Esper Reference Documentation

Version: 1.1.0

Table of Contents

(1=, =0 2P PPRSRRR v
1. TeChNOIOQY OVEN VIBWeeieiiis s s asn s anasasnsnnnsssnsnsnsnnnnnnnnnsnnnnns 1
1.1. Introduction to CEP and event Stream analYSiSccccvvviiieieeeeiiciiiieee e e e e 1

1.2. CEP and relational datalasescoooeooiiioiiiiiiiie e 1

1.3. The ESper enginefor CEPovviiiiie et r e e e e e e 1

P OLo g1 1o [U] = 14 o) o H PO U PP PPPPPON 3
2.1. ProgrammatiC CONFIQUIBLIONuueeiiieeiiiiiiiiiee e ee e e et e e e e e e et e e e e e e s s s an e e e e e e e e e eanenees 3

2.2. Configuration VIa XML FIl@ .o.eeeiieiiie e 3

2.3. XML Configuration file ... 3

2.4, CoNfIQUIALION ITEIMSuviiiie e e i e e e e e e e e e e e e e s e e e eeeaeeesssasnteaeeeeaeeseannnneees 4
2.4.1. Event type aliasto Java class MapPiNgoeeeorurrreeriiiiee e 4

2.4.2. Class and package IMPOISueiiieeeeiiiiiiiiee e e e s e e e e e e e e s s st e e e e e e e s s eenbrraaeeaeas 4

2.4.3. Eventsrepresented by Javautil.Mapc..eeiiiiiiiiiiiiiee e 4

2.4.4. Events represented by orgw3c.dom.Node ..., 5

2.4.4.1. SChEMARESOUICEeeviieiiiiiiiiiiee e e sttt e e e e e e e e e e e e e e s e e e e e e e s e eennneees 6

2.4.4.2. XPath PrOPEIMY ...oeeeiieieieeeiiiee st e et e e st e e st e e s ssaea e e s nnteeaessnnneeeeannnneeas 6

L AP REFEIBNCE ..ttt e et e et e e a e e e e nareeeeaas 8
I AN . @Y= = SO PPPSRRR 8

3.2, ENQINE INSIANCESttt e e e e e e e e e e e e s s et e e e e e e e e s s anssbaaeeeaaeesnans 8

3.3. The AdMINIStrative INEEITACE ... e e e e e rre e e e e e e e ns 8

3.4. The RUNEIME INEEITACEeiiiiiei ittt e e e e s s e e e e e e e e e a 9

3.5, TIME-KEEPING EVENES ...ttt e e nnbneeeean 10

3.6. Events Received from the ENGINGEooiiiiiiiiie e 10

4, EVENT REPIESENTALIONS .. .uvviiiiiiee i ittt e e e e s e ettt e e e e e s s st e e e e e e s s e et b be e e e e aeesaaansstnaneeeaeessannnseees 12
4.1. Event Underlying JaVa ODJECEScooiiiiiiiiiiiiee et 12

A L o g 0o < 1 (=S SRR 12

4.3. Plain Java ODJECT EVENLScoiiiiiiiieiiiei ettt e e s eeean 13
4.3.1. Java Object EVENt PrOPEITIESccvvviiiiiiiiiieeeeeeeeeeeeeeee ettt ee e e e e e e e e e e e eeee e e 13

4.4, JaVAULIL.IMBD BEVENES ..ottt 14

4.5. 0rg.w3C.domM.NOE XML EVENESuiiiiiiiiiee ettt e e e e eeeas 15

5. EVENt PatterN REFEIENCEeiiiiiiiiie ittt ettt st e e e e e nnbreeeeans 17
5.1. EVENt PaterN OVEIVIEWooeeiiiiiiiieiiie ettt e e e et e e e e e e e s st e e e e e e e e e ssnssaneeeaaaeeaans 17

S.2. HOW LO USE PELEINSo 17
5.2. 1. PATEIN SYNEBX ...eetiieeieeeeee ittt e e e e e st e et e e e s s s snbr e e e e e e e s s s nnbreeeeeaas 17

5.2.2. Subscribing to Pattern EVENES ..o, 18

5.2.3. PUlling Datafrom Patternscovieeiiiiiiiiieiieee et e et e e e e snvvanee e 18

5.3, FIITEN EXPIESSIONSceiiiiiiiieiee ettt e e ettt e e sttt e ettt e e et e e e e e e e e nb e e e e abe e e e e e annne e e e aanneeeeean 18

o s A (= (O 01 = (0] £ PP RRPPUPRN 20
O L EVEIY 20

oI B2 A oo PR PPRR 21

I 3 T | SRRSO 21

oI o PR SPRR 21

5.4.5. FOHOWEH-DY ... e e e e e e e e e e s et eeaaas 22

TR €T o SO PRSR 22
5.5 1L tIMENWITNIN oo e 22

5.6. Paltern ODSEIVEIS ...ttt e et e e e e e s et r e e e e e e e en b rareeaaaeeaans 22
5.6. 1. tIMErIINTEIVEL .o e e e e 22

a0 (] 011 = PRSP 22

Esper 1.1.0

Esper - Java Event Stream Processor

O L@ T L = = T PP 24
6.1 EQL INtrodUCION ..o 24
B.2. EQL SYNEBX ..eeiiieieiiiiteiet it e e ettt ettt e e e e s e s e e e e e e e s e e bbb e e et e e e e e e e nr e e e aeeeaaa 24
6.3. Choosing Event Properties And Events: the Select Clause ..o, 25

6.3.1. Choosing all event properties: SEECE *ooiiiiiiie e 25
6.3.2. Choosing SPeCifiC eVent PrOPEItIESoiceeiieieee et 25
T T o == [0 = TP 25
6.3.4. ReNaming eVent ProPEITIEScoiiuurieiiiiiiee et ettt e e e 25

6.4. Specifying Event Streams : the From ClaUSEccoiiiiiiiiiiieiee et ssrree e e e 26
6.4.1. Filter-based event SEreamScuviiieeiii e 26
6.4.1.1. Specifying an event typecoooeeeeiiie i 26

6.4.1.2. Specifying event filter Criteria.......oviiiiiiii e 27

6.4.2. Pattern-based event SIrEaMSoiiii i 27
6.4.3. SPECITYING VIEWSviiiieiiie ittt e e s e e e e e e s st re e e e e e e s s e nntnraeeeeaas 27

6.5. Specifying Search Conditions: the Where ClauSeeovoiiiiiiiiiiiiiee e 28
6.6. Aggregates and grouping: the Group-by Clause and the Having Clausecccccceveeeeenn, 28
6.6.1. USiNg aggregate fUNCLIONScoiuiiiiiiiiiie et 28
6.6.2. Organizing statement results into groups. the Group-by clauseL. 30
6.6.3. Selecting groups of events: the Having clausecccceeviveeiiiccciiiieee e 31
6.6.4. How the stream filter, Where, Group By and Having clausesinteract 32

6.7. Stabilizing and Limiting Output: the OUtPUt ClaUSEeeeeeieeeeiiiciiieeee e 32
6.7.1. OULPUL ClAUSE OPLIONSeeeiiiiiieeiiieee e e et e ettt e et e et e e et e e s e e e s e e e e e nees 32
6.7.2. Group By, Having and Output clause interaCtionccccceeeeiviiiiiiieeeee e 33

6.8. Sorting Output: the Order BY ClaUSEcuviiiiiiiiiee et 34
6.9. Merging Streams and Continuous Insertion: the Insert Into Clausecccoeeeeeeeeee. 34
6.10. Single-row FUNCLION REFEIENCEooviiiiiiiiieee e a e 35
6.10.1. The Min and MaX FUNCHIONSoeoiiiiiiiiiieee e e e e e eeeaeeeeeens 36
6.10.2. The CoalESCE FUNCLIONcoiuiiiieeiiiiie ettt e e e e 36
6.10.3. The Case Control FIOW FUNCHIONcccuviiiiiieee e 37

6.11. Operator REFEIENCEccooee e, 37
6.11.1. ArithmatiC OPEIELOISceiiuerieeiiitiie e et ie e ettt e st et e e et e e s s e e e e asb e e e enees 37
6.11.2. Logical And Comparsion OPEraorSccceeeeeeeeeei e 37
6.11.3. CoNCAENELiON OPEFAIOISuvviiieiiee e e e i ettt e e e e e e eerr e e e e e e s s st re e e e e e e s s asnrbraaeeaeas 38
6.11.4. BiNAry OPEIEIOISccuveeeeiiiieieeaiiteee e et e e e st e e s e e e s st e e e e nbe e e e s anne e e e e annreeeeennnes 38

B.12. BUIIO-IN VIBWS ...ttt ettt e ettt e e et e e e sttt e e e e nbae e e e e nnteeeeeans 38
B.12.1. WINAOW VIBWSeeiieiiiiie e e ittt e e e s s sttt e e e e e e e ettt e e e e e e e s s ssnnaaeeeeaeeesannssraeeeeens 39
6.12.1.1. Length Windowcooooiiiiiiii 39

6.12.1.2. TIMEWINUOWeviiiiiiieeeiiiiiiiiiiee e e e e e s st e e e e e e e s s e e e e e e e s s annnnaaneraaaeeeans 39

6.12.1.3. Externaly-timed Window ..., 39

6.12.1.4. TIMeWINAOW DUFFENooiiiiiiiiiiiiie e 39

6.12.2. SEANAAIA VIEW SELeeeiiiie ettt e e et e e e e e e s s st e e e e e e e s e eneneeeeeeens 39
B.12.2. 1. UNIQUE eoeeieeeeiieiiteee ettt e e e s et e e e e e e e e et e e e e e e e s e enntrbaneeeaaeeeans 39

6.12.2.2. GrOUP BY .ot 40

T e T . SRR 40

B.12.2.4. LAS ..oeeiieiie ettt e r e e e e e e e ares 40

6.12.3. SEBLISHICS VIBIWSeeeeeiiiee e et e e e ettt e e e e e e ettt e e e e e e e e s e nnne e e e e e e e e e aannenneeeeeens 40
6.12.3.1. UNIVAae StAiSHICS ...veeeeiirrieeiiiiiie ettt 40

6.12.3.2. REQIESSION ...ttt et 41

I R R A O £ = = 1 o] o PRSP 41

6.12.3.4. WEIGhtEA BVEIAJEeeiiiiiiiiee it ettt e e 41

6.12.3.5. Multi-dimensional StatiStiCScviieiiiiiiiiieiee e 41

6.12.4. EXIENSION VIBW SEL ..ooiiiiiiiiiiiiii ettt e e e e e s et e e e e e s s e nntnrnaeeaeas 42

Esper 1.1.0

Esper - Java Event Stream Processor

6.12.4.1. SOrted WindOW VIBW ..ottt e e e en e e e e e 42

6.13. JOINING EVENE SIFEAMSoooiiiiiiiieiee et e e e e e e e e e e e e et e e e e aaeeeans 42
B.14. QULEN JOINS ... ee e 43
6.15. User-Defined FUNCLIONS ..o, 43

A 2 =T 1 (= T PO PP PP PPPPPOPPPRPN 45
80 o o= USRS 45

S 1 Lo o= 1 o] PP 46
< 20 00 1 o RSP 46

L2 Y G 1 g (Yo o] G PR PRSPR 46

. ATChITECIUIE .. 47
0.1, OVEIVIBIW <. a7

0.2. BUIlAING 8N TESLING ..eiuteiieeeiiiiee ettt ettt e e et e e e st e e e s e e e e snbneeeeans 47

10. Examples, Tutorials, Case SLUAIESooeeeeiiiiie et e e e e e e e e e e naeeeeeeas 48
10.1. EXAMPIES OVEIVIEIW ..coeeeiiiiiiiee ettt e e e e e e s st e e e e e e e e s annar e e e e eeaeessannneees 48

10.2. Market Data FEEd MONITOLcviiiieiiiciiieiie e et e e e e e e e e e e e e e e s eenreeeeeeae e e e annneees 48
T2t I o1 | Y7 48

10.2.2. Computing RAES PEr FEEAueiiiiiiiiiii e 48

10.2.3. Detecting @aFall-0ff ... e 49

O T2 VTS o100 = 49

10.3. Transaction 3-Event Challengeccoiiiiiiiiiiiii e 49
O B B I 0 TC Y= o £ PR 49

10.3.2. COMDINEA BVENLeiiieieiiieiiieiie e e e e et e e e e e e e s et r e e e e e e s s annneneeeeeeens 50

10.3.3. Real time SUMMArY Qalalovveiiieiiiiiiiiiieee e e e 50

10.3.4. FINA PrODIEIMS ..ot e e 50

10.3.5. EVENE GENEIAIONceeeiiiei e r e e e e et e e e e e e e e et e e e e e e e e eannaa s 50

10.4. AULOID RFID REAOEooiiiiiiiiiiiiiie ettt ettt e e e 51
O oS o Tox I s (= SRR 51

10.6. MACNMBKEYeiiieeiiieiie ettt ettt e e e ettt e e e sb e e e e nbe e e e s enbne e e e annnreeeeennes 52
10.7. QUAITITYOTFSEIVICE ..oceiiiiiieeitiie ettt e et e e st e e e s e e e e e e e e e nnes 52

10.8. LINEATROAAeuiiiiiiiiie et e e e e e e e e e et e e e e e e e e e e et arr e e e e e e e e e e annrrees 53
10.9. SEOCKTICK RS ... aaa s s asa s s s assaaassssssasnsnsnsnnnsnnnsnnns 53

T L= 1= [54
I = 1= = oo I SRR 54

Esper 1.1.0

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of custom applications.
Typicaly these applications must obtain the data to analyze, filter data, derive information and then indicate
this information through some form of presentation or communication. Data may arrive with high frequency re-
quiring high throughput processing. And applications may need to be flexible and react to changes in require-
ments while the data is processed. Esper is an event stream processor that aims to enable a short development
cycle from inception to production for these types of applications.

