeners
when events are received that cause data to change or patterns to match. Alternatively, statements can also
serve up datain a pull model viatheiterat or method. This can come in handy if we are not interested in all
new updates, but only want to perform a frequent poll for the latest data. For example, an event pattern that
fires every 5 seconds could be used to pull data from an EQL statement. The code snippet below demonstrates
some pull code.

Esper 1.11.0 74

APl Reference

I terator<Event Bean> eventlter = countStnt.iterator();
for (EventBean event : eventlter) {

/1 .. do something ..
}

Thisis a second example:

doubl e averagePrice = (Double) eql Statenent.iterator().next().get("average");

Theiterat or method can be used to pull results out of most statements, including statements that contain ag-
gregation functions, pattern statements, and statements that contain a wher e clause, group by clause, havi ng
clause or or der by clause.

For statements without an or der by clause, thei t er at or method returns events in the order maintained by the
data window. For statements that contain an or der by clause, thei t er at or method returns events in the order
indicated by the or der by clause.

Esper places the following restrictions on the pull APl and usage of thei t er at or method:

1. EQL statements joining multiple event streams do not support the pull API.

2. Sincetheiterator method returns events to the application immediately, the iterator does not honor an
output rate limiting clause, if present.

3. In multithreaded applications, thei t er at or method does not hold any locks and modifications to the un-
derlying data window may throw runtime exceptions in the face of concurrent modifications.

9.3.4. Managing Statements

The EPAdni ni strat or interface provides the facilities for managing statements:

e Usetheget st at ement method to obtain an existing started or stopped statement by name

» Usetheget St at ement Names methods to abtain alist of started and stopped statement names

e Use the startAll Statenents, stopAl | Statements and destroyAl | Statements methods to manage all
statements in one operation

9.3.5. Runtime Engine Configuration

Certain configuration changes are available to perform on an engine instance while in operation. Such configur-
ation operations are available via the get Conf i gur ati on method on EPAdni ni st rat or, Which returns an Con-
figurationQperations object.

The configuration operations available on a running engine instance are as follows. Please see Chapter 10, Con-
figuration for more information.

* Add an new event type for a JavaBean class, legacy Java class or custom Java class
e Addannew DOM XML event type
e Addan new Map-based event type

9.4. The Runtime Interface

The EPRunt i e interface is used to send events for processing into an Esper engine, and to emit Events from an
engine instance to the outside world.

Esper 1.11.0 75

APl Reference

The below code snippet shows how to send a Java object event to the engine. Note that the sendevent method
is overloaded. As events can take on different representation classes in Java, the sendEvent takes parametersto
reflect the different types of events that can be send into the engine. The Chapter 2, Event Representations sec-
tion explains the types of events accepted.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRunti ne runtine = epService. get EPRunti me();

/1 Send an exanpl e event containing stock market data
runti me. sendEvent (new Mar ket Dat aBean(' 1 BM, 75.0));

Events, in theoretical terms, are observations of a state change that occured in the past. Since one cannot
change an event that happened in the past, events are best modelled as immutable objects.

Note that the Esper engine relies on events that are sent into an engine to not change their state. Typically, ap-
plications create a new event object for every new event, to represent that new event. Application should not
modify an existing event that was sent into the engine.

Another important method in the runtime interface is the r out e method. This method is designed for use by Up-
dat eLi st ener implementations that need to send eventsinto an engine instance.

The enit and addEni tt edLi st ener methods can be used to emit events from a runtime to a registered set of
one or more emitted event listeners. This mechanism is available as a service to enable channel-based publish-
subscribe of events emitted from an engine instance viathe eni t method. Emitting events is not integrated with
EQL and is available only via the EPRunt i ne interface. Events are emitted on an event channel identified by a
name. Listeners are implementations of the Eni t t edLi st ener interface. Viathe addEni t t edLi st ener method a
listener can be added to the specified event channel. The lister receives only those events posted to that channel.
The channel parameter to addEni t t edLi st ener also allows null values. If anull channel value is specified, the
listeners receives emitted events posted on any channel.

9.5. Time-Keeping Events

Special events are provided that can be used to control the time-keeping of an engine instance. There are two
models for an engine to keep track of time. Internal clocking is when the engine instance relies on the
java.util. Timer classfor time tick events. External clocking can be used to supply time ticks to the engine.
The latter is useful for testing time-based event sequences or for synchronizing the engine with an external time
source.

By default, the Esper engine uses internal time ticks. This behavior can be changed by sending a timer control
event to the engine as shown below.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRuntine runtime = epService. get EPRunti nme();

/1 switch to external clocking

runti me. sendEvent (new Ti nmer Cont r ol Event (Ti mer Contr ol Event. C ockType. CLOCK_EXTERNAL)) ;

/1l send a tinme tick

long tinelnMIlis = SystemcurrentTineMIlis(); // O get the tine somewhere el se
runti me. sendEvent (new Current Ti mreEvent (tinelnM I 1is));

We recommend that when disabling the internal timer, applications send an external timer event setting the start
time before creating statements, such that statement start time is well-defined.

9.6. Events Received from the Engine

Esper 1.11.0 76

APl Reference

The Esper engine posts events to registered Updat eLi st ener instances (‘push’ method for receiving events). For
many statements events can also be pulled from statements viathei t er at or method. Both pull and push sup-
ply Event Bean instances representing the events generated by the engine or events supplied to the engine. Each
Event Bean instance represents an event, with each event being either an artificial event, composite event or an
event supplied to the engine viaits runtime interface.

The get Event Type method supplies an event's event type information represented by an Event Type instance.
The Event Type supplies event property names and types as well as information about the underlying object to
the event.

The engine may generate artificial events that contain information derived from event streams. A typical ex-
ample for artificial eventsis the events posted for a statement to calculate univariate statistics on an event prop-
erty. The below example shows such a statement and queries the generated events for an average value.

/1 Derive univariate statistics on price for the |ast 100 nmarket data events

String stnmt = "select * from Market Dat aBean(synbol =" I BM). wi n: | ength(100).stat:uni ('price')";
EPSt at enent priceStatsView = epService. get EPAdm ni strator().createEQ(stnt);

priceStatsVi ew. addLi st ener (testListener);

/1 Exanple |istener code
public class MyUpdat elLi stener inplenments UpdatelLi stener

{
public void update(Event Bean[] newData, EventBean[] ol dDat a)
{
/1 Interrogate events
System out . println("new average price=" + newData[O0].get("average");
}
}

Composite events are events that aggregate one or more other events. Composite events are typically created by
the engine for statements that join two event streams, and for event patterns in which the causal events are re-
tained and reported in a composite event. The example below shows such an event pattern.

/1 Look for a pattern where BEvent follows AEvent

String pattern = "a=AEvent -> b=BEvent";

EPSt at enent stnt = epService. get EPAdm ni strator().createPattern(pattern);
st nt . addLi st ener (t est Li st ener);

/1 Exanple |istener code
public class MyUpdatelLi stener inplenents UpdateLi st ener

{
public voi d updat e(Event Bean[] newData, EventBean[] ol dDat a)
{
Systemout.println("a event=" + newData[0].get("a").getUnderlying());
Systemout.println("b event=" + newData[0].get("b").getUnderlying());
}
}

Note that the updat e method can receive multiple events at once as it accepts an array of Event Bean instances.
For example, atime batch window may post multiple events to listeners representing a batch of events received
during a given time period.

Pattern statements can also produce multiple events delivered to update listeners in one invocation. The pattern
statement below, for instance, delivers an event for each A event that was not followed by a B event with the
samei d property within 60 seconds of the A event. The engine may deliver all matching A events as an array
of eventsin asingle invocation of the updat e method of each listener to the statement:

every a=A -> (timer:interval (60 sec) and not B(id=a.id))

Esper 1.11.0 77

APl Reference

9.7. Engine Threading and Concurrency

Esper is designed from the ground up to operate as a component to multi-threaded, highly-concurrent applica-
tions that require efficient use of Java VM resources. In addition, multi-threaded execution requires guarantees
in predictability of results and deterministic processing. This section discusses these concernsin detail.

In Esper, an engine instance is a unit of separation. Applications can obtain and discard (initialize) one or more
engine instances within the same Java VM and can provide the same or different engine configurations to each
instance. An engine instance efficiently shares resources between statements. For example, consider two state-
ments that declare the same data window. The engine matches up view declarations provided by each statement
and can thus provide a single data window representation shared between the two statements.

Applications can use Esper APIs to concurrently, by multiple threads of execution, perform such functions as
creating and managing statements, or sending events into an engine instance for processing. Applications can
use one or more thread pools or any set of same or different threads of execution with any of the public Esper
APIs. There are no restrictions towards threading other then those noted in specific sections of this document.

Applications using Esper retain full control over threading, allowing an engine to be easily embedded and used
as a component or library in your favorite Java container or process. It is up to the application code to use mul-
tiple threads for processing events by the engine, if so desired. All event processing takes places within your
application thread call stack. The exception is timer-based processing if your engine instance relies on the in-
ternal timer (default).

The fact that event processing takes places within an application thread call stack makes developing applica-
tions with Esper easier: Any common Java integrated development environment (IDE) can host an Esper en-
gine instance. This allows developers to easily set up test cases, debug through listener code and inspect input
or output events, or trace their call stack.

To send events into an engine concurrently by multiple execution threads, typically applications use the Java
java.l ang. Thread Or j ava. | ang. Runnabl e classes or Java 5 concurrent utilities that include abstractions for
thread pools and blocking in-memory queues.

Each engine instance maintains a single timer thread (internal timer) providing for time or schedule-based pro-
cessing within the engine. The default resolution at which the timer operates is 100 milliseconds. The internal
timer thread can be disabled and applications can instead send external time events to an engine instance to per-
form timer or scheduled processing at the resolution required by an application.

Each engine instance performs minimal locking to enable high levels of concurrency. An engine instance locks
on astatement level to protect statement resources.

For an engine instance to produce predictable results from the viewpoint of listeners to statements, an engine
instance by default ensures that it dispatches statement result events to listeners in the order in which a state-
ment produced result events. Applications that require the highest possible concurrency and do not require pre-
dictable order of delivery of eventsto listeners, this feature can be turned off via configuration.

In multithreaded environments, when one or more statements make result events available viathei nsert into
clause to further statements, the engine preserves the order of events inserted into the generated insert-into
stream, allowing statements that consume other statement's events to behave deterministic. This feature can
also be turned off via configuration.

We generally recommended that listener implementations do not block. By implementing listener code as non-
blocking code execution threads can often achieve higher levels of concurrency.

Esper 1.11.0 78

APl Reference

9.8. Statement Object Model

The statement object model is a set of classes that provide an object-oriented representation of an EQL or pat-
tern statement. The object model classes are found in package net . esper. cli ent . soda. An instance of EP-
St at ement Obj ect Mbdel represents a statement's object model.

The statement object model classes are a full and complete specification of a statement. All EQL and pattern
constructs including expressions and sub-queries are available via the statement object model.

In conjunction with the administrative API, the statement object model provides the means to build, change or
interrogate statements beyond the EQL or pattern syntax string representation. The object graph of the state-
ment object model is fully navigable for easy querying by code, and is also serializable allowing applications to
persist or transport statementsin object form, when required.

The statement object model supports full round-trip from object model to EQL statement string and back to ob-
ject model: A statement object model can be rendered into an EQL string representation via the t oEQ. method
0N EPSt at enent Obj ect Model . Further, the administrative APl allows to compile a statement string into an ob-
ject model representation viathe conpi | eEQL method on EPAdni ni strat or .

The creat e method on EPAdni ni strat or creates and starts a statement as represented by an object model. In
order to obtain an object model from an existing statement, obtain the statement expression text of the state-
ment viathe get Text method on EPSt at enent and use the conpi | eEQL method to obtain the object model.

The following limitations apply:

« Statement object model classes are not safe for sharing between threads other then for read access.

» Between versions of Esper, the serialized form of the object model is subject to change. Esper makes no
guarantees that the serialized object model of one version will be fully compatible with the serialized object
model generated by another version of Esper. Please consider this issue when storing Esper object models
in persistent store.

9.8.1. Building an Object Model

A EPSt at enent Obj ect Model consists of an object graph representing al possible clauses that can be part of an
EQL statement.

Among all clauses, the Sel ect d ause and FronCl ause objects are required clauses that must be present, in or-
der to define what to select and where to select from.

Table9.1. Required Statement Object Model | nstances

Class Description

EPSatementObjectModel All statement clauses for a statement, such as the select-clause and the
from-clause, are specified within the object graph of an instance of this
class

SelectClause A list of the selection properties or expressions, or awildcard

FromClause A list of one or more streams; A stream can be a filter-based, a pattern-

based or a SQL-based stream; Views are added to streams to provide
datawindow or other projections

Esper 1.11.0 79

APl Reference

Part of the statement object model package are convenient builder classes that make it easy to build a new ob-
ject model or change an existing object model. The Sel ect d ause and Fr onCl ause are such builder classes and
provide convenient cr eat e methods.

Within the from-clause we have a choice of different streamsto select on. TheFi I t er St r eamclass represents a
stream that is filled by events of a certain type and that pass an optional filter expression.

We can use the classes introduced above to create a simple statement object model:

EPSt at enent Qbj ect Model nopdel = new EPSt at enent Obj ect Model () ;
nodel . set Sel ect Cl ause(Sel ect Cl ause. createW | dcard());
nodel . set FronCl ause(FronCl ause. create(Fi |l ter Stream create("com chi pmaker. ReadyEvent")));

The model as aboveis equivalent to the EQL :

sel ect * from com chi pmaker. ReadyEvent

Ladt, the code snippet below creates a statement from the object model:

EPSt at enent stnt = epServi ce. get EPAdm ni strator().create(nodel);

9.8.2. Building Complex Expressions

The EPSt at enent Obj ect Model includes an optional where-clause. The where-clause is a filter expression that
the engine applies to events in one or more streams. The key interface for all expressionsisthe Expr essi on in-
terface.

The Expr essi ons class provides a convenient way of obtaining Expr essi on instances for all possible expres-
sions. Please consult the JavaDoc for detailed method information. The next example discusses sample where-
clause expressions.

Use the Expr essi ons class as a service for creating expression instances, and add additional expressions viathe
add method that most expressions provide.

In the next example we add a simple where-clause to the EQL as shown earlier:

select * from com chi pmaker. ReadyEvent where |ine=8

And the code to add a where-clause to the object model is below.

nodel . set Wher eCl ause(Expressi ons. eq("line", 8));

The following example considers a more complex where-clause. Assume we need to build an expression using
logical-and and logical-or:

sel ect * from com chi pmaker. ReadyEvent
where (line=8) or (line=10 and age<5)

The code for building such awhere-clause by means of the object model classesis:

nodel . set Wher eCl ause(Expr essi ons. or ()
. add(Expressions.eq("line", 8))
. add(Expr essi ons. and()
. add(Expressions. eq("line", 10))
.add(Expressions.|t("age", 5))
));

Esper 1.11.0 80

APl Reference

9.8.3. Building Patterns

The Patt erns class is a factory for building pattern expressions. It provides convenient methods to create all
pattern expressions of the pattern language.