If you are new to Esper, please follow these steps:

1

Read the tutorials, case studies and solution patterns available on the Esper public web site at ht -
t p: // esper. codehaus. org

Read Section 1.1, “Introduction to CEP and event stream analysis’ if you are new to CEP and ESP
(complex event processing, event stream processing)

Read Section 5.1, “Event Pattern Overview” for an overview over event patterns
Read Section 6.1, “EQL Introduction” for an introduction to event stream processing via EQL

Then glance over the examples Section 10.1, “ Examples Overview”

Esper 1.1.0 Y

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze and react to
events. Some typical examples of applications are:

» Business process management and automation (process monitoring, BAM, reporting exceptions)

» Finance (algorithmic trading, fraud detection, risk management)

¢ Network and application monitoring (intrusion detection, SLA monitoring)

» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air traffic)

What these applications have in common is the requirement to process events (or messages) in real-time or near
real-time. This is sometimes referred to as complex event processing (CEP) and event stream analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the logic required.

e High throughput - applications that process large volumes of messages (between 1,000 to 100k messages
per second)

* Low latency - applications that react in real-time to conditions that occur (from a few milliseconds to a few
seconds)

« Complex computations - applications that detect patterns among events (event correlation), filter events, ag-
gregate time or length windows of events, join event streams, trigger based on absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in which most datais
fairly static and complex queries are less frequent. Also, most databases store al data on disks (except for in-
memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the data 10 times per
second it must fire the query 10 times per second. This does not scale well to hundreds or thousands of queries
per second.

Database triggers can be used to fire in response to database update events. However database triggers tend to
be slow and often cannot easily perform complex condition checking and implement logic to react.

In-memory databases may be better suited to CEP applications then traditional relational database as they gen-
eraly have good query performance. Y et they are not optimized to provide immediate, real-time query results
required for CEP and event stream analysis.

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and running quer-
ies against stored data, the Esper engine allows applications to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur that match queries. The execution model is thus con-
tinuous rather then only when a query is submitted.

Esper 1.1.0 1

Technology Overview

Esper provides two principal methods or mechanisms to process events. event patterns and event stream quer-
ies.

Esper offers an event pattern language to specify expression-based event pattern matching. Underlying the pat-
tern matching engine is a state machine implementation. This method of event processing matches expected se-
quences of presence or absence of events or combinations of events. It includes time-based correlation of
events.

Esper aso offers event stream queries that address the event stream analysis requirements of CEP applications.
Event stream queries provide the windows, aggregation, joining and analysis functions for use with streams of
events. These queries are following the EQL syntax. EQL has been designed for similarity with the SQL query
language but differs from SQL in its use of views rather then tables. Views represent the different operations
needed to structure datain an event stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

Esper 1.1.0 2

Chapter 2. Configuration

Esper engine configuration is entirely optional. Esper has a very small number of configuration parameters that
can be used to simplify event pattern and EQL statements, and to tune the engine behavior to specific require-
ments. The Esper engine works out-of-the-box without configuration.

2.1. Programmatic configuration

An instance of net.esper.client.Configuration represents all configuration parameters. The Confi gur a-
ti on isused to build an (immutable) EPSer vi cePr ovi der , which provides the administrative and runtime inter-
faces for an Esper engine instance.

You may obtain a Confi gurati on instance by instantiating it directly and adding or setting values on it. The
Conf i gurat i on instance is then passed to EPSer vi cePr ovi der Manager to obtain a configured Esper engine.

Configuration configuration = new Configuration();

configuration. addEvent TypeAl i as("PriceLimt", PriceLinmit.class.getNane());
configuration. addEvent TypeAl i as(" St ockTi ck", StockTick. cl ass. get Name());
confi guration. addl nport ("org. myconpany. nypackage. MyUtility");
configuration. addl nport ("org. nyconpany. util.*");

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der ("sanpl e, configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine represented by an
EPSer vi cePr ovi der isimmutable and does not retain any association back to the Confi gurati on.

2.2. Configuration via XML file

An aternative approach to configuration is to specify a configuration in an XML file.

The default name for the XML configuration file is esper . cf g. xnl . Esper reads this file from the root of the
CLASSPATH as an application resource viathe conf i gur e method.

Configuration configuration = new Configuration();
configuration. configure();

The configuration class can read the XML configuration file from other sources as well. The confi gure
method accepts URL, File and String filename parameters.

Configuration configuration = new Configuration();
configuration. configure("nyengi ne. esper.cfg.xm");

2.3. XML Configuration file

Here is an example configuration file. The schema for the configuration file can be found in the et ¢ folder and
is named esper - confi gurati on- 1- 0.

<?xm version="1.0" encodi ng="UTF-8""?>
<esper-configuration xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmalLocat i on="esper - confi gurati on- 1- 0. xsd" >
<event-type alias="StockTi ck" class="net.esper.exanple.stockticker.event. StockTick"/>
<event-type alias="PriceLimt" class="net.esper.exanple.stockticker.event.PriceLimt"/>
<aut o-i mport i nmport-nane="org. myconpany. nypackage. MyUtility"/>

Esper 1.1.0 3

Configuration

<aut o-i nport inport-name="org. myconpany.util.*"/>
</ esper-confi guration>

2.4. Configuration items

2.4.1. Event type alias to Java class mapping

This configuration item can be set to alow event pattern statements and EQL statements to use an event type
adlias rather then the fully qualified Java class name. Interfaces and abstract classes are also supported as event

types.

every StockTick(symbol ="1BM)"
/1 via configuration equivalent to
every net.esper.exanpl e. stockti cker. event. St ockTi ck(synbol =" | BM)

2.4.2. Class and package imports

Esper allows invocations of static Java library functions as outlined in Section 6.10, “ Single-row Function Ref-
erence’. This configuration item can be set to allow a partial rather than a fully qualified class namein such in-
vocations. The imports work in the same way asin Javafiles, so both packages and classes can be imported.

sel ect Mat h. max(priceOne, PriceTwo)
/1 via configuration equivalent to
sel ect java.lang. Math. max(priceOne, priceTwo)

Esper auto-imports the following Java library packages if no other configuration is supplied. This list is re-
placed with any configuration specified in a configuration file or through the API.

e javalang.*
e javamath.*
e javatext.*
e javadutil.*

2.4.3. Events represented by java. util. Map

The engine can processj ava. uti | . Map eventsviathe sendEvent (Map map, String event TypeAl i as) method
on the EPruntine interface. Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property names in pattern or EQL statements.
Vaues can be of any type. JavaBean-style objects as values in a Map can also be processed by the engine.
Please see the Chapter 4, Event Representations section for details on how to use Map events with the engine.

Via configuration we provide an event type alias name for Map events for use in statements, and the event prop-
erty names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event named MyMapEvent .

<event-type alias="MMapEvent">
<j ava-util - map>
<map- property name="carld" class="int"/>
<map- property nanme="car Type" class="string"/>
<map- property name="assenbl y" cl ass="com nmyconpany. Assenbl y"/>
</java-util - map>
</ event-type>

Esper 1.1.0 4

Configuration

This configuration defines the car 1 d property of MyMapEvent events to be of typei nt, and the car Type prop-
erty to be of type java. util.String. The assenbl y property of the Map event will contain instances of
com nyconpany. Assenbl y for the engine to query.

Thevalid list of values for the type definition viathecl ass attributeis:

e stringOrfjava.lang. String

® char Orjava.l ang. Character

* byteOrjava.lang.Byte

* short Orjava.l ang. Short

® int Orjava.lang.|nteger

* |ongOrjava.l ang. Long

e float Orjava.l ang. Fl oat

e doubl e Orjava.l ang. Doubl e

* bool ean Orj ava. | ang. Bool ean

« Any fully-qualified Java class name that can be resolved by the engineviad ass. f or Nane

You can aso use the configuration API to configure Map event types, as the short code snippet below demon-
strates.

Properties properties = new Properties();
properties.put(“carld", "int");

properties. put ("carType", "string");

properties. put ("assenbly", Assenbly.class.getNane());

Configuration configurati on = new Configuration();
configuration. addEvent TypeAl i as(" MyMapEvent", properties);

Finally, here is a sample EQL statement that uses the configured MyMapEvent map event. This statement uses
the chassi sTag and nunPart s properties of Assenbl y objects in each map.

sel ect carType, assenbly. chassisTag, count(assenbly.nunParts) from MyMapEvent.wi n:ti me(60)

2.4.4. Events represented by org. w3dc. dom Node

Viathis configuration item the Esper engine can natively process or g. wdc. dom Node instances, i.e. XML docu-
ment object model (DOM) nodes. Please see the Chapter 4, Event Representations section for details on how to
use Node events with the engine.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.

For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wdc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.

In the simplest form, the Esper engine only requires a configuration entry containing the root el ement name and
the event type alias in order to process or g. w3c. dom Node events.

<event -type al i as="M/XM.NodeEvent ">
<xml - dom r oot - el emrent - name="nyevent" />
</ event-type>

Esper 1.1.0 5

Configuration

You can aso use the configuration API to configure XML event types, as the short example below demon-
strates. In fact, all configuration options available through XML configuration can also be provided via setter
methods on the Conf i gur at i onEvent TypeXM.DOMCIass.

Configuration configuration = new Configuration();

Confi gurati onEvent TypeXM_.DOM desc = new Confi gurati onEvent TypeXM.DOV) ;
desc. set Root El emrent Nane(" nyevent");
configuration. addEvent TypeAl i as(" MyXM_NodeEvent", desc);

The next example presents all relevant configuration options in a sample configuration entry.

<event-type al i as="Aut ol dRFI DEvent ">
<xm -dom r oot - el enent - nane="Sensor" schenma-resour ce="dat a/ Aut ol dPm Cor e. xsd"
def aul t - namespace="ur n: aut oi d: speci fi cati on: i nterchange: PM.Core: xm : schema: 1" >
<nanespace- prefix prefix="pnl core"
nanespace="ur n: aut oi d: speci fi cati on: i nt er change: PM.Cor e: xm : schena: 1"/ >
<xpat h- property property-nanme="count Tags"
xpat h="count (/ pml cor e: Sensor/ pm cor e: Cbservati on/ pnl core: Tag)" type="nunber"/>
</ xm - don®
</ event-type>

This example configures an event property named count Tags Whose value is computed by an XPath expres-
sion. The namespace prefixes and default namespace are for use with XPath expressions and must also be made
known to the engine in order for the engine to compile XPath expressions. Via the schema- r esour ce attribute
we instruct the engine to load a schemafile.

Hereis an example EQL statement using the configured event type named Aut ol dRFI DEvent .

sel ect | D, countTags from Autol dRFI DEvent.w n: ti ne(30)

Schema Resource

The schema-resour ce atribute takes a schema resource URL or classpath-relative filename. The engine at-
tempts to resolve the schema resource as an URL. If the schema resource name is not a valid URL, the engine
attempts to resolve the resource from classpath via the d assLoader . get Resour ce method using the thread
context class loader. If the name could not be resolved, the engine uses the Configuration class classloader.

By configuring a schemafile for the engine to load, the engine performs these additional services:

« Vadlidates the event properties in a statement, ensuring the event property name matches an attribute or ele-
ment in the XML

» Determines the type of the event property allowing event properties to be used in type-sensitive expressions
such as expressions involving arithmatic (Note: XPath properties are also typed)

¢ Matches event property names to either element names or attributes

If no schema resource is specified, none of the event properties specified in statements are validated at state-
ment creation time and their type defaultstoj ava. I ang. Stri ng. Also, attributes are not supported if no schema
resource is specified and must thus be declared via X Path expression.

XPath Property

The xpat h- property element adds event properties to the event type that are computed via an XPath expres-
sion. In order for the XPath expression to compile, be sure to specify the def aul t - nanespace attribute and use
the nanespace- pr ef i x to declare namespace prefixes.

XPath expression properties are strongly typed. The t ype attribute allows the following values. These values

Esper 1.1.0 6

Configuration

correspond to those declared by j avax. xm . xpat h. XPat hConst ant s.

* number (Note: resolvesto adoubl e)
e string
* boolean

Esper 1.1.0

Chapter 3. APl Reference

3.1. APl Overview

Esper has 2 primary interfaces that this section outlines. The administrative interface and the runtime interface.

Use Esper's administrative interface to create event patterns and EQL statements as discussed in Section 5.1,
“Event Pattern Overview” and Section 6.1, “EQL Introduction”.

Use Esper's runtime interface to send events into the engine, emit events and get statistics for an engine in-
stance.

The JavaDoc documentation is also a great source for API information.

3.2. Engine Instances

Each instance of an Esper engine is completely independent of other engine instances and has its own adminis-
trative and runtime interface.

An instance of the Esper engine is obtained via static methods on the EPSer vi cePr ovi der Manager class. The
get Def aul t Provi der method and the get Provi der (String URI) methods return an instance of the Esper en-
gine. The latter can be used to obtain multiple instances of the engine for different URI values. The EPSer vi ce-

Provi der Manager determines if the URI matches all prior URI values and returns the same engine instance for
the same URI value. If the URI has not been seen before, it creates a new engine instance.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the default engine in-
stance return the same instance.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;

This code snippet gets an Esper engine for URI RFI DPr ocessor 1. Subsequent calls to get an engine with the
same URI return the same instance.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der (" RFI DProcessor 1") ;

An existing Esper engine instance can be reset viathei ni ti al i ze method on the EPSer vi cePr ovi der instance.
This stops and removes all statements in the Engine.

3.3. The Administrative Interface

Create event pattern expression and EQL statements via the administrative interface EPAdmi ni strat or .
This code snippet gets an Esper engine then creates an event pattern and an EQL statement.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPAdmi ni strator admin = epServi ce. get EPAdmi ni strator();

EPSt at enent 10secRecur Tri gger = admi n. creat ePattern(
"every timer:at(*, *, *, * * */10)");

EPSt at enent count Stnt = admi n. creat eEQ(
"sel ect count(*) from Market Dat aBean.wi n:ti ne(60)");

Esper 1.1.0 8

APl Reference

Note that event pattern expressions can also occur within EQL statements. This is outlined in more detail in
Section 6.4.2, “Pattern-based event streams”.