Patterns in EQL are seen as a stream of events that consist of patterns matches. The Pat t er nSt r eamclass rep-
resents a stream of pattern matches and contains a pattern expression within.

For instance, consider the following pattern statement.

select * frompattern [every a=M/AEvent and not b=M/BEvent]

The next code snippet outlines how to use the statement object model and specificaly the Patt erns class to
create a statement object model that is equivalent to the pattern statement above.

EPSt at enent Obj ect Model nbdel = new EPSt at enent Obj ect Model () ;

nodel . set Sel ect O ause(Sel ect Cl ause. createW | dcard());

PatternExpr pattern = Patterns. and()
.add(Patterns. everyFilter("MAEvent", "a"))
.add(Patterns.notFilter("MBEvent", "b"));

nodel . set FronC ause(FronCl ause. create(PatternStream create(pattern)));

9.8.4. Building Complete Statements

In this section we build a complete example statement and include all optional clausesin one EQL statement, to
demonstrate the object model API.

A sample statement:

insert into ReadyStreamAvg(line, avgAge)

select line, avg(age) as avgAge

from com chi pmaker. ReadyEvent (line in (1, 8, 10)).wi n:tinme(10) as RE
where RE.waverld != nul

group by line

havi ng avg(age) < 0

out put every 10.0 seconds

order by Iline

Finally, this code snippet builds the above statement from scratch:

EPSt at enent Obj ect Model nodel = new EPSt at enent Obj ect Mbdel () ;
nodel . setlnsertlnto(lnsertlntod ause. creat e("ReadyStreanmAvg", "line", "avgAge"));
nmodel . set Sel ect O ause(Sel ect Cl ause. create()

.add("line")

. add(Expressi ons. avg("age"), "avgAge"));
Filter filter = Filter.create("com chi pnaker. ReadyEvent", Expressions.in("line", 1, 8, 10));
nodel . set FronCl ause(FronCl ause. cr eat e(

FilterStreamcreate(filter, "RE").addViewm"win", "tinme", 10)));
nodel . set Wher eCl ause(Expr essi ons. i sNot Nul | (" RE. waverld"));
nodel . set G oupByd ause(G oupByd ause. create("line"));
nodel . set Havi ngCl ause(Expr essi ons. | t (Expressi ons. avg("age"), Expressions.constant(0)));
nmodel . set Qut put Li m t G ause(Qut put Li m t Cl ause. create(10, QutputLimtUnit.SECONDS));
nodel . set Or der ByCl ause(Or der ByCl ause. create("line"));

9.9. Prepared Statement and Substitution Parameters

The prepar e method that is part of the administrative APl pre-compiles an EQL statement and stores the pre-
compiled statement in an EPPr epar edSt at ement Object. This abject can then be used to efficiently start the

Esper 1.11.0 81

APl Reference

parameterized statement multiple times.

Substitution parameters are inserted into an EQL statement as a single question mark character * ?' . The engine
assignsthe first substitution parameter an index of 1 and subsequent parameters increment the index by one.

Substitution parameters can be inserted into any EQL construct that takes an expression. They are therefore val-
id in any clauses such as the select-clause, from-clause filters, where-clause, group-by-clause, having-clause or
order-by-clause. Substitution parameters cannot be used as parameters to views, pattern observers and guards.
They also cannot be used where a numeric constant is required rather then an expression.

All substitution parameters must be replaced by actual values before a statement with substitution parameters
can be started. Substitution parameters can be replaced with an actual value using the set Gbj ect method for
each index. Substitution parameters can be set to new values and new statements can be created from the same
EPPr epar edSt at ement 0bject more then once.

While the set j ect method allows substitution parameters to assume any actual value including application
Java objects or enumeration values, the application must provide the correct type of substitution parameter that
matches the requirements of the expression the parameter resides in.

In the following example of setting parameters on a prepared statement and starting the prepared statement,
epSer vi ce represents an engine instance:

String stnmt = "select * from com chi pmaker. ReadyEvent (1ine=?)";

EPPr epar edSt at ement prepared = epServi ce. get EPAdmi ni strator (). prepareEQ.(stnt);
prepared. set Cbj ect (1, 8);

EPSt at enent statement = epServi ce. get EPAdmi ni strator (). create(prepared);

Esper 1.11.0 82

Chapter 10. Configuration

Esper engine configuration is entirely optional. Esper has a very small number of configuration parameters that
can be used to simplify event pattern and EQL statements, and to tune the engine behavior to specific require-
ments. The Esper engine works out-of-the-box without configuration.

An application can supply configuration at the time of engine allocation using the Confi gurati on class, and
can also use XML filesto hold configuration. Configuration can be changed at runtime via the Conf i gur ati on-
Oper at i ons interface available from EPAdni ni st rat or viathe get Confi gur ati on method.

10.1. Programmatic Configuration

An instance of net.esper.client.Configuration represents all configuration parameters. The Confi gur a-
tion isused to build an (immutable) EPSer vi cePr ovi der , which provides the administrative and runtime inter-
faces for an Esper engine instance.

You may obtain a Confi gurati on instance by instantiating it directly and adding or setting values on it. The
Conf i gurati on instance is then passed to EPSer vi cePr ovi der Manager to obtain a configured Esper engine.

Configuration configuration = new Configuration();

configuration. addEvent TypeAlias("PriceLimt", PriceLimt.class.getNane());
configuration. addEvent TypeAl i as(" St ockTi ck", StockTi ck. cl ass. get Nanme());
configuration. addl nport ("org. nyconpany. mypackage. MyUtility");
configuration. addl nport ("org. myconpany. util.*");

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der ("sanpl e", configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine represented by an
EPSer vi cePr ovi der isimmutable and does not retain any association back to the Conf i gurati on.

The confi gurationOperations interface provides runtime configuration options. Through this interface ap-
plications can, for example, add new event types or aiases at runtime and then create new statements that rely
on the additional configuration. The get Confi gur ati on method on EPAdni ni st rat or allows accessto Confi g-
urationQperations.

10.2. Configuration via XML File

An dternative approach to configuration is to specify a configuration in an XML file.

The default name for the XML configuration file is esper. cf g. xnl . Esper reads this file from the root of the
CLASSPATH as an application resource viathe conf i gur e method.

Configuration configuration = new Configuration();
configuration. configure();

The configuration class can read the XML configuration file from other sources as well. The configure
method acceptsURL, File and String filename parameters.

Configuration configuration = new Configuration();
configuration. configure("nyengi ne. esper.cfg.xm");

Esper 1.11.0 83

Configuration

10.3. XML Configuration File

Here is an example configuration file. The schema for the configuration file can be found in the et ¢ folder and
is named esper - confi gur ati on- 1- 0.

<?xm version="1.0" encodi ng="UTF-8""?>
<esper-configuration xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : noNanespaceSchenalLocat i on="esper - confi gurati on-1-0. xsd">
<event -type alias="StockTick" class="net.esper.exanpl e.stockticker.event. StockTi ck"/>
<event-type alias="PriceLimt" class="net.esper.exanple.stockticker.event.PriceLimt"/>
<aut o-i nmport i nmport-nane="org. nyconpany. nypackage. MyUtility"/>
<aut o-i nport inport-nanme="org. myconpany.util.*"/>
</ esper-configuration>

The example above is only a subset of the configuration items available. The next chapters outline the available
configuration in greater detail.

10.4. Configuration Items

10.4.1. Events represented by Java Classes

Package of Java Event Classes

Viathis configuration an application can make the Java package or packages that contain an application's Java
event classes known to an engine. Thereby an application can simply refer to event types in statements by using
the ssimple class name of each Java class representing an event type.

For example, consider an order-taking application that places all event classes in package
com nyconpany. or der . event . One Java class representing an event is the class o der Event . The application
can simply issue a statement as follows to select O der Event events:

sel ect * from O der Event

The XML configuration for defining the Java packages that contain Java event classesis:

<event -type-aut o-al i as package- nane="com nyconpany. or der. event"/ >

The same configuration but using the Conf i gur at i on class:

Configuration config = new Configuration();
confi g. addEvent TypeAut oAl i as("com myconpany. or der. event");

Event type alias to Java class mapping

This configuration item can be used to allow event pattern statements and EQL statements to use an event type
alias rather then the fully qualified Java class name. Note that Java Interface classes and abstract classes are
also supported as event types via the fully qualified Java class name, and an event type alias can also be defined
for such classes.

The example pattern statement below first shows a pattern that uses the alias st ockTi ck. The second pattern
statement is equivalent but specifies the fully-qualified Java class name.

every StockTi ck(synbol ="IBM)"

Esper 1.11.0 84

Configuration

every net.esper.exanpl e. stockti cker. event. St ockTi ck(synbol =" | BM)

The event type dias can be listed in the XML configuration file as shown below. The Confi gurati on API can
also be used to programatically specify an event type alias, as shown in an earlier code snippet.

<event-type alias="StockTi ck" class="net.esper.exanple.stockticker.event. StockTick"/>

Non-JavaBean and Legacy Java Event Classes

Esper can process Java classes that provide event properties through other means then through JavaBean-style
getter methods. It is not necessary that the method and member variable names in your Java class adhere to the
JavaBean convention - any public methods and public member variables can be exposed as event properties via
the below configuration.

A Java class can optionally be configured with an accessor style attribute. This attribute instructs the engine
how it should expose methods and fields for use as event properties in statements.

Table 10.1. Accessor Styles

Style Name Description

j avabean As the default setting, the engine exposes an event property
for each public method following the JavaBean getter-method
conventions

public The engine exposes an event property for each public method

and public member variable of the given class

explicit The engine exposes an event property only for the explicitly
configured public methods and public member variables

Using the publ i ¢ setting for the accessor - st yl e attribute instructs the engine to expose an event property for
each public method and public member variable of a Java class. The engine assigns event property names of the
same name as the name of the method or member variable in the Java class.

For example, assuming the class MyLegacyEvent exposes a method named r eadVal ue and a member variable
named nyFi el d, we can then use properties as shown.

sel ect readVal ue, nyField from My/LegacyEvent

Using theexpl i ci t setting for the accessor - st yl e attribute requires that event properties are declared via con-
figuration. Thisis outlined in the next chapter.

When configuring an engine instance from an XML configuration file, the XML snippet below demonstrates
the use of thel egacy- t ype element and the accessor - st yl e attribute.

<event-type alias="M/VLegacyEvent" cl ass="com nmyconpany. nypackage. \yLegacyEvent C ass" >
<l egacy-type accessor-style="public"/>
</ event-type>

When configuring an engine instance via Configuration API, the sample code below shows how to set the ac-
cessor style.

Configuration configuration = new Configuration();

Esper 1.11.0 85

Configuration

Conf i gurati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypelLegacy();
| egacyDef. set Accessor Styl e(Confi gurati onEvent TypeLegacy. Accessor Styl e. PUBLI C) ;
config. addEvent TypeAl i as(" M/LegacyEvent", MyLegacyEvent Cl ass. cl ass. get Nane(), | egacyDef);

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der ("sanpl e, configuration);

Specifying Event Properties for Java Classes

Sometimes it may be convenient to use event property names in pattern and EQL statements that are backed up
by a given public method or member variable (field) in a Java class. And it can be useful to declare multiple
event properties that each map to the same method or member variable.

We can configure properties of events via net hod- property and fi el d- property elements, as the next ex-
ample shows.

<event-type alias="StockTi ck" class="net.esper.exanple.stockticker.event. StockTi ckEvent">
<l egacy-type accessor-styl e="j avabean" code-generati on="enabl ed">
<net hod- property nane="price" accessor-nethod="getCurrentPrice" />
<fiel d-property nanme="vol une" accessor-fiel d="vol uneFi el d" />
</ | egacy-type>
</ event-type>

The XML configuration snippet above declared an event property named pri ce backed by a getter-method
named get Current Pri ce, and a second event property named vol ure that is backed by a public member vari-
able named vol ureFi el d. Thus the price and volume properties can be used in a statement:

sel ect avg(price * volune) from StockTick

Aswith all configuration options, the API can also be used:

Configuration configuration = new Configuration();

Conf i gurati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypeLegacy();

| egacyDef . addMet hodProperty("price", "getCurrentPrice");

| egacyDef . addFi el dProperty("vol ume", "vol umeFi el d");

confi g. addEvent TypeAl i as(" St ockTi ck", StockTi ckEvent. cl ass. get Nane(), | egacyDef);

Turning off Code Generation

Esper employes the caLl B library for very fast read access to event property values. For certain legacy Java
classes it may be desirable to disable the use of thislibrary and instead use Java reflection to obtain event prop-
erty values from event objects.

In the XML configuration, the optional code- generati on attribute in the | egacy-t ype section can be set to
di sabl ed as shown next.

<event -type alias="M/VLegacyEvent" cl ass="com nmyconpany. package. M\yLegacyEvent d ass" >
<| egacy-type accessor-styl e="javabean" code-generati on="di sabl ed" />
</ event-type>

The sample below shows how to configure this option viathe API.

Configuration configuration = new Configuration();

Conf i gur ati onEvent TypeLegacy | egacyDef = new Confi gurati onEvent TypeLegacy();

| egacyDef . set CodeGener ati on(Confi gur ati onEvent TypeLegacy. CodeGener ati on. DI SABLED) ;

confi g. addEvent TypeAl i as(" MyLegacyEvent", MyLegacyEvent Cl ass. cl ass. get Name(), | egacyDef);

Case Sensitivity and Property Names

Esper 1.11.0 86

Configuration

By default the engine resolves Java event properties case sensitive. That is, property names in statements must
match JavaBean-convention property names in name and case. This option controls case sensitivity per Java
class.

In the configuration XML, the optional property-resol ution-styl e attribute in the | egacy-t ype element can
be set to any of these values:

Table 10.2. Property Resolution Case Sensitivity Styles

Style Name Description

case_sensitive (default) As the default setting, the engine matches property names for
the exact name and case only.

case_insensitive Properties are matched if the names are identical. A case in-
sensitive search is used and will choose the first property that
matches the name exactly or the first property that matches
case insensitively should no match be found.

di stinct_case_insensitive Properties are matched if the names are identical. A case in-
sensitive search is used and will choose the first property that
matches the name exactly case insensitively. If more than one
'name' can be mapped to the property an exception is thrown.

The sample below shows this option in XML configuration, however the setting can also be changed via API:

<event-type alias="M/VLegacyEvent" cl ass="com myconpany. package. MyLegacyEvent Cl ass" >
<l egacy-type property-resol ution-styl e="case_insensitive"/>
</event-type>

10.4.2. Events represented by java. util. Map

The engine can processj ava. uti | . Map eventsviathe sendEvent (Map map, String event TypeAl i as) method
on the EPruntinme interface. Entries in the Map represent event properties. Keys must be of type
java.util.string for the engine to be able to look up event property names in pattern or EQL statements.
Vaues can be of any type. JavaBean-style objects as values in a Map can also be processed by the engine.
Please see the Chapter 2, Event Representations section for details on how to use Map events with the engine.

Via configuration we provide an event type alias name for Map events for use in statements, and the event prop-
erty names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event named My MapEvent .

<event-type alias="MWMapEvent">
<java-util - map>
<map- property name="carld" class="int"/>
<map- property name="car Type" cl ass="string"/>
<map- property name="assenbl y" cl ass="com myconpany. Assenbl y"/>
</java-util-map>
</ event-type>

This configuration defines the car 1 d property of MyMapEvent events to be of typei nt, and the car Type prop-
erty to be of type java.util.String. The assenbly property of the Map event will contain instances of
com nyconpany. Assenbl y for the engine to query.

Esper 1.11.0 87

Configuration

Thevalid list of values for the type definition viathecl ass attributeis:

e stringOrjava.lang. String

® char Orjava.l ang. Character

* DbyteOrjava.lang.Byte

* short Orjava.l ang. Short

® int Orjava.lang.|nteger

* longoOrjava. | ang. Long

e float Orjava.l ang. Fl oat

* doubl e Orjava.lang. Doubl e

* bool ean Orj ava. | ang. Bool ean

* Any fully-qualified Java class name that can be resolved by the engineviad ass. f or Nane

You can aso use the configuration API to configure Map event types, as the short code snippet below demon-
Strates.

Properties properties = new Properties();
properties.put(“carld", "int");

properties. put ("carType", "string");

properties. put ("assenbl y*, Assenbly. cl ass. get Nane());

Configuration configuration = new Configuration();
configuration. addEvent TypeAl i as(" MyMapEvent", properties);

Finally, here is a sample EQL statement that uses the configured MyMapEvent map event. This statement uses
the chassi sTag and nunPar t s properties of Assenbl y objects in each map.

sel ect carType, assenbly.chassi sTag, count(assenbly. nunParts) from MyMapEvent.w n:tine(60 sec)

10.4.3. Events represented by or g. wdc. dom Node

Viathis configuration item the Esper engine can natively process or g. wdc. dom Node instances, i.e. XML docu-
ment object model (DOM) nodes. Please see the Chapter 2, Event Representations section for details on how to
use Node events with the engine.

Esper alows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.

For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property hames and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wadc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.

In the simplest form, the Esper engine only requires a configuration entry containing the root el ement name and
the event type aias in order to process or g. w3c. dom Node events:

<event-type alias="M/XMNodeEvent">
<xml - dom r oot - el enent - nane="nyevent" />
</ event-type>

You can aso use the configuration API to configure XML event types, as the short example below demon-
strates. In fact, all configuration options available through XML configuration can also be provided via setter
methods on the Conf i gur at i onEvent TypeXM_.DOMCIass.

Esper 1.11.0 88

Configuration

Configuration configuration = new Configuration();

Conf i gur ati onEvent TypeXM_.DOM desc = new Confi gurati onEvent TypeXM_.DOV) ;

desc. set Root El enent Narme(" myevent ") ;

desc. addXPat hProperty("nanel", "/element/ @ttribute", XPathConstants.STRI NG ;
desc. addXPat hProperty("nanme2", "/el enent/subel enent", XPat hConstants. NUMBER);
configuration. addEvent TypeAl i as(" MyXM_NodeEvent ", desc);

The next example presents configuration optionsin a sample configuration entry.

<event-type alias="Aut ol dRFI DEvent ">
<xm - dom r oot - el enent - nane="Sensor" schenma-r esour ce="dat a/ Aut ol dPm Cor e. xsd"
def aul t - namespace="ur n: aut oi d: speci fi cation: i nterchange: PM.Core: xm : schema: 1" >
<nanespace-prefix prefix="pnl core"
nanespace="urn: aut oi d: speci fi cati on: i nterchange: PM_Cor e: xm : schema: 1"/ >
<xpat h- property property-nane="count Tags"
xpat h="count (/ pm cor e: Sensor/ pnl cor e: Cbservati on/ pm core: Tag)" type="nunber"/>
</ xm - don®
</ event-type>

This example configures an event property named count Tags whose value is computed by an XPath expres-
sion. The namespace prefixes and default namespace are for use with XPath expressions and must also be made
known to the engine in order for the engine to compile XPath expressions. Via the schema- r esour ce attribute
we instruct the engine to load a schemafile.

Hereis an example EQL statement using the configured event type named Aut ol dRFI DEvent .

sel ect I D, countTags from Aut ol dRFI DEvent.w n:ti me(30 sec)

Schema Resource

The schema-resour ce attribute takes a schema resource URL or classpath-relative filename. The engine at-
tempts to resolve the schema resource as an URL. If the schema resource name is not a valid URL, the engine
attempts to resolve the resource from classpath via the d assLoader . get Resour ce method using the thread
context class loader. If the name could not be resolved, the engine uses the Configuration class classloader.

By configuring a schemafile for the engine to load, the engine performs these additional services:

« Validates the event properties in a statement, ensuring the event property name matches an attribute or ele-
ment in the XML

» Determines the type of the event property allowing event properties to be used in type-sensitive expressions
such as expressions involving arithmatic (Note: XPath properties are also typed)

« Matches event property names to either element names or attributes

If no schema resource is specified, none of the event properties specified in statements are validated at state-
ment creation time and their type defaultstoj ava. | ang. St ri ng. Also, attributes are not supported if no schema
resource is specified and must thus be declared via X Path expression.

XPath Property

The xpat h- property element adds event properties to the event type that are computed via an XPath expres-
sion. In order for the XPath expression to compile, be sure to specify the def aul t - nanespace attribute and use
the nanespace- pref i x to declare namespace prefixes.

XPath expression properties are strongly typed. The t ype attribute allows the following values. These values
correspond to those declared by j avax. xm . xpat h. XPat hConst ant s.

* number (Note: resolvesto adoubl e)

Esper 1.11.0 89

Configuration

e string
* boolean

Absolute or Deep Property Resolution

This setting indicates that when properties are compiled to XPath expressions that the compilation should gen-
erate an absolute X Path expression or a deep (find element) X Path expression.

For example, consider the following statement against an event type that is represented by a XML DOM docu-
ment, assuming the event type GetQuote has been configured with the engine as an XML DOM event type:

sel ect request, request.synbol from Get Quote

By default, the engine compiles the "request” property name to an XPath expression "/GetQuote/request”. It
compiles the nested property named "request.symbol” to an XPath expression "/GetQuote/request/symbol”,
wherein the root element node is " GetQuote".

By setting absolute property resolution to false, the engine compiles the "request” property name to an XPath
expression "//request”. It compiles the nested property named "request.symbol” to an XPath expression "/
/request/symbol”. This enables these elements to be located anywhere in the XML document.

The setting is availablein XML viathe attributer esol ve- properti es- absol ut e.
The configuration API provides the above settings as shown here in a sample code:

Conf i gur ati onEvent TypeXM.DOM desc = new Confi gurati onEvent TypeXM_.DOV) ;
desc. set Root El enent Name(" Get Quot e") ;

desc. set Def aul t Nanmespace("http://services. sanpl es/ xsd");

desc. set Root El enent Namespace("http://services. sanpl es/ xsd");

desc. addNanespacePrefi x("md", "http://services. sanpl es/ xsd");

desc. set Resol veProperti esAbsol ute(fal se);

configuration. addEvent TypeAl i as(" Get Quote", desc);

10.4.4. Class and package imports

Esper allows invocations of static Java library functions as outlined in Section 7.1, “ Single-row Function Refer-
ence”’. This configuration item can be set to alow a partia rather than a fully qualified class name in such in-
vocations. The imports work in the same way asin Javafiles, so both packages and classes can be imported.

sel ect Mat h. max(priceOne, PriceTwo)
/1 via configuration equivalent to
sel ect java.lang. Mat h. max(pri ceOne, priceTwo)

Esper auto-imports the following Java library packages if no other configuration is supplied. This list is re-
placed with any configuration specified in a configuration file or through the API.

* javalang.*
e javamath.*
* javatext.*
e javautil.*

In an XML configuration file the auto-import configuration may look as below. Note that all configuration op-
tions are available through the Conf i gur at i on APl aswell.

<aut o-i nport inport-nanme="com myconpany. nypackage.*"/>
<aut o-i mport i nport-nane="com nyconpany. nyapp. MyUtilityd ass"/>

Esper 1.11.0 90

Configuration

10.4.5. Relational Database Access

Esper has the capahility to join event streams against historical data sources, such as arelational database. This
section describes the configuration entries that the engine requires to access data stored in your database. Please
see Section 4.13, “Joining Relational Data via SQL” for information on the use of EQL queries that include his-
torical data sources.

EQL queriesthat poll datafrom arelationa database specify the name of the database as part of the EQL state-
ment. The engine uses the configuration information described here to resolve the database name in the state-
ment to database settings. The required and optional database settings are summarized below.

e Database connections can be obtained via JDBC javax.xnl.DataSource or daternatively via
java. sql . Dri ver Manager . Either one of these methods to obtain new database connections is a required
configuration.

e Optionally, JDBC connection-level settings such as auto-commit, transaction isolation level, read-only and
the catalog name can be defined.

« Optionaly, a connection lifecycle can be set to indicate to the engine whether the engine must retain con-
nections or must obtain a new connection for each lookup.

« Optionaly, define a cache poalicy to alow the engine to retrieve data from a query cache, reducing the num-
ber of query executions.

Some of the settings can have important performance implications that need to be carefully considered in rela-
tionship to your database software, JDBC driver and runtime environment. This section attempts to outline such
implications where appropriate.

The sample XML configuration file in the "etc" folder can be used as a template for configuring database set-
tings. All settings are also available by means of the configuration API through the classes Conf i gur at i on and
Confi gur ati onDBRef .

Connections obtained via DataSource

The snippet of XML below configures a database named nydbl to obtain connections via a
j avax. sql . Dat aSour ce. The dat asour ce- connect i on €lement instructs the engine to obtain new connections
to the database nydb1 by performing alookup viaj avax. nani ng. I ni ti al Cont ext for the given object lookup
name. Optional environment properties for the i ni ti al Cont ext are also shown in the example.

<dat abase-ref erence nanme="nydbl">
<dat asour ce- connecti on cont ext -1 ookup- nane="j ava: conp/ env/ j dbc/ nydb" >
<env- property name="java. nam ng.factory.initial" value ="com nycl ass. Ct xFactory"/>
<env- property nane="java. nam ng. provi der.url" value ="iiop://local host: 1050"/ >
</ dat asour ce- connect i on>
</ dat abase-ref erence>

To help you better understand how the engine uses this information to obtain connections, we have included the
logic below.

if (envProperties.size() > 0) {

initial Context = new Initial Context(envProperties);
}
el se {

initial Context = new Initial Context();
}
Dat aSour ce dat aSour ce
Connection connection

(Dat aSource) initial Context.|ookup(lookupNane);
dat aSour ce. get Connecti on();

Connections obtained via DriverManager

Esper 1.11.0 91

Configuration

The next snippet of XML configures a database named nydb2 to obtain connections via
java.sql . Driver Manager. The dri ver manager - connect i on element instructs the engine to obtain new con-
nections to the database mydb2 by means of d ass. f or Name and Dri ver Manager . get Connect i on using the class
name, URL and optional username, password and connection arguments.

<dat abase-ref erence nane="nydb2">
<dri ver manager - connecti on cl ass- nane="mny. sql . Dri ver"
url ="j dbc: nysql : //1 ocal host/t est 2user =r oot &np; passwor d=nmypasswor d"
user ="nyuser" passwor d="nypasswor d" >
<connection-arg nanme="user" val ue ="nyuser"/>
<connecti on-arg nane="password" val ue ="nypassword"/>
<connection-arg nane="sonearg" val ue ="soneargval ue"/>
</ dri ver manager - connecti on>
</ dat abase-ref erence>

The username and password are shown in multiple places in the XML only as an example. Please check with
your database software on the required information in URL and connection arguments.

Connections-level settings

Additional connection-level settings can optionally be provided to the engine which the engine will apply to
new connections. When the engine obtains a new connection, it applies only those settings to the connection
that are explicitly configured. The engine leaves al other connection settings at default values.

The below XML is a sample of all available configuration settings. Please refer to the Java APl JavaDocs for
j ava. sql . Connecti on for more information to each option or check the documentation of your JDBC driver
and database software.

<dat abase-ref erence nanme="nydb2">
configure data source or driver nmanager settings...
<connection-settings auto-comit="true" catal og="mnycatal og"
read-onl y="true" transaction-isolation="1" />
</ dat abase-ref erence>

The r ead- onl y setting can be used to indicate to your database engine that SQL statements are read-only. The
transaction-isol ati on and aut o- cormi t help you database software perform the right level of locking and
lock release. Consider setting these values to reduce transactional overhead in your database queries.

Connections lifecycle settings

By default the engine retains a separate database connection for each started EQL statement. However, it is
possible to override this behavior and require the engine to obtain a new database connection for each lookup,
and to close that database connection after the lookup is completed. This often makes sense when you have a
large number of EQL statements and require pooling of connections via a connection pool. If your runtime en-
vironment includes an application server, the connection pool may be exposed as a bat aSour ce.

The XML for this option is below. The connection lifecycle allows the following values: pool ed andr et ai n.

<dat abase-ref erence nane="nydb2">
configure data source or driver nanager settings..
<connection-lifecycle val ue="pool ed"/>

</ dat abase-ref erence>

Cache settings

Cache settings can dramatically reduce the number of database queries that the engine executes for EQL state-
ments. If no cache setting is specified, the engine does not cache query results and executes a separate database

Esper 1.11.0 92

Configuration

query for every event.

Caches store the results of database queries and make these results available to subsequent queries using the ex-
act same query parameters as the query for which the result was stored. If your query returns one or more rows,
the cache keep the result rows of the query keyed to the parameters of the query. If your query returns no rows,
the cache also keeps the empty result. Query results are held by a cache until the cache entry is evicted. The
strategies available for evicting cached query results are listed next.

LRU Cache

The least-recently-used (LRU) cache is configured by a maximum size. The cache discards the least recently
used query results first once the cache reaches the maximum size.

The XML configuration entry for a LRU cache is as below. This entry configures an LRU cache holding up to
1000 query results.

<dat abase-ref erence nane="nydb" >
. configure data source or driver nmanager settings...
<l ru-cache si ze="1000"/>
</ dat abase-ref erence>

Expiry-time Cache

The expiry time cache is configured by a maximum age in seconds and a purge interval. The cache discards (on
the get operation) any query results that are older then the maximum age so that stale data is not used. If the
cache is not empty, then every purge interval number of seconds the engine purges any expired entries from the
cache.