The creat ePat t ern and cr eat eEQL methods return EPSt at enent instances. Statements are automatically star-
ted and active when created. A statement can also be stopped and started again viathe st op and st art methods
shown in the code snippet below.

count St nt . stop();
countStnt.start();

We can subscribe to updates posted by a statement via the addLi st ener and r enoveli st ener methods the EP-
St at enent Statement. We need to provide an implementation of the Updat eLi st ener interface to the statement.

Updat eLi st ener myLi stener = new MyUpdat eLi st ener () ;
count St nt . addLi st ener (myLi st ener) ;

EQL statements and event patterns publish old data and new data to registered Updat eLi st ener listeners. New
data published by statements is the events representing the new values of derived data held by the statement.
Old data published by statements constists of the events representing the prior values of derived data held by
the statement.

Subscribing to events posted by a statement is following a push model. The engine pushes data to listeners
when events are received that cause data to change or patterns to match. Alternatively, statements can also
serve up datain a pull model viatheiterat or method. This can come in handy if we are not interested in all
new updates, but only want to perform a frequent poll for the latest data. For example, an event pattern that
fires every 5 seconds could be used to pull data from an EQL statement. The code snippet below demonstrates
some pull code.

I terat or<Event Bean> eventlter = countStnt.iterator();
for (EventBean event : eventlter) {
/1 .. do sonething ..

}

Thisis a second example:

doubl e averagePrice = (Double) eql Statenent.iterator().next().get("average");

Esper places the following restrictions on the pull APl and usage of thei t er at or method:

1. EQL statementsjoining multiple event streams do not support the pull AP

3.4. The Runtime Interface

The EPRunt i e interface is used to send events for processing into an Esper engine, and to emit Events from an
engine instance to the outside world.

The below code snippet shows how to send a Java object event to the engine. Note that the sendEvent method
is overloaded. As events can take on different representation classes in Java, the sendEvent takes parametersto
reflect the different types of events that can be send into the engine. The Chapter 4, Event Representations sec-
tion explains the types of events accepted.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRuntine runtine = epService. get EPRunti me();

Esper 1.1.0 9

APl Reference

/1 Send an exanpl e event containing stock market data
runti me. sendEvent (new Mar ket Dat aBean(' 1 BM, 75.0));

Another important method in the runtime interface is the r out e method. This method is designed for use by Up-
dat eLi st ener implementations that need to send events into an engine instance.

The et and addEni tt edLi st ener methods can be used to emit events from a runtime to a registered set of
one or more emitted event listeners. Events are emitted on an event channel identified by a name. Listeners are
implementations of the Eni t t edLi st ener interface. Listeners can specify a channel to listen to and thus only
receive events posted to that channel. Listeners can also supply no channel name and thus receive emitted
events posted on any channel. Channels are uniquely identified by a string channel name.

3.5. Time-Keeping Events

Special events are provided that can be used to control the time-keeping of an engine instance. There are two
models for an engine to keep track of time. Interna clocking is when the engine instance relies on the
java.util. Timer classfor time tick events. External clocking can be used to supply time ticks to the engine.
The latter is useful for testing time-based event sequences or for synchronizing the engine with an external time
source.

By default, the Esper engine uses internal time ticks. This behavior can be changed by sending atimer control
event to the engine as shown below.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRuntine runtime = epService. get EPRunti me();

/1 switch to external clocking

runti ne. sendEvent (new Ti mer Cont r ol Event (Ti mer Control Event . Cl ockType. CLOCK_EXTERNAL)) ;

/1 send a time tick
long timelnMIlis = SystemcurrentTimreMIlis(); // O get the tinme sonewhere el se
runti me. sendEvent (new Current Ti mreEvent (tinmelnM 1 1is));

3.6. Events Received from the Engine

The Esper engine posts events to registered Updat eLi st ener instances (‘push' method for receiving events). For
many statements events can also be pulled from statements viathei t er at or method. Both pull and push sup-
ply Event Bean instances representing the events generated by the engine or events supplied to the engine. Each
Event Bean instance represents an event, with each event being either an artificial event, composite event or an
event supplied to the engine viaits runtime interface.

The get Event Type method supplies an event's event type information represented by an Event Type instance.
The Event Type supplies event property names and types as well as information about the underlying object to
the event.

The engine may generate artificial events that contain information derived from event streams. A typical ex-
ample for artificial eventsis the events posted for a statement to calculate univariate statistics on an event prop-
erty. The below example shows such a statement and queries the generated events for an average value.

/1 Derive univariate statistics on price for the |ast 100 market data events

String stnmt = "select * from Market Dat aBean(synbol ="' I BM). wi n: | ength(100).stat:uni ('price')";
EPSt at enent priceStatsView = epService. get EPAdm ni strator().createEQ(stnt);

priceStatsVi ew. addLi st ener (testListener);

Esper 1.1.0 10

APl Reference

/1 Exanple |istener code
public class MyUpdateLi stener inplenents UpdateLi st ener

{
public voi d update(Event Bean[] newData, EventBean[] ol dDat a)
{
/1 Interrogate events
Systemout. println("new average price=" + newData[O0].get("average");
}
}

Composite events are events that aggregate one or more other events. Composite events are typically created by
the engine for statements that join two event streams, and for event patterns in which the causal events are re-

tained and reported in a composite event. The example below shows such an event pattern.

/1 Look for a pattern where AEvent follows BEvent

String pattern = "a=AEvent -> b=BEvent";

EPSt at enent stnt = epService. get EPAdm ni strator().createPattern(pattern);
st nt . addLi st ener (t est Li stener);

/1 Exanple |istener code
public class MyUpdat elLi stener inplenments UpdatelLi stener

{
public void update(Event Bean[] newData, EventBean[] ol dDat a)
{
Systemout.println("a event=" + newData[O0].get("a").getUnderlying()):
Systemout.println("b event=" + newData[0].get("b").getUnderlying());
}
}

Esper 1.1.0

11

Chapter 4. Event Representations

4.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. An event can have a set of
event properties that supply information about the event. An event also has an underlying Java object type.

In Esper, an event can be represented by any of the following underlying Java objects:

Table 4.1. Event Underlying Java Objects

Java Class Description

java. | ang. Obj ect Any Java POJO (plain-old java object) with getter methods
following JavaBean conventions

java.util.Map Map events are key-values pairs

or g. w3c. dom Node XML document object model (DOM)

4.2. Event Properties

Esper expressions can include simple as well as indexed, mapped and nested event properties. The table below
outlines the different types of properties and their syntax in an event expression. This syntax allows statements
to query deep JavaBean objects graphs, XML structures and Map events.

Table 4.2. Types of Event Properties

Type Description Syntax Example
Simple A property that has a single value that

may be retrieved. name sensorld
Indexed An indexed property stores an ordered

collection of objects (all of the same name[index] sensor [0]

type) that can be individualy accessed
by an integer-valued, non-negative index
(or subscript).

Mapped A mapped property stores a keyed col-

lection of objects (al of the same type). name(" key") sensor (" light")
Nested A nested property is a property that lives

within another property of an event. name. nest ednane sensor. val ue

Combinations are adso possble For example, a vaid combination could be per-
son. address(' hone').street[0].

Esper 1.1.0 12

Event Representations

4.3. Plain Java Object Events

Plain Java object events are object instances that expose event properties through JavaBean-style getter meth-
ods. Events classes or interfaces do not have to be fully compliant to the JavaBean specification; however for
the Esper engine to obtain event properties, the required JavaBean getter methods must be present.

Esper supports JavaBean-style event classes that extend a superclass or implement one or more interfaces.
Also, Esper event pattern and EQL statements can refer to Javainterface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state change or action
that occurred in the past, the relevant event properties should not be changeable. However thisis not a hard re-
quirement and the Esper engine accepts events that are mutable as well.

Please see Chapter 2, Configuration on options for naming event types represented by Java object event classes.

4.3.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans specification, and
some of which are uniquely supported by Esper:

« Smple properties have a single value that may be retrieved. The underlying property type might be a Java
language primitive (such as int, a simple object (such as a java.lang.String), or a more complex object
whose classis defined either by the Javalanguage, by the application, or by a class library included with the
application.

« Indexed - Anindexed property stores an ordered collection of objects (all of the same type) that can be indi-
vidually accessed by an integer-valued, non-negative index (or subscript). Alternatively, the entire set of
values may be retrieved using an array.

* Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that accepts a String-
valued key a mapped property.

* Nested - A nested property is a property that lives within another Java object which itself is a property of an
event.

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed properties in this ex-
ample return Java objects but could aso return Java language primitive types (such as int or String). The Ad-
dress object and Employee objects can themselves have properties that are nested within them, such as a street-
Name in the Address object or a name of the employee in the Employee object.

public class Enpl oyeeEvent ({
public String getFirstName();
publ i c Address get Address(String type);
publ i c Enpl oyee get Subordi nate(int index);
publ i c Enpl oyee[] get Al | Subordi nates();

}

Smple event properties require a getter-method that returns the property value. In this example, the get Fi r st -
Nane getter method returnsthefi r st Nane event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes an integer-
type key value and returns the property value, such as the get Subor di nat e method. Or a method that returns an
array-type such as the get Subor di nat es getter method, which returns an array of Employee. In an EQL or
event pattern statement, indexed properties are accessed viathe pr opert y[i ndex] syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns the property
value, such as the get Address method. In an EQL or event pattern statement, mapped properties are accessed

Esper 1.1.0 13

Event Representations

viathe property(' key') syntax.

Nested event properties require a getter-method that returns the nesting object. The get Addr ess and get Subor -
di nat e methods are mapped and indexed properties that return a nesting object. In an EQL or event pattern
statement, nested properties are accessed viathe pr opert y. nest edPr oper t y Syntax.

All event pattern and EQL statements allow the use of indexed, mapped and nested properties (or a combina
tion of these) anywhere where one or more event property names are expected. The below example shows dif-
ferent combinations of indexed, mapped and nested propertiesin filters of event pattern expressions.

every Enpl oyeeEvent (firstName=" nyNane')

every Enpl oyeeEvent (address(' hone'). street Nane=' Park Avenue')

every Enpl oyeeEvent (subordi nat e[0] . name="anot her Nane')

every Enpl oyeeEvent (al | Subor di nat es[1] . name="t hat Nane')

every Enpl oyeeEvent (subordi nate[0] . address(' hone'). street Name=' Vlater Street')

Similarly, the syntax can be used in EQL statements in all places where an event property name is expected,
such asin select lists, where-clauses or join criteria.

sel ect firstName, address('work'), subordinate[0].name, subordinate[1].nane
from Enpl oyeeEvent
where address('work').streetName = ' Park Ave'

4.4, java.util.Map Events

Events can also be represented by objects that implement the j ava. uti | . Map interface. Event properties of vap
events are the values in the map accessible through the get method exposed by thej ava. uti | . Map interface.

The engine can processj ava. uti | . Map eventsviathe sendevent (Map map, String event TypeAl i as) method
on the EPruntinme interface. Entries in the Map represent event properties. Keys must be of type
java.util.string for the engine to be able to look up event property names specified by pattern or EQL state-
ments. Values can be of any type. JavaBean-style objects as values in a Map can also be processed by the en-
gine.

In order to use Map events, the event type name and property names and types must be made known to the en-
gine via Configuration. Please see the examplesin Section 2.4.3, “Events represented by java.util.Map”.

The code snippet below creates and processes a Map event. The example assumes the Car Locat i onUpdat eEvent
event type alias has been configured.

Map event = new HashMap();

event.put("carld", carld);

event. put ("direction", direction);

epRunti me. sendEvent (event, " CarlLocUpdat eEvent");

The Car LocUpdat eEvent can now be used in a statement:

sel ect carld from CarLocUpdat eEvent.w n:ti me(60) where direction =1

The engine can aso query Java objects as valuesin a Map event via the nested property syntax. Thus Map events
can be used to aggregate multiple datastructures into a single event and query the composite information in a
convenient way. The example below demonstrates a Map event with atransaction and an account object.

Map event = new HashMap();

event. put ("txn", txn);

event . put ("account", account);

epRunti me. sendEvent (event, "TxnEvent");

Esper 1.1.0 14

Event Representations

An example statement could look as follows.

sel ect account.id, account.rate * txn.anount from TxnEvent.w n:time(60) group by account.id

4.5. org. w3c. dom Node XML Events

Events can also be represented as or g. w3c. dom Node instances and send into the engine via the sendEvent
method on EPRunt i me. Please note that configuration is required for alowing the engine to map the event type
aliasto Node element names. See Chapter 2, Configuration.

Esper allows configuring XPath expressions as event properties. Y ou can specify arbitrary XPath functions or
expressions and provide a property name by which their result values will be available for use in expressions.
For XML documents that follow an XML schema, Esper can load and interrogate your schema and validate
event property names and types against the schema information.

Nested, mapped and indexed event properties are also supported in expressions against or g. wadc. dom Node
events. Thus XML trees can conveniently be interrogated using the existing event property syntax for querying
JavaBean objects, JavaBean object graphsor j ava. uti | . Map events.

Let'slook at how asample XML document could be queried, given the sample XML below.

<?xm version="1.0" encodi ng="UTF-8""?>
<Sensor >
<| D>urn: epc: 1: 4. 16. 36<I D>
<Cbservati on Cormand="READ PALLET TAGS ONLY">
<I b>00000001<I| D>
<Tag>
<| D>urn: epc: 1: 2. 24. 400<I D>
</ Tag>
<Tag>
<I D>urn: epc: 1: 2. 24. 401<I| D>
</ Tag>
</ Cbservati on>
</ Sensor >

To configure the engine for processing Sensor documents, simply configure a Sensor Event event type alias for
the sensor element name via Configuration. Now the document can be queried as below.

select I D, Cbservation.|D, Observation.Command, Observation. Tag[0], count Tags
from Sensor Event . wi n: ti me(30)

The equivalent XPath expressions to each of the properties are listed below.

* Theequivalent XPath expression to bser verati on. | DiS/ Sensor/ Coser vati on/ | D

¢ Theequivalent XPath expression to Ghser ver at i on. Conmand IS/ Sensor / Chser vat i on/ @onmand

« The equivalent XPath expression to Gbser verati on. Tag[0] iS/ Sensor/ Cbservati on/ Tag[position() =
1]

e The equivaent XPath expression to count Tags iScount (/ Sensor/ Cbser vat i on/ Tag) for returning a count
of tag elements. This assumes the count Tags property has been configured as an XPath property.

By specifying an event property such below:

nest edEl enent . mappedEl enent (' key') . i ndexedEl enent [1]

The equivalent XPath expression is as follows:

Esper 1.1.0 15

Event Representations

/ si mpl eEvent / nest edEl enent / mappedEl enent [@ d=" key'] /i ndexedEl ement [position() = 2]

Esper 1.1.0

Chapter 5. Event Pattern Reference

5.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition. Patterns can
also be time-based.

Pattern expressions can consist of filter expressions combined with pattern operators. Expressions can contain
further nested pattern expressions by including the nested expression(s) in () round brackets.

There are 5 types of operators.

Operators that control pattern finder creation and termination: every

Logical operators: and, or, not

Temporal operators that operate on event order: - > (followed-by)

Guards are where-conditions that filter out events and cause termination of the pattern finder. Examples
aretimer:wthin.

5. Observers observe time events as well as other events. Examplesaretimer:interval andtiner: at.

AwbdPRE

5.2. How to use Patterns

5.2.1. Pattern Syntax

This is an example pattern expression that matches on every Ser vi ceMeasur enent events in which the value of
the | at ency event property is over 20 seconds, and on every Ser vi ceMeasur enent event in which the success
property isfalse. Either one or the other condition must be true for this pattern to match.

every (spi ke=Servi ceMeasurenent (| at ency>20000) or error=Servi ceMeasur enment (success=fal se))

In the example above, the pattern expression starts with an every operator to indicate that the pattern should
fire for every matching events and not just the first matching event. Within the every operator in round brack-
ets is a nested pattern expression using the or operator. The left hand of the or operator is a filter expression
that filters for events with a high latency value. The right hand of the operator contains a filter expression that
filters for events with error status. Filter expressions are explained in Section 5.3, “Filter Expressions”.

Pattern statements are created via the EPAdni ni strat or interface. The EPAdni ni strat or interface allows to
create pattern statements in two ways: Pattern statements that want to make use of the EQL sel ect clause or
any other EQL constructs use the cr eat eEQL method to create a statement that specifies one or more pattern ex-
pressions. EQL statements that use patterns are described in more detail in Section 6.4.2, “Pattern-based event
streams’. Use the syntax as shown in below example.

EPAdmni ni strator admi n = EPServi ceProvi der Manager . get Def aul t Provi der () . get EPAdmi ni strator () ;
String event Name = Servi ceMeasurenent. cl ass. get Name() ;

EPSt at enent nmyTrigger = admin.createEQ.("select * frompattern [" +
"every (spike=" + eventNanme + "(|atency>20000) or error=" + eventName + "(success=false))]");

Pattern statements that do not need to make use of the EQL sel ect clause or any other EQL constructs can use
the cr eat ePat t er n method, asin below example.

Esper 1.1.0 17

Event Pattern Reference

EPSt at enent myTrigger = adm n. createPattern(
"every (spike=" + eventNane + "(I|atency>20000) or error=" + eventName + "(success=false))");

5.2.2. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The listener inter-
faceisthenet . esper. client. Updat eLi st ener interface.

The example below shows an anonymous implementation of the net. esper. cli ent. Updat eLi st ener inter-
face. We add the anonymous listener implementation to the nyPat t er n statement created earlier. The listener
code simply extracts the underlying event class.

myPat t er n. addLi st ener (new Updat eLi st ener ()
{

public void update(Event Bean[] newEvents, EventBean[] ol dEvents)

{

Servi ceMeasur enment spi ke = (Servi ceMeasurenent) newEvents[0].get("spi ke");
Servi ceMeasurenent error = (ServiceMeasurenment) newEvents[O0].get("error");
. I/ either spike or error can be null, depending on which occurred
. I/ add nore logic here

}
1)

Listenersreceive an array of Event Bean instancesin the newEvent s parameter. There is one Event Bean instance
passed to the listener for each combination of events that matches the pattern expression. At least one Event -
Bean instance is always passed to the listener.

The properties of each Event Bean instance contain the underlying events that caused the pattern to fire, if
events have been named in the filter expression via the nane=event Type Syntax. The property name is thus the
name supplied in the pattern expression, while the property type is the type of the underlying class, in this ex-
ample Ser vi ceMeasur enent .

5.2.3. Pulling Data from Patterns

Data can also be pulled from pattern statements via the i terat or () method. If the pattern had fired at least
once, then the iterator returns the last event for which it fired. The hasNext () method can be used to determine
if the pattern had fired.

if (myPattern.iterator().hasNext())

{
Servi ceMeasurenment event = (Servi ceMeasurenment) view. iterator().next().get("alert");
. Il sone nore code here to process the event
}
el se
{
. I/ no matching events at this tine
}

5.3. Filter Expressions

This chapter outines how to filter events based on their properties.

The simplest form of filter is a filter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardless of the event's properties. The example below is
such afilter. Note that this event pattern would stop firing as soon as the first RfidEvent is encountered.

Esper 1.1.0 18

Event Pattern Reference

com nypackage. myevent s. Rf i dEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the ever y keyword.

every com nmypackage. nyevents. Rf i dEvent

The example above specifies the fully-qualified Java class name as the event type. Via configuration, the event
pattern above can be simplified by using the aias that has been defined for the event type. Interfaces and ab-
stract classes are al so supported as event types.

every Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example | Rf i dReadabl e iS an inter-
face class.

every org.nyorg.rfid.|Rfi dReadabl e

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name.

nmypackage. Rf i dEvent (cat egor y="Peri shabl e")

The supported filter operators are

e equals=
e comparison operators< , >, >=, <=
e rangesusethekeywordin andround(...) or square brackets|]

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates whether an end-
point isincluded or excluded.

* Open ranges that contain neither endpoint (I ow: hi gh)

e Closed ranges that contain both endpoints[| ow: hi gh]

e Half-open ranges that contain the low endpoint but not the high endpoint [1 ow: hi gh)
Half-closed ranges that contain the high endpoint but not the low endpoint (1 ow: hi gh]

Filter criteriaare listed in a comma-separated format. In the example below we look for Rfi dEvent events with
agrade property between 1 and 2 (endpointsincluded), apri ce lessthen 1, and a category of "Perishable".

nypackage. Rf i dEvent (cat egor y="Peri shabl e", price<1.00, grade in [1:2])

Filter criteria can also refer to events matching prior named events in the same expression. Below pattern is an
example in which the pattern matches once for every RfidEvent that is preceded by an RfidEvent with the same
itemid.

every A=nypackage. Rfi dEvent -> B=nypackage. Rfi dEvent (item d=A.itenl d)

The syntax shown above allows filter criteriato reference prior results by specifying the event name and event
property. This syntax can be used with all filter operators.

Some limitations of filters are:

» Range and comparison operators require the event property to be of a numeric type.
e Null valuesin filter criteriaare currently not allowed.

Esper 1.1.0 19

Event Pattern Reference

» Filter criteria can list the same event property only once.
» Eventsthat have null values for event properties listed in the filter criteria do not match the criteria.

5.4. Pattern Operators

5.4.1. Every

The every operator indicates that the pattern expression should restart when the pattern matches. Without the
every operator the pattern expressions matcher stops when the pattern matches once.

Thus the every operator works like a factory for the pattern expression contained within. When the pattern ex-
pression within it fires and thus quits checking for events, the every causes the start of a new pattern matcher
listening for more occurances of the same event or set of events.

Every time a pattern expression within an every operator turns true a new active pattern matcher is started
looking for more event(s) or timing conditions that match the pattern expression. If the every operator is not
specified for an expression, the expression stops after the first match was found.

This pattern fires when encountering event A and then stops looking.

A

This pattern keeps firing when encountering event A, and doesn't stop looking.

every A

Let's consider an example event sequence as follows.

A, BlcleAz D, A, 83 E,A,F B,

Table5.1. '"Every' operator examples

Example Description

every (A->B) Detect event A followed by event B. At the time when B occurs the pattern
matches, then the pattern matcher restarts and looks for event A again.

1. Matcheson B, for combination {Al, Bl}
2. Matcheson B, for combination {Az’ B3}
3. MaichesonB 4 for combination { A " B 4}

every A -> B The pattern fires for every event A followed by an event B.

1. Matcheson B, for combination {Al, Bl}
2. Matcheson B, for combination {Az, B3} and {As’ B3}
3. MatchesonB 4 for combination { A +B 4}

A -> every B The pattern fires for an event A followed by every event B.

1. Matcheson B, for combination {A1' Bl}.
2. Matcheson B, for combination {Al, Bz}.
3. Matcheson B, for combination {Al, Bs}

Esper 1.1.0 20

Event Pattern Reference

Example Description

4. Matcheson B4for combination {A1’ B4}

every A -> every B The pattern fires for every event A followed by every event B.
1. Matcheson B, for combination {Al, Bl} .
2. Matcheson B, for combination {Al, Bz} .
3. Matcheson B, for combination {A1’ B3} and {Az’ BB} and {A3, B3}
4. Matcheson B4 for combination {Al, B4} and {Az, B4} and {A3, B4} and

{A, B}

The examples show that it is possible that a pattern fires for multiple combinations of events that match a pat-
tern expression. Each combination is posted as an Event Bean instance to the updat e method in the Updat eL-
i st ener implementation.

5.4.2. And

Similar to the Java & & operator the and operator requires both nested pattern expressions to turn true before the
whole expression turnstrue (ajoin pattern).

Pattern matches when both event A and event B are found.

A and B

Pattern matches on any sequence A followed by B and C followed by D, or C followed by D and A followed by
B

(A->B) and (C -> D

5.4.3. Or

Similar to the Java “||" operator the or operator requires either one of the expressions to turn true before the
whole expression turns true.

Look for either event A or event B. Asaways, A and B can itself be nested expressions as well.

A or B

Detect all stock ticks that are either above or below a threshold.

every (StockTi ck(synbol="IBM, price < 100) or StockTick(synbol="1BM, price > 105)

5.4.4. Not

The not operator negates the truth value of an expression. Pattern expressions prefixed with not are automatic-
ally defaulted to true.

This pattern matches only when an event A is encountered followed by event B but only if no event C was en-
countered before event B.

(A->B) and not C

Esper 1.1.0 21

Event Pattern Reference

5.4.5. Followed-by

The followed by - > operator specifies that first the left hand expression must turn true and only then is the right
hand expression evaluated for matching events.

Look for event A and if encountered, look for event B. As always, A and B can itself be nested event pattern
expressions.

A->B
Thisis a pattern that fires when 2 status events indicating an error occur one after the other.

St at usEvent (status="' ERROR) -> Stat usEvent (stat us=" ERROR)

5.5. Guards

5.5.1. timer:within

Theti mer: wi t hi n guard acts like a stopwatch. If the associated pattern expression does not turn true within the
specified time period it is stopped and permanently false.

This pattern firesfor all A events that arrive within 5 seconds.

every A where tiner:w thin (5000)

This pattern matches for any A or B eventsin the next 5 seconds.

(Aor B) where tiner:w thin (5000)

This pattern matches for any 2 errors that happen 10 seconds within each other.

every (StatusEvent(status='ERROR) -> StatusEvent(status='ERROR) where tiner:w thin (10000))

5.6. Pattern Observers

5.6.1. timer:interval

Thetimer:interval observer takes await time in milliseconds and waits for the defined time before the truth
value of the observer turnstrue.

After event A arrived wait 10 seconds then indicate that the pattern matches.

A -> tiner:interval (10000)

The pattern below fires every 20 seconds.

every timer:interval (20000)

5.6.2. timer:at

Esper 1.1.0 22

Event Pattern Reference

Thetiner: at observer is similar in function to the Unix “crontab” command. At a specified time the expres-
sionturnstrue. The at operator can also be made to pattern match at regular intervals by using an every operat-
orinfront of theti rmer: at operator.

'ThesyrﬂaXiS:tiner:at (mnutes, hours, days of nmonth, nmonths, days of week [, seconds]).

The value for seconds is optional. Each element allows wildcard * values. Ranges can be specified by means of
lower bounds then acolon ‘:’ then the upper bound. The division operator */ x can be used to specify that every
X valueisvalid. Combinations of these operators can be used by placing these into square brackets([]).

This expression pattern matches every 5 minutes past the hour.

every tinmer:at(5, *, *, *, *)

The below at operator pattern matches every 15 minutes from 8am to 5pm on even numbered days of the month
aswell as on the first day of the month.

tiner:at (*/15, 8:17, [*/2, 1], *, *)

Esper 1.1.0 23

Chapter 6. EQL Reference

6.1. EQL Introduction

EQL statements are used to derive and aggregate information from one or more streams of events, and to join
or merge event streams. This section outlines EQL syntax. It aso outlines the built-in views, which are the
building blocks for deriving and aggregating information from event streams.

EQL issimilar to SQL inits use of the sel ect clause and the wher e clause. Where EQL differs most from SQL
isinthe use of tables. EQL replaces tables with the concept of event streams.

EQL statements contain definitions of one or more views. Similar to tables in an SQL statement, views define
the data available for querying and filtering. Some views represent windows over a stream of events. Other
views derive statistics from event properties, group events or handle unique event property values. Views can
be staggered onto each other to build a chain of views. The Esper engine makes sure that views are reused
among EQL statements for efficiency.