The XML configuration entry for an expiry-time cache is as follows. The example configures an expiry time
cache in which prior query results are valid for 60 seconds and which the engine inspects every 2 minutesto re-
move query results older then 60 seconds.

<dat abase-ref erence nane="nydb" >
. configure data source or driver manager settings...
<expiry-tinme-cache max-age-seconds="60" purge-interval -seconds="120"/>
</ dat abase-r ef erence>

Column Change Case

This setting instructs the engine to convert to lower- or uppercase any output column names returned by your
database system. When using Oracle relational database software, for example, column names can be changed
to lowercase via this setting.

A sample XML configuration entry for this setting is:

<col um- change- case val ue="1| ower case"/ >

SQL Types Mapping

By providing a mapping of SQL types (j ava. sql . Types) to Java built-in types your code can avoid using
sometimes awkward default database types and can easily change the way Esper returns Java types for columns
returned by a SQL query.

The mapping maps a constant as defined by j ava. sqgl . Types to a Java built-in type of any of the following
Javatypelumnes:String, Bi gDeci mal , Bool ean, Byte, Short, Int, Long, Float, Double, ByteArray,

Esper 1.11.0 93

Configuration

Sql Date, Sql Time, Sql Ti mestanp. The Javatype names are not case-sensitive.

A sample XML configuration entry for this setting is shown next. The sample maps Types. NUVERI C (of value
2) tothe Javai nt type.

<sql -types- mappi ng sql -type="2" java-type="int" />

Metadata Origin

This setting controls how the engine retrieves SQL statement metadata from JDBC prepared statements.

Table 10.3. Syntax and results of aggregate functions
Option Description

default
By default, the engine detects the driver name and queries prepared statement metadata

if the driver is not an Oracle database driver. For Oracle drivers, the engine uses lexical
analysis of the SQL statement to construct a sample SQL statement and then fires that
statement to retrieve statement metadata.

metadata
The engine always queries prepared statement metadata regardiess of the database

driver used.

sample
The engine always uses lexical analysis of the SQL statement to construct a sample

SQL statement, and then fires that statement to retrieve statement metadata.

10.4.6. Engine Settings related to Concurrency and Threading

Preserving the order of events delivered to listeners

In multithreaded environments, this setting controls whether dispatches of statement result events to listeners
preserve the ordering in which a statement processes events. By default the engine guarantees that it delivers a
statement's result events to statement listeners in the order in which the result is generated. This behavior can be
turned off via configuration as below.

The next code snippet shows how to control this feature:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Thr eadi ng() . set Li st ener Di spat chPreserveOrder (fal se);
engi ne = EPServi ceProvi der Manager . get Def aul t Provi der (confi g);

Anthe XML configuration file can also control this feature by adding the following elements:

<engi ne- settings>
<def aul t s>
<t hr eadi ng>
<l i stener-di spatch preserve-order="fal se" tineout-nmsec="2000"/>
<insert-into-di spatch preserve-order="fal se"/>
</t hreadi ng>
</ def aul t s>
</ engi ne-settings>

As discussed, by default the engine can temporarily block a thread when delivering result events to listenersin

Esper 1.11.0 94

Configuration

order to preserve the order in which results are generated by a given statement. The maximum time the engine
blocks athread can also be configured, and by default is set to 1 second.

Preserving the order of events for insert-into streams

In multithreaded environments, this setting controls whether insert-into streams preserve the order of eventsin-
serted into them by one or more statements, allowing statements that consume other statement's events to be-
have deterministic.

By default, the engine acquires alock per insert-into stream when a statement makes events available to further
statements using the i nsert into clause. The lock allows generated events to be processed by further state-
ments consuming the insert-into stream in the order the generating statement(s) produce events. This allows
statements that require order (such as pattern detection, previous and prior functions) to behave deterministic-
aly.

The setting can be changed viathe configuration APl and XML as shown in the prior section.

Internal Timer Settings

This option can be used to disable the internal timer thread and such have the application supply external time
events, aswell asto set atimer resolution.

The next code snippet shows how to disable the internal timer thread via the configuration API:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Threadi ng() . set | nt er nal Ti mer Enabl ed(f al se);

This snippet of XML configuration leaves the internal timer enabled (the default) and sets a resolution of 200
milliseconds (the default is 100 milliseconds):

<engi ne- settings>
<def aul t s>
<t hr eadi ng>
<internal -ti ner enabl ed="true" nsec-resol uti on="200"/>
</t hr eadi ng>
</ def aul t s>
</ engi ne-settings>

We recommend that when disabling the internal timer, applications send an external timer event setting the start
time before creating statements, such that statement start time is well-defined.

10.4.7. Engine Settings related to Event Metadata

Java Class Property Names and Case Sensitivity

As discussed in Section 10.4.1.6, “Case Sensitivity and Property Names’ this setting controls case sensitivity
for Java event class properties of al Java classes as a default, rather then at aclass level.

The next code snippet shows how to control this feature viathe API:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Event Meta() . set Cl assPropertyResol utionStyl e(
Conf i guration. PropertyResol uti onStyl e. CASE_| NSENSI TI VE)

Esper 1.11.0 95

Configuration

10.4.8. Engine Settings related to View Resources

Sharing View Resources between Statements

The engine by default attempts to optimize resource usage and thus re-uses or shares views between statements
that declare same views. However, in multi-threaded environments, this can lead to reduced concurrency as
locking for shared view resources must take place. Via this setting this behavior can be turned off for higher
concurrency in multi-threaded processing.

The next code snippet outlines the API to turn off view resource sharing between statements:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Vi ewResour ces() . set ShareVi ews(fal se);

10.4.9. Engine Settings related to Logging

Execution Path Debug Logging

By default, the engine does not produce debug output for the event processing execution paths even when
Logdj or Logger configurations have been set to output debug level logs. To enable debug level logging, set
this option in the configuration as well asin your Log4j configuration file.

The API to use to enable debug logging is shown here:

Configuration config = new Configuration();
confi g. get Engi neDef aul t s() . get Loggi ng() . set Enabl eExecut i onDebug(true);

Note: thisis aconfiguration option that appliesto al engine instances of a given Java module or VM.

Esper 1.11.0 96

Chapter 11. Extension and Plug-in

11.1. Overview

Esper can currently be extended by these means.

« User-defined functions - these can be used anywhere where expressions are allowed, please see Section 7.3,
“User-Defined Functions’
e Custom-developed Plug-in Views

11.2. Custom View Implementation

Views in Esper are used to derive information from an event stream, and to represent data windows onto an
event stream. This chapter describes how to plug-in a new, custom view.

The following steps are required to develop and use a custom view with Esper.

1. Implement aview factory class. View factories are classes that accept and check view parameters and in-
stantiate the appropriate view class.

2. Implement a view class. A view class commonly represents a data window or derives new information
from a stream.

3. Configure the view factory class supplying a view namespace and name in the engine configuration file.

The example view factory and view class that are used in this chapter can be found in the test source folder in
the package net . esper . regressi on. cl i ent by the name M/Tr endSpot t er Vi ewFact ory and MyTr endSpot t er -
Vi ew.

Views can make use of the following engine services available via st at enent Ser vi ceCont ext :

e Theschedul i ngServi ce interface allows views to schedul e timer callbacks to aview

e The Event Adapt er Ser vi ce interface allows views to create new event types and event instances of a given
type.

* The statenent St opSer vi ce interface allows view to register a callback that the engine invokes to indicate
that the view's statement has been stopped

Note that custom views may use engine services and APIs that can be subject to change between major re-
leases. The engine services discussed above and view APIs are considered part of the engine internal public
API and are stable. Any changes to such APIs are disclosed through the release change logs and history. Please
also consider contributing your custom view to the Esper project team by submitting the view code through the
mailing list or viaa JRA issue.

11.2.1. Implementing a View Factory

A view factory classis responsible for the following functions:

e Accept zero, one or more view parameters. Validate and parse the parameters as required.

» Validate that the parameterized view is compatible with its parent view. For example, validate that field
names are valid in the event type of the parent view.

* Instantiate the actual view class.

» Provide information about the event type of events posted by the view.

Esper 1.11.0 97

Extension and Plug-in

View factory classes simply subclass net . esper. vi ew. Vi ewFact or ySupport :

public class MyTrendSpotterVi ewFact ory extends Vi ewractorySupport {

Your view factory class must implement the set Vi ewPar anet er s method to accept and parse view parameters.
The next code snippet shows an implementation of this method. The code obtains a single field name parameter
from the parameter list passed to the method:

public class MyTrendSpotterVi ewFactory extends Vi ewFactorySupport {
private String fiel dName;
private Event Type event Type;

public void setVi ewPar anet er s(Vi ewFact or yCont ext vi ewFact or yCont ext ,
Li st <nj ect > vi ewPar aneters) throws Vi ewPar anet er Excepti on
{
String errorMessage = "' Trend spotter' viewrequire a single field name as a paraneter";
if (viewParaneters.size() !'=1) {
t hrow new Vi ewPar anmet er Except i on(error Message) ;

}

if (!'(viewParaneters.get(0) instanceof String)) {
t hr ow new Vi ewPar anmet er Except i on(error Message) ;

}

fieldNanme = (String) viewParaneters.get(0);

After the engine supplied view parameters to the factory, the engine will ask the view to attach to its parent
view and validate any field name parameters against the parent view's event type. If the view will be generating
events of a different type then the events generated by the parent view, then the view factory can create the new
event type in this method:

public void attach(Event Type parent Event Type,
St at enent Ser vi ceCont ext st at ement Ser vi ceCont ext,
Vi ewFact ory opti onal Parent Factory,
Li st <Vi ewFact ory> parent Vi ewFact ori es)
throws Vi ewAttachException {
String result = PropertyCheckHel per.checkNuneri c(parent Event Type, fiel dNane);
if (result !'=null) {
t hrow new Vi ewAt t achException(result);

}

/'l create new event type

Map<String, C ass> event TypeMap = new HashMap<String, Cass>();

event TypeMap. put (PROPERTY_NAME, Long. cl ass);

event Type = st at enent Ser vi ceCont ext . get Event Adapt er Ser vi ce() .
creat eAnonynmousMapType(event TypeMap) ;

Finally, the engine asks the view factory to create a view instance:

public View nakeVi ew(St at enent Servi ceCont ext statemnment Servi ceCont ext) {
return new MyTrendSpotter Vi ew(st at enent Servi ceCont ext, fiel dNange);

}

11.2.2. Implementing a View

A view classisresponsible for:

* Theset Parent method informsthe view of the parent view's event type

Esper 1.11.0 98

Extension and Plug-in

e Theupdat e method receivesinsert streams and remove stream events from its parent view

* Theiterator method supplies an (optional) iterator to allow an application to pull or request results from
an EPSt at enent

e Thecl onevi ew method must make a configured copy of the view to enable the view to work in a grouping
context together with a st d: gr oupby parent view

View classes simply subclassnet . esper . vi ew. Vi ewSupport :

public class MyTrendSpotterVi ew extends Vi ewSupport { ...

The view class must implement the set Par ent (Vi ewabl e par ent) method. Thisis an opportunity for the view
to initialize and obtain a fast event property getter for later use to obtain event property values. The next code
snippet shows an implementation of this method:

public void setParent (Vi ewabl e parent) {
super . set Parent (parent);
if (parent !'=null) {
fieldGetter = parent.get Event Type().getGetter(fi el dNane);

}
}

Y our updat e method will be processing incoming (insert stream) and outgoing (remove stream) events, as well
as providing incoming and outgoing events to child views. The convention required of your update method im-
plementation is that the view releases any insert stream events which the view generates as semantically-equal
remove stream events at a later time. A sample updat e method implementation that computes a number of
eventsin an upward trend is shown below:

public final void update(EventBean[] newbData, EventBean[] ol dData) {
Event Bean ol dDat aPost = popul at eMap(trendcount);

/1 add data points
if (newbata != null) {
for (int i =0; i < newData.length; i++) {
doubl e dataPoint = ((Nunber) fieldGetter.get(newbDatal[i])).doubl eVal ue();

if (lastDataPoint == null) {
trendcount = 1L;

else if (lastDataPoint < dataPoint) {
trendcount ++;

el se if (IastDataPoint > dataPoint) {
trendcount = OL;

}

| ast Dat aPoi nt = dat aPoi nt ;

}
}

if (this.hasViews()) {

Event Bean newDat aPost = popul at eMap(trendcount);

updat eChi | dren(new Event Bean[] {newDataPost}, new EventBean[] {ol dDataPost});
}

This updat e method must adhere to the following view conventions, to prevent memory leaks and to enable
correct behavior within the engine:

* Viewsmust post aremove stream in the form of old data to child views. The remove stream must consist of
the same event reference(s) posted as insert stream (new data).

The engine can provide a callback to the view indicating when a statement using the view is stopped. The call-
back is available to the view viathe net . esper. vi ew. St at ement St opCal | back interface. Y our view code must

Esper 1.11.0 99

Extension and Plug-in

subscribe to the stop callback in order for the engine to invoke the callback:

st at enent Cont ext . get St at enent St opSer vi ce() . addSubscri ber (thi s);

Please refer to the sample views for a code sample on how to implement i t er at or and cl oneVi ew methods.

11.2.3. Configuring View Namespace and Name

The view factory class name as well as the view namespace and name for the new view must be added to the
engine configuration via the configuration API or using the XML configuration file. The configuration shown
below is XML however the same options are available through the configuration API:

<esper -configuration
<pl ugi n-vi ew nanespace="cust onf’ nanme="trendspotter"
factory-cl ass="net.esper.regression.vi ew. MyTrendSpot t er Vi ewFactory" />
</ esper-configuration>

The new view is now ready to use in a statement:

select * from StockTi ck.customtrendspotter(' price')

Note that the view must implement the copyVi ew method to enable the view to work in a grouping context as
shown in the next statement:

select * from StockTi ck. std: groupby(' synmbol').customtrendspotter('price')

11.3. Custom Aggregation Functions

Aggregation functions aggregate event property values or expression results obtained from one or more
streams. Examples for built-in aggregation functions are count (*), sun(price * vol une) Or avg(disti nct
vol une) .

The optional keyword di sti nct ensures that only distinct (unique) values are aggregated and duplicate values
areignored by the aggregation function. Custom plug-in aggregation functions do not need to implement the lo-
gicto handledi sti nct values. Thisis because when the engine encounters the di st i nct keyword, it eliminates
any non-distinct values before passing the value for aggregation to the custom aggregation function.

The following steps are required to develop and use a custom aggregation function with Esper.

1. Implement an aggregation function class.
2. Register the aggregation function class with the engine by supplying a function name, via the engine con-
figuration file or the configuration API.

The code for the example aggregation function as shown in this chapter can be found in the test source folder in
the package net . esper. regression. cli ent by the name MyConcat Aggr egat i onFuncti on. The sample func-
tion simply concatenates string-type values.