The built-in set of viewsis:

1. Views that represent moving event windows: wi n: | engt h, wi n: ti me, win:ti me_batch, win: ext_tinme,
ext:sort_w ndow

2. Views for aggregation: st d: uni que, std: groupby, std: | astevent (note: the group-by clause and the
st d: gr oupby view are very similar in function, see view description for differences)

3. Views that derive statistics. std:size, stat:uni, stat:linest, stat:correl, stat:weighted_avg,
stat:nultidi mstat

Esper can be extended by plugging-in custom developed views.

6.2. EQL Syntax

EQL queries are created and stored in the engine, and publish results as events are received by the engine or
timer events occur that match the criteria specified in the query. Events can also be pulled from running EQL
queries.

The select clause in an EQL query specifies the event properties or events to retrieve. The from clause in an
EQL query specifies the event stream definitions and stream names to use. The wher e clause in an EQL query
specifies search conditions that specify which event or event combination to search for. For example, the fol-
lowing statement returns the average price for IBM stock ticks in the last 30 seconds.

sel ect avg(price) from StockTick.w n:time(30) where synbol =' | BM

EQL queries follow the below syntax. EQL queries can be simple queries or more complex queries. A simple
select contains only a select clause and a single stream definition. Complex EQL queries can be build that fea-
ture a more elaborate select list utilizing expressions, may join multiple streams, may contain a where clause
with search conditions and so on.

[insert into insert_into_def]

sel ect select_list

fromstreamdef [as nane] [, streamdef [as nane]] [,...]
[where search_conditions]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

Esper 1.1.0 24

EQL Reference

[out put out put _specification]
[order by order_by expression_list]

6.3. Choosing Event Properties And Events: the Select Clause

The select clauseisrequired in all EQL statements. The select clause can be used to select all properties viathe
wildcard *, or to specify a list of event properties and expressions. The select clause defines the event type
(event property names and types) of the resulting events published by the statement, or pulled from the state-
ment.

6.3.1. Choosing all event properties: select *
The syntax for selecting all event propertiesin astreamiis:

select * from stream def

The following statement selects all univariate statistics properties for the last 30 seconds of IBM stock ticks for
price.

sel ect * from StockTi ck(synbol =" IBM).win:tinme(30).stat:uni('price')

In ajoin statement, using the sel ect * syntax selects event properties that contain the events representing the
joined streams themselves.

6.3.2. Choosing specific event properties
To chose the particular event propertiesto return:

sel ect event _property [, event_property] [, ...] from stream def

The following statement selects the count and standard deviation properties for the last 100 events of IBM
stock ticks for volume.

sel ect count, stdev from StockTick(synbol ='"1BM).w n: | ength(100).stat: uni ('vol urme')

6.3.3. Expressions
The select clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

The following statement selects the volume multiplied by price for atime batch of the last 30 seconds of stock
tick events.

sel ect volune * price from StockTick.w n:tine_bat ch(30)

6.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

Esper 1.1.0 25

EQL Reference

sel ect [event property | expression] as identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for the event prop-
erty.

sel ect volune * price as vol Price from StockTi ck.w n: | ength(100)

6.4. Specifying Event Streams : the From Clause

The fromclause is required in all EQL statements. It specifies one or more event streams. Each event stream
can optionally be given a name by means of the as syntax.

fromstreamdef [as nane] [, streamdef [as nane]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either afilter-based event
stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based and filter-based event
streams are al so supported.

6.4.1. Filter-based event streams

For filter-based event streams, the event stream definition stream_def as shown in the syntax above consists of
an event type, an optional filter property list and an optional list of views that derive data from a stream. The
syntax for afilter-based event stream is as below:

event type ([filter_criterial) [.view spec] [.view.spec] [...]

The following EQL statement selects all event properties for the last 100 events of IBM stock ticks for volume.
In the example, the event type is the fully qualified Java class name or g. esper . exanpl e. St ockTi ck. The ex-
pression filters for events where the property synbol has avalue of "IBM". The optional view specifications for
deriving data from the StockTick events are a length window and a view for computing statistics on volume.
The name for the event stream is "volumeStats'.

select * from
or g. esper . exanpl e. St ockTi ck(synmbol =" I BM). w n: | engt h(100) . stat: uni (' vol ume') as volunmeStats

Instead of the fully-qualified Java class name any other event name can be mapped via Configuration to a Java
class, making the resulting statement more readable.

select * from StockTi ck(synbol ="IBM).w n:|ength(100).stat: uni('volune') as volunmeStats

Specifying an event type

In the example above the event type was or g. esper . exanpl e. St ockTi ck. The event type is ssimply the fully
qualified Java class name. Interfaces and abstract classes are also supported. Alternatively, via configuration an
alias for an event type can be defined and used instead of the fully qualified class name. The below example
shows one way to obtain the fully qualified class name of a given Java class St ockTi ck.

String event Name = St ockTi ck. cl ass. get Nane() ;
String stmt = "from" + eventNane + ".w n:|length(100)"

Esper 1.1.0 26

EQL Reference

Specifying event filter criteria

Filter criteria follow the same syntax as outlined in the event pattern section on filters; see Section 5.3, “Filter
Expressions’. Filter criteria operatorsare: =, <, >, >=, <=. Rangesusethein keyword and round (.. .)
or sguare brackets[] .

Esper filters out events in an event stream as defined by filter criteria before it sends events to subsequent
views. Thus, compared to search conditions in awhere-clause, filter criteriaremove unneeded events early.

The below example is afilter criterialist that removes events based on category, price and grade.

from nypackage. Rf i dEvent (cat egory="Peri shabl e", price<1.00, grade in [1, 2])

6.4.2. Pattern-based event streams

Event pattern expressions can also be used to specify one or more event streams in an EQL statement. For pat-
tern-based event streams, the event stream definition stream_def consists of the keyword pat t er n and a pattern
expression in brackets []. The syntax for an event stream definition using a pattern expression is below. Asin
filter-based event streams, an optional list of views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view spec] [.view spec] [...]

Lets look at a simple example. The next statement specifies an event stream that consists of both stock tick
events and trade events. The example tags stock tick events with the name "tick" and trade events with the
name "trade".

select * frompattern [every tick=StockTi ckEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types. The generated
events resemble amap with "tick” and "trade" keys. For stock tick events, the "tick" key value is the underlying
stock tick event, and the "trade" key valueis anull value. For trade events, the "trade" key value is the underly-
ing trade event, and the "tick" key valueisanull value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock tick or trade
events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sun(tick.price) + sum(trade.price) as total
frompattern [every tick=StockTi ckEvent or every trade=TradeEvent].w n:time(30)

Note that in the statement above ti ckPri ce and tradePri ce can each be null values depending on the event
processed. Therefore, an aggregation function such assunt(ti ck. price + trade. price)) would aways return
null values as either of the two price properties are always a null value for any event matching the pattern. Use
the coal esce function to handle null values, for example: sun(coal esce(tick.price, 0) + co-
al esce(trade. price, 0)).

6.4.3. Specifying views

Views are used to derive or aggregate data. Views can be staggered onto each other. See the section Sec-
tion 6.12, “Build-in views” on the views available.

Views can optionally take one or more parameters. These parameters can consist of primitive constants such as

Esper 1.1.0 27

EQL Reference

String, boolean or numeric types. Arrays are also supported as a view parameter types.

The below example serves to show views and staggering of views. It uses a car location event that contains in-
formation about the location of a car on a highway.

The first view st d: groupby(‘ carld') groups car location events by car id. The second view wi n: | engt h(4)
keeps a length window of the 4 last events, with one length window for each car id. The next view
std: groupby({' expressway', 'direction', 'segment'}) groups each event by it's expressway, direction
and segment property values. Again, the grouping is done for each car id considering the last 4 events only. The
last view st d: si ze() is used to report the number of events. Thus the below example reports the number of
events per car id and per expressway, direction and segment considering the last 4 events for each car id only.

sel ect * from CarLocEvent. std: groupby('carld).wn:length(4).
st d: groupby({' expressway', 'direction', 'segnent'}).std:size()

6.5. Specifying Search Conditions: the Where Clause

The where clause is an optional clause in EQL statements. Via the where clause event streams can be joined
and events can be filtered.

Comparison operators=, <, >, >=, <=, !=, <> is null, is not null andlogical combinations via
and and or are supported in the where clause. The where clause can also introduce join conditions as outlined in
Section 6.13, “Joining Event Streams’. Where-clauses can also contain expressions. Some examples are listed
below.

..where fraud.severity = 5 and anmbunt > 500

..where (orderltemorderld is null) or (orderltemclass != 10)
...where (orderltemorderlid = null) or (orderltemclass <> 10)
.. where itenCount / packageCount > 10

6.6. Aggregates and grouping: the Group-by Clause and the
Having Clause

6.6.1. Using aggregate functions

The aggregate functions are sum avg, count, max, min, nedian, stddev, avedev.YOU Ccan use aggregate
functions to calculate and summarize data from event properties. For example, to find out the total price for all
stock tick eventsin the last 30 seconds, type:

sel ect sun(price) from StockTi ckEvent.wi n:time(30)

Hereisthe syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to al events in an event stream window or other view, or to one or more
groups of events. From each set of events to which an aggregate function is applied, Esper generates a single
value.

Expr essi on isusually an event property name. However it can also be a constant, function, or any combination

Esper 1.1.0 28

EQL Reference

of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the price was
doubled:

sel ect avg(price * 2) from StockTi ckEvent.w n: ti ne(30)

You can use the optional keyword di sti nct with al aggregate functions to eliminate duplicate values before

the aggregate function is applied. The optional keyword al I which performs the operation on all events is the
defaullt.

The syntax of the aggregation functions and the results they produce are shown in below table.

Table 6.1. Syntax and results of aggregate functions

Aggregate Function Result

sum([all|distinct] expression)
Totals the (distinct) values in the expression, returning a value of | ong,
doubl e, float or integer type depending on the expression

avg([all|distinct] expression)
Average of the (distinct) values in the expression, returning a value of
doubl e type

count([all|distinct] expression)
Number of the (distinct) non-null values in the expression, returning a
value of I ong type

count(*)
Number of events, returning avalue of | ong type

max([al|distinct] expression)
Highest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

min([all|distinct] expression)
Lowest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

median([all|distinct] expression)
Median (distinct) value in the expression, returning a value of doubl e

type

stddev([al|distinct] expression)
Standard deviation of the (distinct) values in the expression, returning a
value of doubl e type

avedev([all|distinct] expression)
Mean deviation of the (distinct) values in the expression, returning a
value of doubl e type

Y ou can use aggregation functions in asel ect clause and in a havi ng clause. Y ou cannot use aggregate func-
tionsin awher e clause, but you can use the where clause to restrict the events to which the aggregate is applied.
The next query computes the average and sum of the price of stock tick events for the symbol IBM only, for the
last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sum(price) as sunPrice
from St ockTi ckEvent . wi n: | engt h(10)

Esper 1.1.0 29

EQL Reference

wher e synbol =' | BM

In the above example the length window of 10 elementsis not affected by the where-clause, i.e. all events enter
and leave the length window regardless of their symbol. If we only care about the last 10 IBM events, we need
to add filter criteriaas below.

select 'IBMstats' as title, avg(price) as avgPrice, sum(price) as sunPrice
from St ockTi ckEvent (synbol =' I BM). wi n: | engt h(10)
wher e synbol =' | BM

Y ou can use aggregate functions with any type of event property or expression, with the following exceptions:

1. Youcanusesum avg, nedian, stddev, avedev With numeric event propertiesonly

Esper ignores any null values returned by the event property or expression on which the aggregate function is
operating, except for the count (*) function, which counts null values as well. All aggregate functions return
null if the data set contains no events, or if all events in the data set contain only null values for the aggregated
expression.

6.6.2. Organizing statement results into groups: the Group-by clause

The group by clause is optional in al EQL statements. The group by clause divides the output of an EQL
statement into groups. Y ou can group by one or more event property names, or by the result of computed ex-
pressions. When used with aggregate functions, gr oup by retrieves the calculations in each subgroup. Y ou can
usegroup by without aggregate functions, but generally that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in the last 30
seconds:

sel ect synbol, sun{price) from StockTi ckEvent.wi n:tine(30) group by synbol

The syntax of the group by clauseis:

group by arregate free_expression [, arregate free_expression] [, ...]

Esper places the following restrictions on expressionsin the gr oup by clause:

1. Expressionsinthegroup by cannot contain aggregate functions
2. Event properties that are used within aggregate functions in the sel ect clause cannot also be used in a
group by expression

Y ou can list more then one expression in the group by clause to nest groups. Once the sets are established with
group by the aggregation functions are applied. This statement posts the median volume for al stock tick
events in the last 30 seconds per symbol and tick data feed. Esper posts one event for each group to statement
listeners:

sel ect synbol, tickDataFeed, nedi an(vol une)
from St ockTi ckEvent . wi n: ti me(30)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also listed in the
group by clause. The statement thus follows the SQL standard which prescribes that non-aggregated event
propertiesin the sel ect list must match the gr oup by columns.

Esper 1.1.0 30

EQL Reference

Esper also supports statements in which one or more event properties in the sel ect list are not listed in the
group by clause. The statement below demonstrates this case. It calcul ates the standard deviation for the last 30
seconds of stock ticks aggregating by symbol and posting for each event the symbol, tickDataFeed and the
standard deviation on price.

sel ect synbol, tickDataFeed, stddev(price) from StockTi ckEvent.w n:tinme(30) group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces one event per
incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the group by clause are not
listed in the sel ect list. This is an example that calculates the mean deviation per synbol and ti ckDat aFeed
and posts one event per group with synbol and mean deviation of price in the generated events. Since tick-
DataFeed is not in the posted results, this can potentially be confusing.

sel ect synbol, avedev(price)
from St ockTi ckEvent . wi n: time(30)
group by synbol, tickDataFeed

Expressions are also allowed in the group by list:

sel ect synmbol * price, count(*) from StockTi ckEvent.w n:tinme(30) group by synmbol * price

If the group by expression resulted in a null value, the null value becomes its own group. All null values are
aggregated into the same group. If you are using the count (expr essi on) aggregate function which does not
count null values, the count returns zero if only null values are encountered.