11.3.1. Implementing an Aggregation Function

An aggregation function class is responsible for the following functions:

e Implement aval i dat e method that validates the value type of the data points that the function must pro-
cess.

Esper 1.11.0 100

Extension and Plug-in

* Implement aget Val ueType method that returns the type of the aggregation value generated by the function.
For example, the built-in count aggregation function returns Long. cl ass asit generates| ong -typed values.

« Implement an ent er method that the engine invokes to add a data point into the aggregation, when an event
enters a data window

« Implement al eave method that the engine invokes to remove a data point from the aggregation, when an
event leaves a data window

e Implement aget Val ue method that returns the current value of the aggregation.

Aggregation function classes simply subclass net . esper . eql . agg. Aggr egat i onSupport :

public class MyConcat Aggr egati onFuncti on extends Aggregati onSupport { ...

The engine generally constructs one instance of the aggregation function class for each time the function islis-
ted in a statement, however the engine may decide to reduce the number of aggregation class instances if it
finds equivalent aggregations. The constructor initializes the aggregation function:

public class MyConcat Aggr egati onFuncti on extends Aggregati onSupport {
private final static char DELIMTER = ' '
private StringBuil der buil der;
private String delimter;

publ i ¢ MyConcat Aggr egati onFuncti on()
{

super () ;
bui l der = new StringBuil der();
delimter = ""

}

An aggregation function must provide an implementation of the val i dat e method that is passed the result type
of the expression within the aggregation function. Since the example concatenation function requires string
types, it implements atype check:

public void validate(C ass chil dNodeType) {
if (chil dNodeType != String.class) {
throw new ||| egal Argunent Excepti on(" Concat aggregation requires a String paraneter");
}

}

The ent er method adds a datapoint to the current aggregation value. The example ent er method shown below
adds a delimiter and the string value to a string buffer:

public void enter(oject value) {
if (value '= null) {
bui | der. append(delimter);
bui | der. append(val ue.toString());
delimter = String.val ued (DELIM TER);
}
}

Converdy, the | eave method removes a datapoint from the current aggregation value. The example | eave
method removes from the string buffer:

public void | eave(bject value) {
if (value !'= null) {
bui |l der. del ete(0, value.toString().length() + 1);
}
}

In order for the engine to validate the type returned by the aggregation function against the types expected by

Esper 1.11.0 101

Extension and Plug-in

enclosing expressions, the get Val ueType must return the result type of any values produced by the aggregation
function:

public C ass getVal ueType() {
return String.class;

}

Finally, the engine obtains the current aggregation value by means of the get val ue method:

public Object getValue() {
return builder.toString();

}

11.3.2. Configuring Aggregation Function Name

The aggregation function class name as well as the function name for the new aggregation function must be ad-
ded to the engine configuration via the configuration APl or using the XML configuration file. The configura-
tion shown below is XML however the same options are available through the configuration API:

<esper-configuration
<pl ugi n- aggr egat i on-functi on name="concat"
function-cl ass="net. esper.regression.client.MConcat Aggregati onFuncti on" />
</ esper-confi guration>

The new aggregation function is now ready to usein a statement:

sel ect concat (synbol) from StockTi ck.w n: | ength(3)

11.4. Custom Pattern Guard

Pattern guards are pattern objects that control the lifecycle of the guarded sub-expression, and can filter the
events fired by the subexpression.

The following steps are required to devel op and use a custom guard object with Esper.

1. Implement aguard factory class, responsible for creating guard object instances.

2. Implement aguard class.

3. Register the guard factory class with the engine by supplying a namespace and name, via the engine con-
figuration file or the configuration API.

The code for the example guard object as shown in this chapter can be found in the test source folder in the
package net . esper . regressi on. cl i ent by the name MyCount ToPat t er nGuar dFact ory. The sample guard dis-
cussed here counts the number of events occurring up to a maximum number of events, and end the sub-
expression when that maximum is reached.

11.4.1. Implementing a Guard Factory

A guard factory classisresponsible for the following functions:

* Implement aset Guar dPar anet er s method that validates guard parameters.
* Implement anakeGuar d method that constructs a new guard instance.

Guard factory classes subclass net . esper . pat t er n. guar d. Guar dFact or ySupport :

Esper 1.11.0 102

Extension and Plug-in

public class MyCount ToPatternGuardFactory extends GuardFactorySupport { ...

The engine constructs one instance of the guard factory class for each time the guard is listed in a statement.

The guard factory class implements the set Guar dPar anet er s method that is passed the parameters to the guard
as supplied by the statement. It verifies the guard parameters, similar to the code snippet shown next. Our ex-
ample counter guard takes a single numeric parameter:

public void set GuardParanet er s(Li st <Cbj ect > guardPar anet ers) throws CuardParanet er Excepti on {
if (guardParaneters.size() '= 1) {
t hrow new Guar dPar anet er Excepti on(" Count-to guard takes a single integer paraneter");
}
i f (!(guardParaneters.get(0) instanceof Integer)) ({
t hrow new Cuar dPar amet er Excepti on(" Count-to guard takes a single integer paraneter");

}
nunCount To = (I nteger) guardParaneters. get(0);

}

The makeGuar d method is called by the engine to create a new guard instance. The example makeGuar d method
shown below passes the maximum count of events to the guard instance. It also passes a Qui t abl e implementa-
tion to the guard instance. The guard uses Qui t abl e to indicate that the sub-expression contained within must
stop (quit) listening for events.

publ i c Guard nakeGuard(PatternContext context, Quitable quitable,
bj ect stateNodeld, Object guardState) {
return new MyCount ToPatt er nGuar d(nunCount To, quitabl e);

11.4.2. Implementing a Guard Class

A guard class has the following responsibilities:

* Providesast art Guar d method that initalizes the guard.

* Provides a st opGuar d method that stops the guard, called by the engine when the whole pattern is stopped,
or the sub-expression containing the guard is stopped.

* Provides an i nspect method that the pattern engine invokes to determine if the guard lets matching events
pass for further evaluation by the containing expression.

Guard classes subclass net . esper. patt er n. guar d. Guar dSuppor t as shown here:

public abstract class QuardSupport inplenments Guard { ...

The engine invokes the guard factory class to construct an instance of the guard class for each new sub-
expression instance within a statement.

A guard class must provide an implementation of the st art Guard method that the pattern engine invokes to
start a guard instance. In our example, the method resets the guard's counter to zero:

public void startCQuard() {
counter = 0;

}

The pattern engine invokes the i nspect method for each time the sub-expression indicates a new event result.
Our example guard needs to count the number of events matched, and quit if the maximum number is reached:

publ i c bool ean inspect (Mat chedEvent Map mat chEvent) {
count er ++;

Esper 1.11.0 103

Extension and Plug-in

if (counter > nunCountTo) {
qui t abl e. guardQui t () ;
return fal se;

}

return true;

}

The i nspect method returns true for events that pass the guard, and false for events that should not pass the
guard.

11.4.3. Configuring Guard Namespace and Name

The guard factory class name as well as the namespace and name for the new guard must be added to the en-
gine configuration via the configuration API or using the XML configuration file. The configuration shown be-
low is XML however the same options are avail able through the configuration API:

<esper-configuration
<pl ugi n- pattern-guard nanespace="nypl ugi n" nane="count _t 0"
factory-cl ass="net. esper.regression.client. MCount ToPatternCGuardFactory"/>
</ esper-confi guration>

The new guard is now ready to use in a statement. The next pattern statement detects the first 10 MyEvent
events:

select * frompattern [(every MyEvent) where mypl ugi n: count _t o(10)]

Note that the ever y keyword was placed within parentheses to ensure the guard controls the repeated matching
of events.

11.5. Custom Pattern Observer

Pattern observers are pattern objects that are executed as part of a pattern expression and can observe events or
test conditions. Examples for built-in observersaretimer: at andti mer: i nterval . Some suggested uses of ob-
server objects are:

* Implement custom scheduling logic using the engine's own scheduling and timer services
e Test conditions related to prior events matching an expression

The following steps are required to develop and use a custom observer object within pattern statements:

1. Implement an observer factory class, responsible for creating observer object instances.

2. Implement an observer class.

3. Register an observer factory class with the engine by supplying a namespace and name, via the engine
configuration file or the configuration API.

The code for the example observer object as shown in this chapter can be found in the test source folder in
package net . esper . regressi on. cl i ent by the name MyFi | eExi st sQbser ver . The sample observer discussed
here very simply checks if a file exists, using the filename supplied by the pattern statement, and via the
java.io. File class.

11.5.1. Implementing an Observer Factory

An observer factory classis responsible for the following functions:

Esper 1.11.0 104

Extension and Plug-in

* Implement aset Cbser ver Par anet er s method that validates observer parameters.
* Implement amakeCbser ver method that constructs a new observer instance.

Observer factory classes subclass net . esper. patt er n. obser ver. Cbhser ver Fact or ySupport :

public class M/Fil eExi st sQbserver Factory extends Observer FactorySupport { ...

The engine constructs one instance of the observer factory class for each time the observer is listed in a state-
ment.

The observer factory class implements the set bser ver Par anet er s method that is passed the parameters to the
observer as supplied by the statement. It verifies the observer parameters, similar to the code snippet shown
next. Our example file-exists observer takes a single string parameter:

public void set Qbserver Paranet er s(Li st <Obj ect > observer Par anet er s)
t hrows QCbserver Par anet er Exception {
String message = "File exists observer takes a single string fil ename paraneter"”;
if (observerParaneters.size() !=1) {
t hrow new Cbser ver Par anet er Except i on(message) ;
}
i

f (!(observerParaneters.get(0) instanceof String)) {
t hrow new Cbser ver Par anet er Except i on(message) ;

}

filename = observerParaneters.get(0).toString();

The pattern engine calls the makeCbser ver method to create a new observer instance. The example nakeCb-
server method shown below passes parameters to the observer instance:

publ i c Event Cbserver nakeCbserver (PatternCont ext context,
Mat chedEvent Map begi nSt at e,
Obser ver Event Eval uat or observer Event Eval uat or,
(bj ect st at eNodel d,
hj ect observerState) {
return new MyFi | eExi st sCbserver (begi nState, observerEvent Eval uator, fil enane);

}

The tbser ver Event Eval uat or parameter allows an observer to indicate events, and to indicate change of truth
value to permanently false. Use this interface to indicate when your observer has received or witnessed an
event, or changed it's truth value to true or permanently false.

The Mat chedEvent Map parameter provides a Map of all matching events for the expression prior to the observ-
er's start. For example, consider a pattern as below:

a=MyEvent -> nypl ugi n: ny_observer(...)

The above pattern tagged the MyEvent instance with the tag "a'. The pattern engine starts an instance of
ny_observer when it receives the first MyEvent. The observer can query the vat chedEvent Map using "a' as a
key and obtain the tagged event.

11.5.2. Implementing an Observer Class

An observer class has the following responsibilities:

e Providesast art Gbser ve method that starts the observer.
e Provides a st optbser ve method that stops the observer, called by the engine when the whole pattern is
stopped, or the sub-expression containing the observer is stopped.

Esper 1.11.0 105

Extension and Plug-in

Observer classes subclass net . esper. patt ern. observer. Cbser ver Support as shown here:

public class M/Fil eExi stsCbserver inplenments Event Coserver { ...

The engine invokes the observer factory class to construct an instance of the observer class for each new sub-
expression instance within a statement.

An observer class must provide an implementation of the st ar t Cbser ve method that the pattern engine invokes
to start an observer instance. In our example, the observer checks for the presence of a file and indicates the
truth value to the remainder of the expression:

public void startCbserve() {
File file = new File(filenane);
if (file.exists()) {
obser ver Event Eval uat or . obser ver Eval uat eTr ue(begi nSt at e) ;

}
el se {
obser ver Event Eval uat or. obser ver Eval uat eFal se();

}
}

Note the observer passes the Gbser ver Event Eval uat or an instance of Mat chedEvent Map. The observer can aso
create one or more new events and pass these events through the Map to the remaining expressions in the pat-
tern.

11.5.3. Configuring Observer Namespace and Name

The observer factory class name as well as the namespace and name for the new observer must be added to the
engine configuration via the configuration APl or using the XML configuration file. The configuration shown
below is XML however the same options are available through the configuration API:

<esper - configuration
<pl ugi n- pat t er n- observer namespace="nypl ugi n* nanme="fil e_exi sts"
factory-cl ass="net. esper.regression.client. MFil eExi st sCbserverFactory" />
</ esper-confi guration>

The new observer is now ready to use in a statement. The next pattern statement checks every 10 seconds if the
given file exists, and indicates to the listener when the file is found.

select * frompattern [every tinmer:interval (10 sec) -> nyplugin:file_exists("myfile.txt")]

Esper 1.11.0 106

Chapter 12. Examples, Tutorials, Case Studies

The tutorial and case studies ae avalable on the public web site a ht-
tp:// esper.codehaus. org/ eval uati ng/ eval uating. htm .

12.1. Examples Overview

This chapter outlines the examples that come with Esper in the exanpl es/ src folder of the distribution. The
code for examples can be found in the net . esper . exanpl e packages.

In order to compile and run the sampl es please follow the below instructions:

1. MakesureJavalb or greater isinstaled and the JAVA_HOME environment variable is set.
2. Open aconsole window and change directory to exampleg/etc.

3. Run"setenv.bat" (Windows) or "setenv.sh" (Unix) to verify your environment settings.

4. Run"compile.bat" (Windows) or "compile.sh" (Unix) to compile the examples.

5. Now you are ready to run the examples. Some examples require mandatory parameters. Further informa-
tion to running each example can be found in the "examples/etc" folder in file "readme.txt".

6. Maodify thelogger logging level in the "logdj.xml" configuration file changing DEBUG to INFO on a class
or package level to reduce the volume of text output.

JUnit tests exist for the example code. The JUnit test source code for the examples can be found in the ex-
anpl es/ test folder. To build and run the example JUnit tests, use the Maven 2 goal test. The JUnit test
source code can aso be helpful in understanding the example and in the use of Esper APIs.

12.2. Market Data Feed Monitor

This example processes a raw market data feed. It reports throughput statistics and detects when the data rate of
afeed falls off unexpectedly. A rate fall-off may mean that the data is stale and we want to alert when thereisa
possible problem with the feed.

The classes for this example live in package net . esper . exanpl e. mar ket dat af eed. Run "run_mktdatafeed.bat"

(Windows) or "run_mktdatafeed.sh" (Unix) in the exanpl es/ et ¢ folder to start the market data feed simulator.

12.2.1. Input Events

The input stream consists of 1 event stream that contains 2 simulated market data feeds. Each individual event
in the stream indicates the feed that supplies the market data, the security symbol and some pricing information:

String symbol ;
FeedEnum f eed;
doubl e bi dPri ce;
doubl e askPri ce;

12.2.2. Computing Rates Per Feed

Esper 1.11.0 107

Examples, Tutorials, Case Studies

For the throughput statistics and to detect rapid fall-off we calculate a ticks per second rate for each market data
feed.

We can use an EQL statement that specifies a view onto the market data event stream that batches together 1
second of events. We specify the feed and a count of events per feed as output values. To make this data avail-
able for further processing, we insert output events into the TicksPerSecond event stream:

insert into TicksPerSecond
sel ect feed, count(*) as cnt

from Mar ket Dat aEvent. wi n: ti me_bat ch(1 second)
group by feed

12.2.3. Detecting a Fall-off

We define a rapid fall-off by alerting when the number of ticks per second for any second falls below 75% of
the average number of ticks per second over the last 10 seconds.

We can compute the average number of ticks per second over the last 10 seconds simply by using the TicksPer-
Second events computed by the prior statement and averaging the last 10 seconds. Next, we compare the cur-
rent rate with the moving average and filter out any rates that fall below 75% of the average:

sel ect feed, avg(cnt) as avgCnt, cnt as feedCnt
from Ti cksPer Second. wi n: ti me(10 seconds)
group by feed

havi ng cnt < avg(cnt) * 0.75

12.2.4. Event generator

The simulator generates market data events for 2 feeds, feed A and feed B. The first parameter to the simulator
is a number of threads. Each thread sends events for each feed in an endless loop. Note that as the Java VM
garbage collection kicks in, the example generates rate drop-offs during such pauses.

The second parameter is a rate drop probability parameter specifies the probability in percent that the simulator
drops the rate for arandomly chosen feed to 60% of the target rate for that second. Thus rate fall-off aerts can
be generated.

The third parameter defines the number of seconds to run the example.

12.3. Transaction 3-Event Challenge

The classes for this example live in package net. esper. exanpl e. transacti on. Run "run_txnsim.bat"
(Windows) or "run_txnsim.sh" (Unix) to start the transaction simulator. Please see the readme file in the same
folder for build instructions and command line parameters.

12.3.1. The Events

The use case involves tracking three components of a transaction. It's important that we use at least three com-
ponents, since some engines have different performance or coding for only two events per transaction. Each
component comes to the engine as an event with the following fields:

e Transaction ID
¢ Time stamp

Esper 1.11.0 108

Examples, Tutorials, Case Studies

In addition, we have the following extra fields:

Inevent A:

e Customer ID

In event C:

e Supplier ID (the ID of the supplier that the order was filled through)

12.3.2. Combined event

We need to take in events A, B and C and produce a single, combined event with the following fields:

e Transaction ID

e Customer ID

* Time stamp from event A
e Time stamp from event B
* Time stamp from event C

What we're doing here is matching the transaction 1Ds on each event, to form an aggregate event. If all these
events were in a relational database, this could be done as a simple SQL join... except that with 10,000 events
per second, you will need some serious database hardware to do it.

12.3.3. Real time summary data

Further, we need to produce the following:

* MinMax,Average total latency from the events (difference in time between A and C) over the past 30
minutes.

* Min,Max,Average latency grouped by (a) customer ID and (b) supplier ID. In other words, metrics on the
the latency of the orders coming from each customer and going to each supplier.

* Min,Max,Average latency between events A/B (time stamp of B minus A) and B/C (time stamp of C minus
B).

12.3.4. Find problems

We need to detect a transaction that did not make it through all three events. In other words, a transaction with
events A or B, but not C. Note that, in this case, what we care about is event C. The lack of events A or B could
indicate a failure in the event transport and should be ignored. Although the lack of an event C could also be a
transport failure, it merits looking into.

12.3.5. Event generator

To make testing easier, standard and to demonstrate how the example works, the example is including an event
generator. The generator generates events for a given number of transactions, using the following rules:

* Onein 5,000 transactions will skip event A

¢ Onein 1,000 transactions will skip event B

e Onein 10,000 transactions will skip event C.

¢ Transaction identifiers are randomly generated

» Customer and supplier identifiers are randomly chosen from two lists

Esper 1.11.0 109

Examples, Tutorials, Case Studies

* The time stamp on each event is based on the system time. Between events A and B as well as B and C,
between 0 and 999 is added to the time. So, we have an expected time difference of around 500 milli-
seconds between each event

e Eventsarerandomly shuffled as described below

To make things harder, we don‘t want transaction events coming in order. This code ensures that they come
completely out of order. To do this, we fill in a bucket with events and, when the bucket is full, we shuffle it.
The buckets are sized so that some transactions' events will be split between buckets. So, you have afairly ran-
domized flow of events, representing the worst case from a big, distributed infrastructure.

The generator lets you change the size of the bucket (small, medium, large, larger, largerer). The larger the
bucket size, the more events potentially come in between two eventsin a given transaction and so, the more the
performance characteristics like buffers, hashes/indexes and other structures are put to the test as the bucket
Size increases.

12.4. J2EE Self-Service Terminal Management

The example is about a J2EE-based self-service terminal managing system in an airport that gets alot of events
from connected terminals. The event rate is around 500 events per second. Some events indicate abnormal situ-
ations such as "paper low' or 'terminal out of order'. Other events observe activity as customers use aterminal to
check in and print boarding tickets.

12.4.1. Events

Each self-service terminal can publish any of the 6 events below.

¢ Checkin - Indicates a customer started a check-in dialog

e Cancelled - Indicates a customer cancelled a check-in dialog

e Completed - Indicates a customer completed a check-in dialog

e QOutOfOrder - Indicates the terminal detected a hardware problem

e LowPaper - Indicates the terminal islow on paper

e Status- Indicates terminal status, published every 1 minute regardless of activity asaterminal heartbeat

All events provide information about the terminal that published the event, and a timestamp. The terminal in-
formation is held in a property hamed "term" and provides aterminal id. Since all events carry similar informa-
tion, we model each event as a subtype to a base class BaseTerminal Event, which will provide the terminal in-
formation that all events share. This enables usto treat all termina events polymorphically, that is we can treat
derived event typesjust like their parent event types. This helps simplify our queries.

All terminals publish Status events every 1 minute. In normal cases, the Status events indicate that aterminal is
alive and online. The absence of status events may indicate that a terminal went offline for some reason and
that may need to be investigated.

12.4.2. Detecting Customer Check-in Issues

A customer may be in the middle of a check-in when the terminal detects a hardware problem or when the net-
work goes down. In that situation we want to alert ateam member to help the customer. When the terminal de-
tects a problem, it issues an OutOfOrder event. A pattern can find situations where the terminal indicates out-
of-order and the customer isin the middle of the check-in process:

select * frompattern [every a=Checkin ->
(GutOOder(termid=a.termid) and not
(Cancell ed(termid=a.termid) or Conpleted(termid=a.termid)))]

Esper 1.11.0 110

Examples, Tutorials, Case Studies

12.4.3. Absence of Status Events

Since Status events arrive in regular intervals of 60 seconds, we can make us of temporal pattern matching us-
ing timer to find events that didn't arrive. We can use the every operator and timer:interval () to repeat an action
every 60 seconds. Then we combine this with a not operator to check for absence of Status events. A 65 second
interval during which we look for Status events allows 5 seconds to account for a possible delay in transmission
or processing:

select "terminal 1 is offline frompattern
[every tiner:interval (60 sec) -> (tinmer:interval (65 sec) and not Status(termid = 'T1'))]
output first every 5 mnutes

12.4.4. Activity Summary Data

By presenting statistical information about terminal activity to our staff in real-time we enable them to monitor
the system and spot problems. The next example query simply gives us a count per event type every 1 minute.
We could further use this data, available through the CountPerType event stream, to join and compare against a
recorded usage pattern, or to just summarize activity in rea-time.

insert into CountPerType
sel ect type, count(*) as count Per Type
from BaseTerm nal Event.wi n:ti ne(10 m nutes)

group by type
output all every 1 m nutes

12.4.5. Sample Application for J2EE Application Server

The example code in the distribution package implements a message-driven enterprise java bean (MDB EJB).
We used an MDB as a convenient place for processing incoming events viaa JM S message queue or topic. The
example uses 2 IM S queues: One queue to receive events published by terminals, and a second queue to indic-
ate situations detected via EQL statement and listener back to areceiving process.

This example has been packaged for deployment into a JBoss Java application server (see ht-
tp:/lwww.jboss.org) with default deployment configuration. JBoss is an open-source application server avail-
able under LGPL license. Of course the choice of application server does not indicate a requirement or prefer-
ence for the use of Esper in a J2EE container. Other quality J2EE application servers are available and perhaps
more suitable to run this example or asimilar application.

The complete example code can be found in the "examples/terminalsvc" folder of the distribution. The Java
package name is net.esper.example.terminalsvc.

Running the Example

The pre-build EAR file contains the MDB for deployment to a JBoss application server with default deploy-
ment options. The JBoss default configuration provides 2 queues that this example utilizes. queue/A and queue/
B. The queue/B is used to send events into the MDB, while queue/A is used to indicate back the any data re-
ceived by listenersto EQL statements.

The application can be deployed by copying the ear file in the "examples/terminal svc/terminalsvc-ear” folder to
your JBoss deployment directory located under the JBoss home directory under "server/default/deploy”.

The example contains an event simulator and an event receiver that can be invoked from the command line. See
the folder "examples/terminalsvc/etc” folder readme file and start scripts for Windows and Unix, and the docu-

Esper 1.11.0 111

Examples, Tutorials, Case Studies

mentation set for further information on the simulator.

Building the Example

This example requires Maven 2 to build. To build the example, change directory to the folder "examples/ter-
minalsvc" and type "mvn package". The instructions have been tested with JBoss AS 4.0.4.GA and Maven
2.0.4.

The Maven build packages the EAR file for deployment to a JBoss application server with default deployment
options.

Running the Event Simulator and Receiver

The example also contains an event simulator that generates meaningful events. The simulator can be run from
the directory "examples/terminalsvc/etc” via the command "run_terminalsvc_sender.bat" (Windows) and
"run_terminalsvc_sender.sh" (Linux). The event simulator generates a batch of at least 200 events every 1
second. Randomly, with a chance of 1 in 10 for each batch of events, the ssmulator generates either an OutO-
fOrder or aLowPaper event for arandom terminal. Each batch the simulator generates 100 random terminal ids
and generates a Checkin event for each. It then generates either a Cancelled or a Completed event for each.
With achance of 1in 1000, it generates an OutOfOrder event instead of the Cancelled or Completed event for a
terminal.

The event receiver listens to the MDB-outcoming queue for alerts and prints these out to console. The receiver
can be run from the directory "examples/terminalsvc/etc" via the command "run_terminalsvc_receiver.bat"
(Windows) and "run_terminalsvc_receiver.sh" (Linux).

12.5. Assets Moving Across Zones - An RFID Example

This example out of the RFID domain processes location report events. Each location report event indicates an
asset id and the current zone of the asset. The example solves the problem that when a given set of assetsis not
moving together from zone to zone, then an alert must be fired.

Each asset group is tracked by 2 statements. The two statements to track a single asset group consisting of as-
setsidentified by asset ids{1, 2, 3} are asfollows:

insert into CountZone_ Gl

select 1 as groupld, zone, count(*) as cnt

from Locati onReport (assetld in 1, 2, 3).std:unique(' assetld")
group by zone

sel ect Part.zone frompattern [
every Part=Count Zone_Gl(cnt in (1,2)) ->
(timer:interval (10 sec) and not CountZone_Gl(zone=Part.zone, cnt in (0,3)))]

The classes for this example can be found in package net . esper . exanpl e. rfi d.

This example provides a Swing-based GUI that can be run from the command line. The GUI alows drag-
and-drop of three RFID tags that form one asset group from zone to zone. Each time you move an asset across
the screen the example sends an event into the engine indicating the asset id and current zone. The example de-
tects if within 10 seconds the three assets do not join each other within the same zone, but stay split across
zones. Run "run_rfid_swing.bat" (Windows) or "run_rfid_swing.sh" (Unix) to start the example's Swing GUI.

The example also provides a simulator that can be run from the command line. The simulator generates a num-
ber of asset groups as specified by a command line argument and starts a number of threads as specified by a

Esper 1.11.0 112

Examples, Tutorials, Case Studies

command line argument to send location report events into the engine. Run "run_rfid_sim.bat" (Windows) or
"run_rfid_sim.sh" (Unix) to start the RFID location report event simulator. Please see the readme file in the
same folder for build instructions and command line parameters.

12.6. AutolD RFID Reader generating XML documents

In this example an array of RFID readers sense RFID tags as pallets are coming within the range of one of the
readers. A reader generates XML documents with observation information such as reader sensor ID, observa-
tion time and tags observed. A statement computes the total number of tags per reader sensor ID within the last
60 seconds.

This example demonstrates how XML documents unmarshalled to or g. wdc. dom Node DOM document nodes
can natively be processed by the engine without requiring Java object event representations. The example uses
an XPath expression for an event property counting the number of tags observed by a sensor. The XML docu-
ments follow the AutolD (ht t p: / / www. aut oi d. or g/) organization standard.

The classes for this example can be found in package net . esper . exanpl e. aut oi d. AS events are XML docu-
ments with no Java object representation, the example does not have event classes.

A simulator that can be run from the command line is also available for this example. The simulator generates a
number of XML documents as specified by a command line argument and prints out the totals per sensor. Run
"run_autoid.bat" (Windows) or "run_autoid.sh”" (Unix) to start the autoid simulator. Please see the readme file
in the same folder for build instructions and command line parameters.

The code snippet below shows the simple statement to compute the total number of tags per sensor. The state-
ment is created by classnet . esper . exanpl e. aut oi d. RFI DTagsPer Sensor St nt .

select I D as sensorld, sum(countTags) as numlagsPer Sensor
f rom Aut ol dRFI DExanpl e. wi n: ti ne(60 seconds)

where Qbservation[0]. Conmand = ' READ PALLET_TAGS ONLY'
group by ID

12.7. StockTicker

The StockTicker example comes from the stock trading domain. The example creates event patterns to filter
stock tick events based on price and symbol. When a stock tick event is encountered that falls outside the lower
or upper price limit, the example simply displays that stock tick event. The price rangeitself is dynamically cre-
ated and changed. Thisis accomplished by an event patterns that searches for another event class, the price lim-
it event.

The classes net . esper. exanpl e. st ockti cker. event. St ockTick and PriceLinit represent our events. The
event patterns are created by the classnet . esper . exanpl e. st ockt i cker. noni t or. St ockTi cker Moni t or .

Summary:

e Good example to learn the APl and get started with event patterns

» Dynamically creates and removes event patterns based on price limit events received

« Simple, highly-performant filter expressions for event properties in the stock tick event such as symbol and
price

12.8. MatchMaker

Esper 1.11.0 113

Examples, Tutorials, Case Studies

In the MatchMaker example every mobile user hasan X and Y location, a set of properties (gender, hair color,
age range) and a set of preferences (one for each property) to match. The task of the event patterns created by
this example is to detect mobile users that are within proximity given a certain range, and for which the proper-
ties match preferences.