Y ou can use awher e clausein a statement with group by. Eventsthat do not satisfy the conditions in the wher e
clause are eliminated before any grouping is done. For example, the statement below posts the number of stock
ticksin the last 30 seconds with avolume larger then 100, posting one event per group (Symbol).

sel ect synmbol, count(*) from StockTi ckEvent.w n:time(30) where volunme > 100 group by synbol

6.6.3. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng clause sets condi-
tionsfor the gr oup by clause in the same way wher e sets conditions for the sel ect clause, except wher e cannot
include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total price per symbol
for the last 30 seconds of stock tick events for only those symbols in which the total price exceeds 1000. The
havi ng clause eliminates all symbolswhere the total priceis egqual or less then 1000.

sel ect synbol, sum(price)

from St ockTi ckEvent . wi n: ti me(30)
group by synbol

havi ng sum(price) > 1000

To include more then one condition in the havi ng clause combine the conditions with and, or or not. Thisis
shown in the statement below which selects only groups with a total price greater then 1000 and an average
volume less then 500.

sel ect synbol, sun(price), avg(vol une)
from St ockTi ckEvent . wi n: ti me(30)
group by synbol

Esper 1.1.0 31

EQL Reference

havi ng sum(price) > 1000 and avg(vol une) < 500

Esper places the following restrictions on expressionsin the havi ng clause:

1. Any expressionsthat contain aggregate functions must also occur in the sel ect clause

A statement with the havi ng clause should also have a group by clause. If you omit gr oup- by, al the events
not excluded by the wher e clause return as a single group. In that case havi ng acts like awher e except that hav-
i ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The example below
posts events where the price is less then the current running average price of all stock tick eventsin the last 30
seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent . wi n: ti me(30)
havi ng price < avg(price)

6.6.4. How the stream filter, Where, Group By and Having clauses interact

When you include filters, the wher e condition, the gr oup by clause and the havi ng condition in an EQL state-
ment the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is used). The
filter discards any events not meeting filter criteria.

2. Thewher e clause excludes events that do not meet its search condition.

3. Aggregate functionsin the select list calculate summary values for each group.

4. Thehavi ng clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and havi ng clauses in one statement with a
sel ect clause containing an aggregate function.

sel ect tickDataFeed, stddev(price)

from St ockTi ckEvent (synbol ="' | BM). wi n: | engt h(10)
where vol une > 1000

group by tickDat aFeed

havi ng stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream st ockTi ckEvent . In the example above only
events with symbol IBM enter the length window over the last 10 events, all other events are simply discarded.
The wher e clause removes any events posted by the length window (events entering the window and event
leaving the window) that do not match the condition of volume greater then 1000. Remaining events are ap-
plied to the st ddev standard deviation aggregate function for each tick data feed as specified in the group by
clause. Each ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
passfor ti ckDat aFeed groups with a standard deviation of price greater then 0.8.

6.7. Stabilizing and Limiting Output: the Output Clause

6.7.1. Output Clause Options

Theout put clause isoptional in Esper and is used to control or stabilize the rate at which events are output. For
example, the following statement batches old and new events and outputs them at the end of every 90 second

Esper 1.1.0 32

EQL Reference

interval.

sel ect * from StockTi ckEvent.w n: | ength(5) output every 90 seconds

Here isthe syntax for output rate limiting:

output [all | first | last] every nunber [minutes | seconds | events]

Theal | keyword is the default and specifies that all events in a batch should be output. The batch size can be
specified in terms of time or number of events.

The first keyword specifies that only the first event in an output batch is to be output. Using the first
keyword instructs the engine to output the first matching event as soon as it arrives, and then ignore matching
events for the time interval or number of events specified. After the time interval elapsed, or the number of
matching events has been reached, the next first matching event is output again and the following interval the
engine again ignores matching events.

Thel ast keyword specifies to only output the last event at the end of the given time interval or after the given
number of matching events have been accumulated.

Thetimeinterval can also be specified in terms of minutes; the following statement isidentical to the first one.

sel ect * from St ockTi ckEvent.w n: | ength(5) output every 1.5 m nutes

A second way that output can be stabilized is by batching events until a certain number of events have been col-
lected. The next statement only outputs when either 5 (or more) new or 5 (or more) old events have been
batched.

sel ect * from StockTi ckEvent.w n:ti me(30) output every 5 events

Additionally, event output can be further modified by the optional | ast keyword, which causes output of only
the last event to arrive into an output batch.

select * from StockTi ckEvent.wi n:time(30) output |ast every 5 events

Using thefirst keyword you can be notified at the start of the interval. The allows to watch for situations such
as arate falling below athreshold and only be informed every now and again after the specified output interval,
but be informed the moment it first happens.

select * fromTickRate.win:tine(30) output first every 60 seconds where rate<100

6.7.2. Group By, Having and Output clause interaction

The out put clause interacts in two ways with the group by and havi ng clauses. Firgt, in the out put every n
events case, the number n refers to the number of events arriving into the group by cl ause. That is, if the
group by clause outputs only 1 event per group, or if the arriving events don't satisfy the havi ng clause, then
the actual number of events output by the statement could be fewer than n.

Second, the | ast and al I keywords have special meanings when used in a statement with aggregate functions
and the group by clause. The | ast keyword specifies that only groups whose aggregate values have been up-
dated with the most recent batch of events should be output. The al | keyword (the default) specifies that the
most recent data for all groups seen so far should be output, whether or not these groups' aggregate values have
just been updated.

Esper 1.1.0 33

EQL Reference

6.8. Sorting Output: the Order By Clause

Theorder by clauseisoptional in Esper. It is used for ordering output events by their properties, or by expres-
sions involving those properties. For example, the following statement outputs batches of 5 or more stock tick
events that are sorted first by price and then by volume.

sel ect synbol from StockTi ckEvent.w n:tine(60)
out put every 5 events
order by price, volune

Hereisthe syntax for the order by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

Esper places the following restrictions on the expressionsin the or der by clause:

1. All aggregate functions that appear in the or der by clause must also appear inthe sel ect expression.

Otherwise, any kind of expression that can appear in the sel ect clause, as well as any alias defined in the se-
I ect clause, isalsovalid in the order by clause.

6.9. Merging Streams and Continuous Insertion: the Insert Into
Clause

Theinsert into clauseis optional in Esper. This clause can be specified to make the results of a statement
available as an event stream for use in further statements. The clause can aso be used to merge multiple event
streamsto form a single stream of events.

insert into Conmbi nedEvent

sel ect A custonerld as custld, Atinmestanp - B.ti nestanp as | atency
fromEvent A win:tine(1800) A EventB.wi n:tine(1800) B

where A.txnld = B.txnld

Theinsert into clausein above statement generates events of type Conbi nedEvent . Each generated Conbi ne-
deEvent event has 2 event properties named "custld" and "latency". The events generated by above statement
can be used in further statements. The below statement uses the generated events.

sel ect custld, sun{latency)
from Conbi nedEvent . wi n: ti ne(1800)
group by custld

Theinsert into clause can consist of just an event type alias, or of an event type alias and 1 or more event
property names. The syntax for thei nsert into clauseisasfollows:

insert [istream| rstrean] into event_type_alias [(property_name [, property_nanme])]

Thei st ream (default) and r st r eamkeywords are optional. If neither keyword or the i st r eamkeyword is spe-
cified, the engine supplies the insert stream events generated by the statement. The insert stream consists of the
events entering the respective window(s) or stream(s). If the r st reamkeyword is specified, the engine supplies
the remove stream events generated by the statement. The remove stream consists of the events leaving the re-
spective window(s).

The event _type_al i as is an identifier that names the events generated by the engine. The identifier can be

Esper 1.1.0 34

EQL Reference

used in statements to filter and process events of the given name.
The engine also allows listeners to be attached to a statement that contain ani nsert i nto clause.

To merge event streams, simply use the same event _type_al i as identifier in al EQL statements that merge
their result event streams. Make sure to use the same number and names of event properties and event property
types match up.

Esper places the following restrictionson thei nsert i nt o clause:

1. The number of elements in the sel ect clause must match the number of elements in theinsert into
clauseif the clause specifies alist of event property names

2. If the event type dias has already been defined by a prior statement or configuration, and the event prop-
erty names and types do not match, an exception is thrown at statement creation time.

The example statement below shows the alternative form of thei nsert i nto clause that explicitly defines the
property names to use.

insert into Conbi nedEvent (custld, |atency)
sel ect A custonerld, A tinmestanp - B.tinestanp

The r st reamkeyword can be useful to indicate to the engine to generate only remove stream events. This can
be useful if we want to trigger actions when events leave a window rather then when events enter a window.
The statement below generates Conbi nedEvent events when EventA and EventB leave the window after 30
minutes (1800 seconds).

insert rstreaminto Conbi nedEvent
sel ect A custonerld as custld, A tinmestanp - B.tinmestanp as | atency
fromEvent A win:time(1800) A EventB.win:tine(1800) B
where A txnld = B.txnld

6.10. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement. These func-
tions can appear anywhere where expressions are allowed.

Esper allows static Javalibrary methods as single-row functions, and also features built-in single-row functions.

Esper auto-imports the following Java library packages:

e javalang.*
e javamath.*
* javatext.*
e javadtil.*

Thus Java static library methods can be used in all expressions as shown in below example:

sel ect synbol, WMath.round(vol une/ 1000)
from St ockTi ckEvent . wi n: ti me(30)

In general, arbitrary Java class names have to be fully qualified (e.g. javalang.Math) but Esper provides a
mechanism for user-controlled imports of classes and packages as outlined in Chapter 2, Configuration.

The below table outlines the built-in single-row functions available.

Esper 1.1.0 35

EQL Reference

Table 6.2. Syntax and results of single-row functions

Single-row Function Result

max(expressi on, expression [, expression ...]) Returns the highest numeric value among the
2 or more comma-separated expressions.

m n(expressi on, expression [, expression ...]) Returns the lowest numeric value among the
2 or more comma-Separated expressions.

coal esce(expression, expression [, expression ...]) Returnsthefirst non-nul | valueinthelist, or
nul | if thereare no non-nul | values.

case val ue Returns resul t where the first val ue equals
when conpare_val ue then result
[when conpare_val ue then result ...]
[el se result]

conpar e_val ue.

end
case Returns the r esul t for the first condition that
when condition then result istrue.

[when condition then result ...]
[el se result]
end

6.10.1. The M n and max Functions

The i n and max function take two or more parameters that itself can be expressions. The ni n function returns
the lowest numeric value among the 2 or more comma-separated expressions, while the max function returns the
highest numeric value. The return type is the compatible aggregated type of all return values.

The next example shows the max function that has a Doubl e return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from...

The ni n function returns the lowest value. The statement below uses the function to determine the smaller of
two timestamp values.

sel ect synmbol, mn(ticks.timestanp, news.tinestanp) as m nT
from St ockTi ckEvent.win:time(30) as ticks, NewsEvent.w n:tinme(30) as news
where ticks. synmbol = news. symbol

6.10.2. The coal esce Function

The result of the coal esce function is the first expression in alist of expressions that returns a non-null value.
The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo'.

sel ect coal esce(null, 'foo') from...

Esper 1.1.0 36

EQL Reference

6.10.3. The case Control Flow Function

The case control flow function has two versions. The first version takes avalue and a list of compare values to
compare against, and returns the result where the first value equals the compare value. The second version
takesalist of conditions and returns the result for the first condition that is true.

Thereturn type of acase expression is the compatible aggregated type of all return values.

The example below shows the first version of a case statement. It has a Stri ng return type and returns the
value 'one’.

sel ect case 1 when 1 then 'one' when 2 then 'two' else 'nore' end from...

The second version of the case function takes alist of conditions. The next example has a Bool ean return type
and returns the boolean value true.

sel ect case when 1>0 then true else false end from...

6.11. Operator Reference

Esper arithmatic and logical operator precedence follows Java standard arithmatic and logical operator preced-
ence.

6.11.1. Arithmatic Operators

The below table outlines the arithmatic operators available.

Table 6.3. Syntax and results of arithmatic operators

Operator Description

As unary operators they denote a positive or
negative expression. As binary operators they
add or subtract.

Multiplication and division are binary operat-
ors.

%
Modulo binary operator.

6.11.2. Logical And Comparsion Operators

The below table outlines the logical and comparison operators available.

Table 6.4. Syntax and results of logical and comparison operators

Esper 1.1.0 37

EQL Reference

Operator Description

NOT
Returns true if the following condition is

false, returnsfalseif it istrue.

OR
Returns true if either component condition is

true, returnsfalse if both are false.

AND
Returns true if both component conditions are

true, returnsfalseif either isfase.

:1 !:1 <1 > <:l >=|
Comparison.
6.11.3. Concatenation Operators
The below table outlines the concatenation operators available.
Table 6.5. Syntax and results of concatenation operators
Operator Description

Concatenates character strings

6.11.4. Binary Operators

The below table outlines the binary operators available.

Table 6.6. Syntax and results of binary operators

Operator Description

&
Bitwise AND if both operands are numbers;

conditiona AND if both operands are
boolean

Bitwise OR if both operands are numbers;
conditional OR if both operands are boolean

Bitwise exclusive OR (XOR)

6.12. Build-in views

This chapter outlines the views that are built into Esper.

Esper 1.1.0 38

EQL Reference

6.12.1. Window views

Length window
Creates a moving window extending the specified number of elementsinto the past.
The below example calculates basic univariate statistics for the last 5 stock ticks for symbol IBM.

St ockTi ckEvent (synbol =" IBM). w n: |l ength(5).stat:uni('price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. The statistics on price is calculated only for the last 10 events for each symbol.

St ockTi ckEvent . st d: gr oupby(' synbol '). wi n: | ength(10).stat: uni('price')

Time window

The time_window creates a moving time window extending from the specified time interval in seconds into the
past based on the system time.

For the IBM stock tick eventsin the last 2000 milliseconds, calculate statistics on price.