The event class representing mobile users is net . esper . exanpl e. mat chmaker . event . Mobi | eUser Bean. The
net . esper . exanpl e. mat chrmaker . moni t or . Mat chMaki nghoni tor class contains the patterns for detecing
matches.

Summary:

« Dynamically creates and removes event patterns based on mobile user events received
e Usesrange matching for X and Y properties of mabile user events

12.9. QualityOfService

This example develops some code for measuring quality-of-service levels such as for a service-level agreement
(SLA). A SLA isacontract between 2 parties that defines service constraints such as maximum latency for ser-
vice operations or error rates.

The example measures and monitors operation latency and error counts per customer and operation. When one
of our operations oversteps these constraints, we want to be alerted right away. Additionally, we would like to
have some monitoring in place that checks the health of our service and provides some information on how the
operations are used.

Some of the constraints we need to check are:

» That the latency (timeto finish) of some of the operationsis aways less then X seconds.
» That the latency average is dwayslessthen Y seconds over Z operation invocations.

The net . esper. exanpl e. qos_sl a. event s. Oper at i onMeasur enent event class with its latency and status
properties is the main event used for the SLA analysis. The other event Lat encyLi mi t servesto set latency lim-
itson the fly.

The net . esper . exanpl e. qos_sl a. noni t or . Aver ageLat encyMoni t or creates an EQL statement that computes
latency statistics per customer and operation for the last 100 events. The DynalLat encySpi keMoni t or USES an
event pattern to listen to spikes in latency with dynamically set limits. The Err or Rat eMoni t or uses the timer
"at' operator in an event pattern that wakes up periodically and polls the error rate within the last 10 minutes.
The servi ceHeal t hvoni t or simply alerts when 3 errors occur, and the Spi keAndEr r or Moni t or alerts when a
fixed latency is overstepped or an error status is reported.

Summary:

« Thisexample combines event patterns with EQL statements for event stream analysis.

e Showstheuseof thetimer ' at* operator and followed-by operator - > in event patterns

e Qutlines basic EQL statements

« Shows how to pull data out of EQL statements rather then subscribing to events a statement publishes

12.10. LinearRoad

The Linear Road example is a very incomplete implementation of the Stream Data Management Benchmark [3]
by Standford University.

Esper 1.11.0 114

Examples, Tutorials, Case Studies

Linear Road simulates a toll system for the motor vehicle expressways of alarge metropolitan area. The main
event in this example is a car location report which the class net . esper. exanpl e. | i near r oad. Car LocEvent
represents. Currently the event stream joins are performed by JUnit test classes in the exanpl es/ t est folder.
See the net . esper. exanpl e. | i near r oad. Test Acci dent Not i fy and the Test Car Segnent Count classes. Please
consider thisawork in progress.

Summary:

e Shows more complex joins between event streams.

12.11. StockTick RSI

The RSl gives you the trend for a stock and for more complete explanation, you can visit the link: ht-
tp:/Iwww.stockcharts.com/education/IndicatorAnaysigindic_RSI.html.

After a definite number of stock events, or accumulation period, the first RSI is computed. Then for each sub-
sequent stock event, the RSI calculations use the previous period’s Average Gain and Loss to determine the
“smoothed RSI”.

Summary:

e Uses a simple event pattern with a filter which feeds a listener that computes the RSI, which publishes
events containing the computed RSI.

Esper 1.11.0 115

Chapter 13. Performance

Esper has been highly optimized to handle very high throughput streams with very little latency between event
receipt and output result posting. It is also possible to use Esper on a soft-real-time or hard-real-time JVM to
maximize predictability even further.

This section describes performance best practices and explains how to assess Esper performance by using our
provided performance kit.

13.1. Performance Results

For a complete understanding of those results, consult the next sections.

Esper exceeds over 500 000 event/s on a dual CPU 2GHz |Intel based hardware,

with engine | atency bel ow 3 m croseconds average (bel ow 10us with nore than

99% predi ctability) on a VWAP benchmark with 1000 statenents registered in the system
- this tops at 70 Mit/s at 85% CPU usage.

Esper al so denonstrates linear scalability from 100 000 to 500 000 event/s on this
hardware, with consistent results accross different statenents.

O her tests denonstrate equival ent perfornmance results
(straight through processing, match all, match none, no statenent registered,
VWAP with time based wi ndow or | ength based wi ndows).

Tests on a | aptop denonstrated about 5x tinme |ess performance - that is
bet ween 70 000 event/s and 200 000 event/s - which still gives roomfor easy
testing on small configuration.

13.2. Performance Tips

13.2.1. Understand how to tune your Java virtual machine

Esper runs on a VM and you heed to be familiar with VM tuning. Key parameters to consider include minim-
um and maximum heap memory and nursery heap sizes. Statements with time-based or length-based data win-
dows can consume large amounts of memory astheir size or length can be large.

For time-based data windows, one needs to be aware that the memory consumed depends on the actual event
stream input throughput. Event pattern instances also consume memory, especially when using the "every"
keyword in patterns to repeat pattern sub-expressions - which again will depend on the actual event stream in-
put throughput.

13.2.2. Compare Esper to other solutions

If you compare Esper performance to the performance of another solution, you need to ensure that your state-
ments have truly equivalent semantics. The is because between different vendors the event processing language
can be seem fairly similar whoever may, for all similarities, produce different results.

For example some vendor solution mandates the use of "bounded streams'. The next statement shows one
vendor's event processing syntax:

/1 OQther (nanme onmitted) vendor solution statenent:

Esper 1.11.0 116

Performance

select * from (select * from Market where ticker = 'GOOG) retain 1 event
/1 The above is NOT an Esper statenment

The semantically equivalent statement in Esper is:

/| Esper statenent with the sane senantics:
select * from MarketData(ticker="$").w n:length(1)

Asan example, aNOT semantically equivalent statement in Esper is:

/| Esper statement that DOES ***NOT*** HAVE the same semantics
/1 No |l ength wi ndow was used
sel ect * from Market Data(ticker="$")

13.2.3. Select the underlying event rather than individual fields

By selecting the underlying event in the select-clause we can reduce load on the engine, since the engine does
not need to generate a new output event for each input event.

For example, the following statement returns the underlying event to update listeners:

/1 Better performance
sel ect * from RFI DEvent

In comparison, the next statement selects individual properties. This statement requires the engine to generate
an output event that contains exactly the required properties:

/'l Less good performance

sel ect assetld, zone, xlocation, ylocation from RFI DEvent

13.2.4. Prefer stream-level filtering over post-data-window filtering

Esper stream-level filtering is very well optimized, while filtering via the where-clause post any data windows
is not optimized. In very simple statements that don't have data windows this distinction can make a perform-
ance difference.

Consider the example below, which performs stream-level filtering:

/1 Better performance : streamlevel filtering
select * from Market Data(ticker ="' GOOG)

The example below is the equivalent (same semantics) statement and performs post-data-window filtering
without a data window. The engine does not optimize statements that filter in the where-clause for the reason
that data window views are generally present.

/'l Less good performance : post-data-w ndow filtering
sel ect * from Market where ticker = ' GOOG

Thus this optimization technique applies to statements without any data window.

When a data window is used, the semantics change. Let's look at an example to better understand the differ-
ence: In the next statement only GOOG market events enter the length window:

sel ect avg(price) from MarketData(ticker = 'GOOG). w n: | engt h(100)

Esper 1.11.0 117

Performance

The above statement computes the average price of GOOG market data events for the last 100 GOOG market
data events.

Compare the filter position to a filter in the where clause. The following statement is NOT equivalent as all
events enter the data window (not just GOOG events):

sel ect avg(price) from Market.w n:|ength(100) where ticker = 'GOOG

The statement above computes the average price of all market data events for the last 100 market data events,
and outputs results only for GOOG.

13.2.5. Reduce the use of arithmetic in expressions

Esper does not yet attempt to pre-evaluate arithmetic expressions that produce constant results.
Therefore, afilter expression as below is optimized:

/'l Better performance : no arithnetic
sel ect * from Market Dat a(pri ce>40)

While the engine cannot currently optimize this expression:
/'l Less good performance : with arithnetic

sel ect * from Market Dat a(pri ce+10>50)

13.2.6. Consider using EventPropertyGetter for fast access to event proper-
ties

The EventPropertyGetter interface is useful for obtaining an event property value without property name table
lookup given an EventBean instance that is of the same event type that the property getter was obtained from.

When compiling a statement, the EPStatement instance lets us know the EventType via the getEventType()
method. From the EventType we can obtain EventPropertyGetter instances for named event properties.

To demonstrate, consider the following simple statement:

sel ect synmbol, avg(price) from Market group by synbol

After compiling the statement, obtain the EventType and pass the type to the listener:

EPSt at enent stnt = epService. get EPAdm ni strator().createEQ.(stnt Text);
MyCet t er Updat eLi stener |istener = new MyGetterUpdat eLi st ener (stnt.get Event Type());

The listener can use the type to obtain fast getters for property values of events for the same type:

public class MyCetterUpdateListener inplenents Statenment AwareUpdat eLi stener {
private final EventPropertyGetter synbol Getter;
private final EventPropertyGetter avgPriceGetter;

public M/GetterUpdatelListener(Event Type event Type) {

synbol Getter = event Type. get Getter ("synbol");
avgPriceCetter = eventType.getGetter("avg(price)");

Last, the update method can invoke the getters to obtain event property values:

Esper 1.11.0 118

Performance

public void update(Event Bean[] eventBeans, EventBean[] ol dBeans, EPStatenent epStatenment, EPServi
String synmbol = (String) synmbol Getter.get(eventBeans[O0]);
| ong vol une = (Long) vol unmeCetter.get(eventBeans[O0]);
/1 some nore |ogic here

13.2.7. Consider casting the underlying event

When an application requires the value of most or all event properties, it can often be best to simply select the
underlying event viawildcard and cast the received events.

Let'slook at the sample statement:

sel ect * from Market Dat a(synbol regexp 'Efa-z]"')

An update listener to the statement may want to cast the received events to the expected underlying event class:

public void update(Event Bean[] event Beans, EventBean[] eventBeans) {
Mar ket Data nd = (Market Data) event Beans[0] . get Underlying();
/1l some nore |ogic here

13.2.8. Turn off logging

Since Esper 1.10, even if you don't have a log4j configuration file in place, Esper will make sure to minimize
execution path logging overhead. For prior versions, and to reduce logging overhead overall, we recommend
the "WARN?" log level or the "INFO" log level.

Please see the log4j configuration file in "etc/infoonly_logdj.xml" for example log4j settings.

13.3. Using the performance kit

13.3.1. How to use the performance kit

The benchmark application is basically an Esper event server build with Esper that listens to remote clients
over TCP. Remote clients send MarketData(ticker, price, volume) streams to the event server. The Esper event
server is started with 1000 statements of one single kind (unless otherwise written), with one statement per tick-
er symbol, unless the statement kind does not depend on the symbol. The statement prototype is provided along
the results with a'$' instead of the actua ticker symbol value. The Esper event server is entirely multithreaded
and can leverage the full power of 32bit or 64bit underlying hardware multi-processor multi-core architecture.

The kit also prints out when starting up the event size and the theoretical maximal throughput you can get on a
100 Mbit/s and 1 Ghit/s network. Keep in mind a 100 Mbit/s network will be overloaded at about 400 000
event/s when using our kit despite the small size of events.

Results are posted on our Wiki page at http://docs.codehaus.org/display/ESPER/Esper+performance. Reported
results do not represent best ever obtained results. Reported results may help you better compare Esper to other
solutions (for latency, throughput and CPU utilization) and also assess your target hardware and JVMs.

The Esper event server, client and statement prototypes are provided in the source repository esper/
trunk/ exanpl es/ benchnar k/ . Refer to http://xircles.codehaus.org/projects/esper/repo for source access.

Esper 1.11.0 119

http://docs.codehaus.org/display/ESPER/Esper+performance
http://xircles.codehaus.org/projects/esper/repo

Performance

A built is provided for convenience (without sources) as an attachment to the Wiki page a ht-
tp://docs.codehaus.org/pages/viewpageattachments.action?pagel d=8356191. It contains Ant script to start cli-
ent, server in simulation mode and server. For real measurement we advise to start from a shell script (because
Ant is pipelining stdout/stderr when you invoke a VM from Ant - which is costly). Sample scripts are provided
for you to edit and customize.

If you use the kit you should:

1. Choose the statement you want to benchmark, add it to etc/ st at enents. properties under your own
KEY and usethe - node KeY when you start the Esper event server.

2. Prepare your runServer.sh/runServer.cmd and runClient.sh/runclient.cmd scripts. You'll need to drop re-
quired jar librariesin 1i b/ , make sure the classpath is configured in those script to include bui | d and et ¢
. Therequired libraries are Esper (any compatible version, we have tested started with Esper 1.7.0) and its
dependencies as in the sample below (with Esper 1.10) :

cl asspath on Uni x/Li nux (on one single |ine)

etc:build:lib/esper-1.10.0.jar:lib/conmobns-logging-1.0.3.jar:lib/cglib-full-2.0.2.jar
clib/lantlr-2.7.5.jar:lib/log4j-1.2.8.jar

@em classpath on Wndows (on one single |ine)

etc; build;lib\esper-1.10.0.jar;!lib\comons-1ogging-1.0.3.jar;lib\cglib-full-2.0.2.jar
;liblantlr-2.7. 5. jar;lib\log4j-1.2.8.jar
Notethat . /etc and ./ bui | d have to be in the classpath. At that stage you should also start to set min and

max VM heap. A good start is1GB asin - Xxms1g - Xmx1g

3. Write the statement you want to benchmark given that client will send a stream MarketData(String ticker,
int volume, double price), add it to et ¢/ st at enent s. properti es under your own KEY and use the - mode
KEY when you start the Esper event server. Use' $' in the statement to create a prototype. For every sym-
bol, a statement will get registered with all * $ replaced by the actual symbol value (f.e." cGooG)

4. Ensure client and server are using the same - Desper . benchnar k. synbol =1000 value. This sets the number
of symbol to use (thus may set the number of statement if you are using a statement prototype, and gov-
erns how MarketData event are represented over the network. Basically all events will have the same size
over the network to ensure predictability and will be ranging between soaa and s999A if you use 1000 as a
value here (prefix with S and padded with A up to a fixed length string. Volume and price attributes will
be randomized.

5. Establish a performance baseline in simulation mode (without clients). Use the -rate 1x5000 option to
simulate one client (one thread) sending 5000 evt/s. Y ou can ramp up both the number of client simulated
thread and their emission rate to maximize CPU utilization. The right number should mimic the client
emission rate you will use in the client/server benchmark and should thus be consistent with what your cli-
ent machine and network will be able to send. On small hardware, having a lot of thread with slow rate
will not help getting high throughput in this simulation mode.