St ockTi ckEvent (synbol =" IBM). win:time(1l).stat:uni (' price')

Externally-timed window

Similar to the time window this view moving time window extending from the specified time interval in
seconds into the past, but based on the millisecond time value supplied by an event property.

This view holds stock tick events of the last 10 seconds based on the timestamp property in St ockTi ckEvent .

St ockTi ckEvent . wi n: ext _ti med(10, 'timestanp')

Time window buffer
This window view buffers events and rel eases them every specified time interval in one update.

The below example batches eventsinto a5 second window releasing new batches every 5 seconds. Listenersto
updates posted by this view receive updated information only every 5 seconds.

St ockTi ckEvent . wi n: ti me_bat ch(5)

6.12.2. Standard view set

Unique

The uni queview is a view that includes only the most recent among events having the same value for the spe-
cified field.

The below example creates a view that retains only the last event per symbol.

St ockTi ckEvent . st d: uni que(' synbol ')

Esper 1.1.0 39

EQL Reference

Group By
This view groups events into sub-views by the value of the specified field.
This example calculates statistics on price separately for each symbol.

St ockTi ckEvent . st d: groupby(' synbol '). stat: uni (' price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each

symbol. Now the statistics on priceis calculated only for the last 10 events for each symbol.

St ockTi ckEvent . st d: gr oupby(' synmbol '). wi n: | ength(10).stat: uni('price')

Size
This view returns the number of elementsin view.
This example view reports the number of events within the last 1 minute.

St ockTi ckEvent . wi n: ti me(60000). std: size()

Last

This view exposes the last element of its parent view.

This example view retains statistics calculated on stock tick price for the symbol IBM.

St ockTi ckEvent (synbol ="' IBM). stat: uni (' price').std:|astevent()

6.12.3. Statistics views

Univariate statistics

This view calculated basic univariate statistics on an event property.

Table 6.7. Univariate statistics derived properties

Property Name Description

count Number of values

sum Sum of values

aver age Average of values

vari ance Variance

st dev Sample standard deviation (square root of variance)
st devpa Population standard deviation

The below example calculates price statistics on stock tick events for the last 10 events.

St ockTi ckEvent . wi n: | engt h(10) . stat: uni (' price')

Esper 1.1.0

40

EQL Reference

Regression

This view calculates regression on two event properties.

Table 6.8. Regression derived properties

Property Name Description
sl ope Slope
yi nt er cept Y Intercept

Calculate dope and y-intercept on price and offer for all eventsin the last 10 seconds.

St ockTi ckEvent . wi n: ti me(10000).stat:linest('price', 'offer")

Correlation

Thisview calculates the correlation value on two event properties.

Table 6.9. Correlation derived properties

Property Name Description

correl Correlation between two event properties

Calculate correlation on price and offer over all stock tick eventsfor IBM.

St ockTi ckEvent (synmbol ="' IBM) .stat:correl (' price', 'offer')

Weighted average

This view returns the weighted average given a weight field and a field to compute the average for. Syntax:
weighted avg(field, weightField)

Table 6.10. Weighted average derived properties

Property Name Description

aver age Weighted average

Views that derive the volume-weighted average price for the last 3 seconds.

St ockTi ckEvent (synbol ="' I BM). w n: ti me(3000). stat: wei ghted_avg(' price', 'volune')

Multi-dimensional statistics

This view works similar to the st d: gr oupby views in that it groups information by one or more event proper-
ties. The view accepts 3 or more parameters. The first parameter to the view defines the univariate statistics
values to derive. The second parameter is the property name to derive data from. The remaining parameters

Esper 1.1.0 41

EQL Reference

supply the event property names to use to derive dimensions.

Table 6.11. Multi-dim derived properties

Property Name Description

cube The cube following the interface

The example below derives the count, average and standard deviation latency of service measurement events
per customer.

Servi ceMeasurenent. stat: nultidimstats({‘count’, ‘average’, ‘stdev’'},
‘latency', 'customner')

This example derives the average latency of service measurement events per customer, service and error status
for eventsin the last 30 seconds.

Servi ceMeasur enment . wi n: | engt h(30000) . stat: multidimstats({‘average’},
"latency', 'customer', 'service', 'status')

6.12.4. Extension View Set

Sorted Window View
This view sorts by values of the specified event properties and keeps only the top events up to the given size.
The syntax to sort on a single event property is as follows.
sort (propertyNane, isDescending, size)
To sort on amultiple event properties the syntax is as follows.
sort({ propertyNane, isDescending [, propertyName, isDescending ...] }, size)
The view below sorts on price descending keeping the lowest 10 prices and reporting statistics on price.

St ockTi ckEvent . ext:sort (' price', false, 10).stat:uni('price')

The following example sorts events first by price in descending order, and then by symbol name in ascending
(alphabetical) order, keeping only the 10 events with the highest price (with ties resolved by aphabetical order
of symbal).

St ockTi ckEvent . ext:sort({"' price', true, 'synbol', false}, 10)

6.13. Joining Event Streams

Two or more event streams can be part of the f r omclause and thus both streams determine the resulting events.
The where-clause lists the join conditions that Esper usesto relate events in the two or more streams.

Each point in time that an event arrives to one of the event streams, the two event streams are joined and output
events are produced according to the where-clause.

Esper 1.1.0 42

EQL Reference

This example joins 2 event streams. The first event stream consists of fraud warning events for which we keep
the last 30 minutes (1800 seconds). The second stream is withdrawal events for which we consider the last 30
seconds. The streams are joined on account number.

sel ect fraud. account Nunmber as accnt Num fraud.warning as warn, w thdraw anount as anount,
max(fraud.timestanp, wthdraw timestanp) as tinmestanp, 'w thdraw Fraud' as desc
from net. esper. exanpl e. at m Fr audWar ni ngEvent . wi n: ti ne(1800) as fraud,
net. esper. exanpl e.atm Wt hdrawal Event.wi n:ti ne(30) as withdraw
wher e fraud. account Nunber = withdraw. account Nunber

6.14. Outer Joins

Esper supports left outer joins, right outer joins and full outer joins between an unlimited number of event
streams.

If the outer join is aleft outer join, there will be an output event for each event of the stream on the left-hand
side of the clause. For example, in the left outer join shown below we will get output for each event in the
stream RfidEvent, even if the event does not match any event in the event stream OrderList.

select * fromnet. esper.exanple.rfid.RfidEvent.win:tinme(30) as rfid
left outer join
net. esper.exanpl e.rfid. OrderList.wn:|length(10000) as orderli st
on rfid.itemd = orderList.itemd

Similarly, if thejoin isaRight Outer Join, then there will be an output event for each event of the stream on the
right-hand side of the clause. For example, in the right outer join shown below we will get output for each event
in the stream OrderList, even if the event does not match any event in the event stream RfidEvent.

sel ect * from net.esper.exanple.rfid. RfidEvent.w n:tine(30) as rfid
right outer join
net . esper. exanpl e. rfid. OrderList.w n:|length(10000) as orderli st
on rfid.itemd = orderList.itemd

For al types of outer joins, if the join condition is not met, the select list is computed with the event properties
of the arrived event while al other event properties are considered to be null.

select * fromnet. esper.exanple.rfid.RfidEvent.win:tinme(30) as rfid
full outer join
net. esper.exanpl e.rfid. OrderList.wn:|ength(10000) as orderli st
on rfid.itemd = orderList.itemd

The last type of outer join is afull outer join. In afull outer join, each point in time that an event arrives to one
of the event streams, one or more output events are produced. In the example below, when either an RfidEvent
or an OrderList event arrive, one or more output event is produced.

6.15. User-Defined Functions

A user-defined function can be invoked anywhere as an expression itself or within an expresson. The function
must simply be a public static method that the classloader can resolve at statement creation time. The engine re-
solves the function reference at statement creation time and verifies parameter types.

The example below assumes a class Myd ass that exposes a public static method myFunct i on accepting 2 para-
meters, and returing a numeric type such as doubl e.

Esper 1.1.0 43

EQL Reference

select 3 * Myd ass. nyFunction(price, volune) as myVal ue
from St ockTi ck. wi n: ti me(30)

Esper 1.1.0

Chapter 7. Adapters

This chapter discusses adapters (TODO)

7.1. Adapter

Adapters adapt event executions in the outside world into a format for processing by Esper, and feed events to
Esper.

Currently there are no pre-build adapters available for Esper.

Esper 1.1.0 45

Chapter 8. Indicators

8.1. Intro

Indicators are pluggable modules that communicate the results of event stream processing to the external world.
Indicators can act as visualizers that present a graphical view of their event inputs. They can also be warning
agents (monitors) that send alerts, warnings or other control eventsto the outside world.

In their implementation indicators can be classes that implement the Updat eLi st ener interface and that can
thus be attached directly to one or more statements. Indicactors can aso be attached to one or more EPSt at e-
ment instances. This makes is possible for indicators to merge data as well as pull data from trigger and state-
ment views.

Indicators may be integration components that plug together with other software, an some indicators will be
supplied by Esper. Esper currently only has one indicator module as described below.

8.2. JMX Indicator

The net . esper . i ndi cat or. j mx. JMXLast Event | ndi cat or displays the last event in a IMX MBean it registers
with the MBeanServer obtained via ManagementFactory.getPl atformM BeanServer();

Esper 1.1.0 46

Chapter 9. Architecture

9.1. Overview

A (very) high-level view of the architecture: TODO

9.2. Building and Testing

The Esper code base consists of about 300 source code and 270 unit test (as of release 0.7.0) or test support
classes, excluding examples. After build there are over 500 unit test methods that are automatically run to veri-
fy the build. Some of the unit tests assert against performance data taken during the test. These tests are de-
signed to run on asingle 2.8 GHz Pentium 4 processor with 512MB memory.

Esper requires the following 3rd-party libraries:

ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EQL syntax.
Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license isin the lib directory. The library
isrequired for compile-time only.

CGLIB isthe code generation library for fast method calls. This open source software is under the Apache
license. The Apache 2.0 licenseisin thelib directory.

LOGA4J and Apache commons logging are logging components. This open source software is under the
Apache license. The Apache 2.0 licenseisin thelib directory.

BeanUltils is a JavaBean manipulation library. This open source software is under the Apache license. The
Apache 2.0 licenseisin the lib directory.

JUnit isagreat unit testing framework. Its license has also been placed in the lib directory. The library isre-
quired for build-time only.

Esper 1.1.0 47

Chapter 10. Examples, Tutorials, Case Studies

The tutorial and case studies ae avalable on the public web site a ht-
tp:// esper.codehaus. org/ eval uati ng/ eval uating. htm .

10.1. Examples Overview

This chapter outlines the examples that come with Esper in the eg/ src folder of the distribution. The code for
examples can be found in the net . esper . exanpl e packages.

In order to compile and run the sampl es please follow the below instructions:

1. MakesureJavalb or greater isinstaled and the JAVA_HOME environment variable is set.
2. Open aconsole window and change directory to esper/eg/etc.

3. Run"setenv.bat" (Windows) or "setenv.sh" (Unix) to verify your environment settings.

4. Run"compile.bat" (Windows) or "compile.sh" (Unix) to compile the examples.

5. Now you are ready to run the examples. Some examples require mandatory parameters. Further informa-
tion to running each example can be found in the "eg" folder in file "readme.txt".

6. Maodify thelogger logging level in the "logdj.xml" configuration file changing DEBUG to INFO on a class
or package level to reduce the volume of text output.

JUnit tests exist for the example code. The JUnit test source code for the examples can be found in the eg/ t est
folder. To build and run the example JUnit tests, use the Maven 2 goal t est . The JUnit test source code can
also be helpful in understanding the example and in the use of Esper APIs.

10.2. Market Data Feed Monitor

This example processes a raw market data feed. It reports throughput statistics and detects when the data rate of
afeed falls off unexpectedly. A rate fall-off may mean that the data is stale and we want to alert when thereisa
possible problem with the feed.

The classes for this example live in package net . esper . exanpl e. mar ket dat af eed. Run "run_mktdatafeed.bat"

(Windows) or "run_mktdatafeed.sh" (Unix) in the eg/ et ¢ folder to start the market data feed simulator.

10.2.1. Input Events

The input stream consists of 1 event stream that contains 2 simulated market data feeds. Each individual event
in the stream indicates the feed that supplies the market data, the security symbol and some pricing information:

String symbol ;
FeedEnum f eed;
doubl e bi dPri ce;
doubl e askPri ce;

10.2.2. Computing Rates Per Feed

Esper 1.1.0 48

Examples, Tutorials, Case Studies

For the throughput statistics and to detect rapid fall-off we calculate a ticks per second rate for each market data
feed.

We can use an EQL statement that specifies a view onto the market data event stream that batches together 1
second of events. We specify the feed and a count of events per feed as output values. To make this data avail-
able for further processing, we insert output events into the TicksPerSecond event stream:

insert into TicksPerSecond
sel ect feed, count(*) as cnt

from Mar ket Dat aEvent . wi n: ti me_bat ch(1)
group by feed

10.2.3. Detecting a Fall-off

We define a rapid fall-off by alerting when the number of ticks per second for any second falls below 75% of
the average number of ticks per second over the last 10 seconds.

We can compute the average number of ticks per second over the last 10 seconds simply by using the TicksPer-
Second events computed by the prior statement and averaging the last 10 seconds. Next, we compare the cur-
rent rate with the moving average and filter out any rates that fall below 75% of the average:

sel ect feed, avg(cnt) as avgCnt, cnt as feedCnt
from Ti cksPer Second. wi n: ti me(10)

group by feed

havi ng cnt < avg(cnt) * 0.75

10.2.4. Event generator

The simulator generates market data events for 2 feeds, feed A and feed B. A target rate parameter defines how
many events for each feed the simulator sends to the engine in each second. Depending on your system, alarge
target rate may result in more events to be sent to the engine then your system can handle in one second. In that
case, the target rate will not be achieved. After reaching the target number of events for a given second, the
simulator sleeps the thread for an approximate remainder of the current second.

The simulator generates a number of events per second following the formulatarget rate * 0.9 + target
rate * 0.2 * random next Doubl e() . This generates a random rate for each feed in a +-10% range within the
target rate.