6. Do performance runs with client/server mode. Remove the -rat e NxmMoption from the runServer script or
Ant task. Start the server with - hel p to display the possible server options (listen port, statistics, fan out
options etc). On the remote machine, start one or more client. Use - hel p to display the possible client op-
tions (remote port, host, emission rate). The client will output the actual number of event it is sending to
the server. If the server gets overloaded (or if you turned on - queue options on the server) the client will
likely not be able to reach itstarget rate.

Usually you will get better performance by using server side - queue -1 option so as to have each client
connection handled by a single thread pipeline. If you change to O or more, there will be intermediate
structures to pass the event stream in an asynchronous fashion. This will increase context switching, al-

Esper 1.11.0 120

http://docs.codehaus.org/pages/viewpageattachments.action?pageId=8356191
http://docs.codehaus.org/pages/viewpageattachments.action?pageId=8356191

Performance

though if you are using many clients, or are using the - sl eep xxx (Xxx in milliseconds) to simulate a
listener delay you may get better performance.

The most important server side option is-stat xxx (XXX in seconds) to print out throughput and latency
statistics aggregated over the last xxx seconds (and reset every time). It will produce both internal Esper
latency (in nanosecond) and also end to end latency (in millisecond, including network time). If you are
measuring end to end latency you should make sure your server and client machine(s) are having the same
time with f.e. ntpd with a good enough precision. The stat format is like:

---Stats - engine (unit: ns)
Avg: 2528 #4101107

0 < 5000: 97.01% 97.01% #3978672
5000 < 10000: 2.60% 99.62% #106669
10000 < 15000: 0.35% 99.97% #14337
15000 < 20000: 0.02% 99.99% #971
20000 < 25000: 0.00% 99.99% #177
25000 < 50000: 0. 00% 100. 00% #89
50000 < 100000: 0. 00% 100. 00% #41
100000 < 500000: 0. 00% 100. 00% #120
500000 < 1000000: 0. 00% 100. 00% #2
1000000 < 2500000: 0. 00% 100. 00% #7
2500000 < 5000000: 0. 00% 100. 00% #5
5000000 < nor e: 0. 00% 100. 00% #18

---Stats - endToEnd (unit: ns)
Avg: -2704829444341073400 #4101609
0 < 1. 75.01% 75.01% #3076609

1< 5: 0.00% 75.01% #0

5 < 10: 0.00% 75.01% #0

10 < 50: 0.00% 75.01% #0
50 < 100: 0.00% 75.01% #0
100 < 250: 0.00% 75.01% #0
250 < 500: 0.00% 75.01% #0
500 < 1000: 0.00% 75.01% #0

1000 < nore: 24.99% 100. 00% #1025000

Thr oughput 412503 (active 0 pending O cnx 4)
This onereads as:

"Throughput is 412 503 event/s with 4 client connected. No -queue options
was used thus no event is pending at the time the statistics are printed.
Esper |atency average is at 2528 ns (that is 2.5 us) for 4 101 107 events
(whi ch means we have 10 seconds stats here). Less than 10us | atency
was achi eved for 106 669 events that is 99.62% Latency between 5us
and 10us was achi eved for those 2.60% of all the events in the interval."

"End to end latency was ... in this case likely due to client clock difference
we ended up with unusable end to end statistics."

Consider the second output paragraph on end-to-end latency:

---Stats - endToEnd (unit: ns)
Avg: 15 #863396

0 < ik 0.75% 0. 75% #6434
1< 5: 0.99% 1.74% #8552
5 < 10: 2.12% 3.85% #18269
10 < 50: 91.27% 95.13% #788062
50 < 100: 0.10% 95.22% #827
100 < 250: 4.36% 99.58% #37634
250 < 500: 0. 42% 100. 00% #3618
500 < 1000: 0. 00% 100. 00% #0
1000 < mor e: 0. 00% 100. 00% #0
Thiswould read:

"End to end | atency average is at 15 mlliseconds for the 863 396 events
considered for this statistic report. 95.13%ie 788 062 events were handl ed

Esper 1.11.0 121

Performance

(end to end) bel ow 50ms, and 91.27% wer e handl ed between 10ns and 50ns."

13.3.2. How we use the performance kit

We use the performance kit to track performance progress across Esper versions, as well as to implement op-
timizations. Y ou can track our work on the Wiki at http://docs.codehaus.org/display/ESPER/Home

Esper 1.11.0 122

 http://docs.codehaus.org/display/ESPER/Home

Chapter 14. References

14.1. Reference List

» Luckham, David. 2002. The Power of Events. Addison-Wesley.

e The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide.

e Arasu, Arvind, et.al.. 2004. Linear Road: A Stream Data Management Benchmark, Stanford University ht-
tp://www.cs.brown.edu/research/aurora/Linear_Road Benchmark_Homepage.htm.

Esper 1.11.0 123

	Esper - Java Event Stream Processor
	Table of Contents
	Preface
	Chapter 1. Technology Overview
	1.1. Introduction to CEP and event stream analysis
	1.2. CEP and relational databases
	1.3. The Esper engine for CEP
	1.4. Required 3rd Party Libraries

	Chapter 2. Event Representations
	2.1. Event Underlying Java Objects
	2.2. Event Properties
	2.3. Dynamic Event Properties
	2.4. Plain-Old Java Object Events
	2.4.1. Java Object Event Properties

	2.5. java.util.Map Events
	2.6. org.w3c.dom.Node XML Events

	Chapter 3. Processing Model
	3.1. Introduction
	3.2. Insert Stream
	3.3. Insert and Remove Stream
	3.4. Filters and Where-clauses
	3.5. Time Windows
	3.5.1. Time Window
	3.5.2. Time Batch

	3.6. Aggregation and Grouping
	3.6.1. Insert and Remove Stream
	3.6.2. Output for Event Batches
	Un-aggregated and Un-grouped
	Fully Aggregated and Un-grouped
	Aggregated and Un-Grouped
	Fully Aggregated and Grouped
	Aggregated and Grouped

	3.7. EventBean Query Results

	Chapter 4. EQL Reference: Clauses
	4.1. EQL Introduction
	4.2. EQL Syntax
	4.2.1. Specifying Time Periods
	4.2.2. Using Comments

	4.3. Choosing Event Properties And Events: the Select Clause
	4.3.1. Choosing all event properties: select *
	4.3.2. Choosing specific event properties
	4.3.3. Expressions
	4.3.4. Renaming event properties
	4.3.5. Selecting istream and rstream events

	4.4. Specifying Event Streams : the From Clause
	4.4.1. Filter-based event streams
	Specifying an event type
	Specifying filter criteria
	Filtering Ranges
	Filtering Sets of Values
	Filter Limitations

	4.4.2. Pattern-based event streams
	4.4.3. Specifying views

	4.5. Specifying Search Conditions: the Where Clause
	4.6. Aggregates and grouping: the Group-by Clause and the Having Clause
	4.6.1. Using aggregate functions
	4.6.2. Organizing statement results into groups: the Group-by clause
	4.6.3. Selecting groups of events: the Having clause
	4.6.4. How the stream filter, Where, Group By and Having clauses interact
	4.6.5. Comparing the Group By clause and the std:groupby view

	4.7. Stabilizing and Limiting Output: the Output Clause
	4.7.1. Output Clause Options
	4.7.2. Group By, Having and Output clause interaction

	4.8. Sorting Output: the Order By Clause
	4.9. Merging Streams and Continuous Insertion: the Insert Into Clause
	4.10. Joining Event Streams
	4.11. Outer Joins
	4.12. Subqueries
	4.12.1. The 'exists' keyword
	4.12.2. The 'in' keyword

	4.13. Joining Relational Data via SQL
	4.13.1. Joining SQL Query Results
	4.13.2. Outer Joins With SQL Queries
	4.13.3. Using Patterns to Request (Poll) Data
	4.13.4. JDBC Implementation Overview
	4.13.5. Oracle Drivers and No-Metadata Workaround

	Chapter 5. EQL Reference: Patterns
	5.1. Event Pattern Overview
	5.2. How to use Patterns
	5.2.1. Pattern Syntax
	5.2.2. Subscribing to Pattern Events
	5.2.3. Pulling Data from Patterns

	5.3. Operator Precedence
	5.4. Filter Expressions In Patterns
	5.5. Pattern Operators
	5.5.1. Every
	Every Operator Example
	Sensor Example

	5.5.2. And
	5.5.3. Or
	5.5.4. Not
	5.5.5. Followed-by

	5.6. Pattern Guards
	5.6.1. timer:within

	5.7. Pattern Observers
	5.7.1. timer:interval
	5.7.2. timer:at

	Chapter 6. EQL Reference: Operators
	6.1. Arithmatic Operators
	6.2. Logical And Comparsion Operators
	6.3. Concatenation Operators
	6.4. Binary Operators
	6.5. Array Definition Operator
	6.6. The 'in' Keyword
	6.7. The 'between' Keyword
	6.8. The 'like' Keyword
	6.9. The 'regexp' Keyword

	Chapter 7. EQL Reference: Functions
	7.1. Single-row Function Reference
	7.1.1. The Case Control Flow Function
	7.1.2. The Cast Function
	7.1.3. The Coalesce Function
	7.1.4. The Current_Timestamp Function
	7.1.5. The Exists Function
	7.1.6. The Instance-Of Function
	7.1.7. The Min and Max Functions
	7.1.8. The Previous Function
	Previous Event per Group
	Restrictions
	Comparison to the prior Function

	7.1.9. The Prior Function

	7.2. Aggregate Functions
	7.3. User-Defined Functions

	Chapter 8. EQL Reference: Views
	8.1. Window views
	8.1.1. Length window (win:length)
	8.1.2. Length window batch (win:length_batch)
	8.1.3. Time window (win:time)
	8.1.4. Externally-timed window (win:ext_timed)
	8.1.5. Time window batch (win:time_batch)

	8.2. Standard view set
	8.2.1. Unique (std:unique)
	8.2.2. Group By (std:groupby)
	8.2.3. Size (std:size)
	8.2.4. Last (std:lastevent)

	8.3. Statistics views
	8.3.1. Univariate statistics (stat:uni)
	8.3.2. Regression (stat:linest)
	8.3.3. Correlation (stat:correl)
	8.3.4. Weighted average (stat:weighted_avg)
	8.3.5. Multi-dimensional statistics (stat:cube)

	8.4. Extension View Set
	8.4.1. Sorted Window View (ext:sort)

	Chapter 9. API Reference
	9.1. API Overview
	9.2. Engine Instances
	9.3. The Administrative Interface
	9.3.1. Creating Statements
	9.3.2. Adding Listeners
	9.3.3. Using Iterators
	9.3.4. Managing Statements
	9.3.5. Runtime Engine Configuration

	9.4. The Runtime Interface
	9.5. Time-Keeping Events
	9.6. Events Received from the Engine
	9.7. Engine Threading and Concurrency
	9.8. Statement Object Model
	9.8.1. Building an Object Model
	9.8.2. Building Complex Expressions
	9.8.3. Building Patterns
	9.8.4. Building Complete Statements

	9.9. Prepared Statement and Substitution Parameters

	Chapter 10. Configuration
	10.1. Programmatic Configuration
	10.2. Configuration via XML File
	10.3. XML Configuration File
	10.4. Configuration Items
	10.4.1. Events represented by Java Classes
	Package of Java Event Classes
	Event type alias to Java class mapping
	Non-JavaBean and Legacy Java Event Classes
	Specifying Event Properties for Java Classes
	Turning off Code Generation
	Case Sensitivity and Property Names

	10.4.2. Events represented by java.util.Map
	10.4.3. Events represented by org.w3c.dom.Node
	Schema Resource
	XPath Property
	Absolute or Deep Property Resolution

	10.4.4. Class and package imports
	10.4.5. Relational Database Access
	Connections obtained via DataSource
	Connections obtained via DriverManager
	Connections-level settings
	Connections lifecycle settings
	Cache settings
	LRU Cache
	Expiry-time Cache

	Column Change Case
	SQL Types Mapping
	Metadata Origin

	10.4.6. Engine Settings related to Concurrency and Threading
	Preserving the order of events delivered to listeners
	Preserving the order of events for insert-into streams
	Internal Timer Settings

	10.4.7. Engine Settings related to Event Metadata
	Java Class Property Names and Case Sensitivity

	10.4.8. Engine Settings related to View Resources
	Sharing View Resources between Statements

	10.4.9. Engine Settings related to Logging
	Execution Path Debug Logging

	Chapter 11. Extension and Plug-in
	11.1. Overview
	11.2. Custom View Implementation
	11.2.1. Implementing a View Factory
	11.2.2. Implementing a View
	11.2.3. Configuring View Namespace and Name

	11.3. Custom Aggregation Functions
	11.3.1. Implementing an Aggregation Function
	11.3.2. Configuring Aggregation Function Name

	11.4. Custom Pattern Guard
	11.4.1. Implementing a Guard Factory
	11.4.2. Implementing a Guard Class
	11.4.3. Configuring Guard Namespace and Name

	11.5. Custom Pattern Observer
	11.5.1. Implementing an Observer Factory
	11.5.2. Implementing an Observer Class
	11.5.3. Configuring Observer Namespace and Name

	Chapter 12. Examples, Tutorials, Case Studies
	12.1. Examples Overview
	12.2. Market Data Feed Monitor
	12.2.1. Input Events
	12.2.2. Computing Rates Per Feed
	12.2.3. Detecting a Fall-off
	12.2.4. Event generator

	12.3. Transaction 3-Event Challenge
	12.3.1. The Events
	12.3.2. Combined event
	12.3.3. Real time summary data
	12.3.4. Find problems
	12.3.5. Event generator

	12.4. J2EE Self-Service Terminal Management
	12.4.1. Events
	12.4.2. Detecting Customer Check-in Issues
	12.4.3. Absence of Status Events
	12.4.4. Activity Summary Data
	12.4.5. Sample Application for J2EE Application Server
	Running the Example
	Building the Example
	Running the Event Simulator and Receiver

	12.5. Assets Moving Across Zones - An RFID Example
	12.6. AutoID RFID Reader generating XML documents
	12.7. StockTicker
	12.8. MatchMaker
	12.9. QualityOfService
	12.10. LinearRoad
	12.11. StockTick RSI

	Chapter 13. Performance
	13.1. Performance Results
	13.2. Performance Tips
	13.2.1. Understand how to tune your Java virtual machine
	13.2.2. Compare Esper to other solutions
	13.2.3. Select the underlying event rather than individual fields
	13.2.4. Prefer stream-level filtering over post-data-window filtering
	13.2.5. Reduce the use of arithmetic in expressions
	13.2.6. Consider using EventPropertyGetter for fast access to event properties
	13.2.7. Consider casting the underlying event
	13.2.8. Turn off logging

	13.3. Using the performance kit
	13.3.1. How to use the performance kit
	13.3.2. How we use the performance kit

	Chapter 14. References
	14.1. Reference List