The rate drop probability parameter specifies the probability in percent that the engine drops the rate for aran-
domly chosen feed to 60% of the target rate for that second. Thus rate fall-off alerts can be generated.

10.3. Transaction 3-Event Challenge

The classes for this example live in package net. esper.exanpl e. transaction. Run "run_txnsim.bat"
(Windows) or "run_txnsim.sh” (Unix) to start the transaction simulator. Please see the readme file in the same
folder for build instructions and command line parameters.

10.3.1. The Events

The use case involves tracking three components of atransaction. It's important that we use at least three com-
ponents, since some engines have different performance or coding for only two events per transaction. Each

Esper 1.1.0 49

Examples, Tutorials, Case Studies

component comes to the engine as an event with the following fields:

e Transaction ID
e Time stamp

In addition, we have the following extrafields:

Inevent A:

¢ Customer ID

In event C:

e Supplier ID (the ID of the supplier that the order was filled through)

10.3.2. Combined event

We need to take in events A, B and C and produce a single, combined event with the following fields:

e Transaction ID

e Customer ID

e Time stamp from event A
e Time stamp from event B
¢ Time stamp from event C

What we're doing here is matching the transaction IDs on each event, to form an aggregate event. If all these
events were in a relational database, this could be done as a simple SQL join... except that with 10,000 events
per second, you will need some serious database hardware to do it.

10.3.3. Real time summary data

Further, we need to produce the following:

* MinMax,Average total latency from the events (difference in time between A and C) over the past 30
minutes.

* MinMax,Average latency grouped by (@) customer ID and (b) supplier ID. In other words, metrics on the
the latency of the orders coming from each customer and going to each supplier.

* Min,Max,Average latency between events A/B (time stamp of B minus A) and B/C (time stamp of C minus
B).

10.3.4. Find problems

We need to detect a transaction that did not make it through all three events. In other words, a transaction with
events A or B, but not C. Note that, in this case, what we care about is event C. The lack of events A or B could
indicate a failure in the event transport and should be ignored. Although the lack of an event C could also be a
transport failure, it merits looking into.

10.3.5. Event generator

To make testing easier, standard and to demonstrate how the example works, the example is including an event
generator. The generator generates events for a given number of transactions, using the following rules:

Esper 1.1.0 50

Examples, Tutorials, Case Studies

¢ Onein 5,000 transactions will skip event A

* Onein 1,000 transactions will skip event B

¢ Onein 10,000 transactions will skip event C.

e Transaction identifiers are randomly generated

e Customer and supplier identifiers are randomly chosen from two lists

* The time stamp on each event is based on the system time. Between events A and B as well as B and C,
between 0 and 999 is added to the time. So, we have an expected time difference of around 500 milli-
seconds between each event

» Eventsare randomly shuffled as described below

To make things harder, we don‘t want transaction events coming in order. This code ensures that they come
completely out of order. To do this, we fill in a bucket with events and, when the bucket is full, we shuffle it.
The buckets are sized so that some transactions events will be split between buckets. So, you have afairly ran-
domized flow of events, representing the worst case from a big, distributed infrastructure.

The generator lets you change the size of the bucket (small, medium, large, larger, largerer). The larger the
bucket size, the more events potentially come in between two eventsin a given transaction and so, the more the
performance characteristics like buffers, hashes/indexes and other structures are put to the test as the bucket
Size increases.

10.4. AutolD RFID Reader

In this example an array of RFID readers sense RFID tags as pallets are coming within the range of one of the
readers. A reader generates XML documents with observation information such as reader sensor 1D, observa-
tion time and tags observed. A statement computes the total number of tags per reader sensor ID within the last
60 seconds.

This example demonstrates how XML documents unmarshalled to or g. wdc. dom Node DOM document nodes
can natively be processed by the engine without requiring Java object event representations. The example uses
an XPath expression for an event property counting the number of tags observed by a sensor. The XML docu-
ments follow the AutolD (ht t p: / / www. aut oi d. or g/) organization standard.

The classes for this example can be found in package net . esper . exanpl e. aut oi d. As events are XML docu-
ments with no Java object representation, the example does not have event classes.

A simulator that can be run from the command line is also available for this example. The simulator generates a
number of XML documents as specified by a command line argument and prints out the totals per sensor. Run
"run_autoid.bat" (Windows) or "run_autoid.sh” (Unix) to start the autoid simulator. Please see the readme file
in the same folder for build instructions and command line parameters.

The code snippet below shows the simple statement to compute the total number of tags per sensor. The state-
ment is created by classnet . esper . exanpl e. aut oi d. RFI DTagsPer Sensor St nt .

select I D as sensorld, sum(countTags) as numlagsPer Sensor
from Aut ol dRFI DExanpl e. wi n: ti me(60)

where Cbservation[0].Command = ' READ PALLET_TAGS ONLY'
group by ID

10.5. StockTicker

The StockTicker example comes from the stock trading domain. The example creates event patterns to filter
stock tick events based on price and symbol. When a stock tick event is encountered that falls outside the lower

Esper 1.1.0 51

Examples, Tutorials, Case Studies

or upper price limit, the example simply displays that stock tick event. The price range itself is dynamically cre-
ated and changed. Thisis accomplished by an event patterns that searches for another event class, the price lim-
it event.

The classes net . esper. exanpl e. st ockti cker. event. St ockTi ck and PricelLi nit represent our events. The
event patterns are created by the classnet . esper . exanpl e. st ockt i cker. noni t or. St ockTi cker Moni t or .

Summary:

» Good example to learn the APl and get started with event patterns

» Dynamically creates and removes event patterns based on price limit events received

e Simple, highly-performant filter expressions for event properties in the stock tick event such as symbol and
price

10.6. MatchMaker

In the MatchMaker example every mobile user hasan X and Y location, a set of properties (gender, hair color,
age range) and a set of preferences (one for each property) to match. The task of the event patterns created by
this example is to detect mobile users that are within proximity given a certain range, and for which the proper-
ties match preferences.

The event class representing mobile users is net . esper. exanpl e. mat chmmaker . event . Mobi | eUser Bean. The
net . esper . exanpl e. mat chnaker . moni t or . Mat chMaki ngMoni tor class contains the patterns for detecing
matches.

Summary:

» Dynamically creates and removes event patterns based on mobile user events received
» Usesrange matching for X and Y properties of mabile user events

10.7. QualityOfService

This example develops some code for measuring quality-of-service levels such as for a service-level agreement
(SLA). A SLA isacontract between 2 parties that defines service constraints such as maximum latency for ser-
vice operations or error rates.

The example measures and monitors operation latency and error counts per customer and operation. When one
of our operations oversteps these constraints, we want to be alerted right away. Additionally, we would like to
have some monitoring in place that checks the health of our service and provides some information on how the
operations are used.

Some of the constraints we need to check are:

e That the latency (time to finish) of some of the operationsis always less then X seconds.
» That the latency average is alwayslessthen Y seconds over Z operation invocations.

The net . esper. exanpl e. qos_sl a. event s. Oper at i onMeasur enent event class with its latency and status
properties is the main event used for the SLA analysis. The other event Lat encyLi mi t servesto set latency lim-
itson thefly.

The net . esper. exanpl e. qos_sl a. noni t or. Aver ageLat encyMoni t or creates an EQL statement that computes
latency statistics per customer and operation for the last 100 events. The DynaLat encySpi keMoni t or USES an

Esper 1.1.0 52

Examples, Tutorials, Case Studies

event pattern to listen to spikes in latency with dynamically set limits. The Err or Rat eMoni t or uses the timer
"at' operator in an event pattern that wakes up periodically and polls the error rate within the last 10 minutes.
The Ser vi ceHeal t hMoni t or sSimply alerts when 3 errors occur, and the Spi keAndEr r or Moni t or aerts when a
fixed latency is overstepped or an error status is reported.

Summary:

e This example combines event patterns with EQL statements for event stream analysis.

» Showsthe use of thetimer ' at' operator and followed-by operator - > in event patterns

* Outlinesbasic EQL statements

e Shows how to pull data out of EQL statements rather then subscribing to events a statement publishes

10.8. LinearRoad

The Linear Road example is a very incomplete implementation of the Stream Data Management Benchmark [3]
by Standford University.

Linear Road simulates a toll system for the motor vehicle expressways of a large metropolitan area. The main
event in this example is a car location report which the class net . esper. exanpl e. | i near r oad. Car LocEvent
represents. Currently the event stream joins are performed by JUnit test classes in the eg/ t est folder. See the
net . esper. exanpl e. | i near r oad. Test Acci dent Not i f y and the Test Car Segnent Count classes. Please consider
thisawork in progress.

Summary:

e Shows more complex joins between event streams.

10.9. StockTick RSI

The RSl gives you the trend for a stock and for more complete explanation, you can visit the link: ht-
tp:/lwww.stockcharts.com/education/IndicatorAnaysigindic_RSI.html.

After a definite number of stock events, or accumulation period, the first RSI is computed. Then for each sub-
sequent stock event, the RSI calculations use the previous period’s Average Gain and Loss to determine the
“smoothed RSI”.

Summary:

e Uses a simple event pattern with a filter which feeds a listener that computes the RSI, which publishes
events containing the computed RSI.

Esper 1.1.0 53

Chapter 11. References

11.1. Reference List

» Luckham, David. 2002. The Power of Events. Addison-Wesley.

e The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide.

e Arasu, Arvind, et.al.. 2004. Linear Road: A Stream Data Management Benchmark, Stanford University ht-
tp://www.cs.brown.edu/research/aurora/Linear_Road Benchmark_Homepage.htm.

Esper 1.1.0 54

	Esper - Java Event Stream Processor
	Table of Contents
	Preface
	Chapter 1. Technology Overview
	1.1. Introduction to CEP and event stream analysis
	1.2. CEP and relational databases
	1.3. The Esper engine for CEP

	Chapter 2. Configuration
	2.1. Programmatic configuration
	2.2. Configuration via XML file
	2.3. XML Configuration file
	2.4. Configuration items
	2.4.1. Event type alias to Java class mapping
	2.4.2. Class and package imports
	2.4.3. Events represented by java.util.Map
	2.4.4. Events represented by org.w3c.dom.Node
	Schema Resource
	XPath Property

	Chapter 3. API Reference
	3.1. API Overview
	3.2. Engine Instances
	3.3. The Administrative Interface
	3.4. The Runtime Interface
	3.5. Time-Keeping Events
	3.6. Events Received from the Engine

	Chapter 4. Event Representations
	4.1. Event Underlying Java Objects
	4.2. Event Properties
	4.3. Plain Java Object Events
	4.3.1. Java Object Event Properties

	4.4. java.util.Map Events
	4.5. org.w3c.dom.Node XML Events

	Chapter 5. Event Pattern Reference
	5.1. Event Pattern Overview
	5.2. How to use Patterns
	5.2.1. Pattern Syntax
	5.2.2. Subscribing to Pattern Events
	5.2.3. Pulling Data from Patterns

	5.3. Filter Expressions
	5.4. Pattern Operators
	5.4.1. Every
	5.4.2. And
	5.4.3. Or
	5.4.4. Not
	5.4.5. Followed-by

	5.5. Guards
	5.5.1. timer:within

	5.6. Pattern Observers
	5.6.1. timer:interval
	5.6.2. timer:at

	Chapter 6. EQL Reference
	6.1. EQL Introduction
	6.2. EQL Syntax
	6.3. Choosing Event Properties And Events: the Select Clause
	6.3.1. Choosing all event properties: select *
	6.3.2. Choosing specific event properties
	6.3.3. Expressions
	6.3.4. Renaming event properties

	6.4. Specifying Event Streams : the From Clause
	6.4.1. Filter-based event streams
	Specifying an event type
	Specifying event filter criteria

	6.4.2. Pattern-based event streams
	6.4.3. Specifying views

	6.5. Specifying Search Conditions: the Where Clause
	6.6. Aggregates and grouping: the Group-by Clause and the Having Clause
	6.6.1. Using aggregate functions
	6.6.2. Organizing statement results into groups: the Group-by clause
	6.6.3. Selecting groups of events: the Having clause
	6.6.4. How the stream filter, Where, Group By and Having clauses interact

	6.7. Stabilizing and Limiting Output: the Output Clause
	6.7.1. Output Clause Options
	6.7.2. Group By, Having and Output clause interaction

	6.8. Sorting Output: the Order By Clause
	6.9. Merging Streams and Continuous Insertion: the Insert Into Clause
	6.10. Single-row Function Reference
	6.10.1. The Min and Max Functions
	6.10.2. The Coalesce Function
	6.10.3. The Case Control Flow Function

	6.11. Operator Reference
	6.11.1. Arithmatic Operators
	6.11.2. Logical And Comparsion Operators
	6.11.3. Concatenation Operators
	6.11.4. Binary Operators

	6.12. Build-in views
	6.12.1. Window views
	Length window
	Time window
	Externally-timed window
	Time window buffer

	6.12.2. Standard view set
	Unique
	Group By
	Size
	Last

	6.12.3. Statistics views
	Univariate statistics
	Regression
	Correlation
	Weighted average
	Multi-dimensional statistics

	6.12.4. Extension View Set
	Sorted Window View

	6.13. Joining Event Streams
	6.14. Outer Joins
	6.15. User-Defined Functions

	Chapter 7. Adapters
	7.1. Adapter

	Chapter 8. Indicators
	8.1. Intro
	8.2. JMX Indicator

	Chapter 9. Architecture
	9.1. Overview
	9.2. Building and Testing

	Chapter 10. Examples, Tutorials, Case Studies
	10.1. Examples Overview
	10.2. Market Data Feed Monitor
	10.2.1. Input Events
	10.2.2. Computing Rates Per Feed
	10.2.3. Detecting a Fall-off
	10.2.4. Event generator

	10.3. Transaction 3-Event Challenge
	10.3.1. The Events
	10.3.2. Combined event
	10.3.3. Real time summary data
	10.3.4. Find problems
	10.3.5. Event generator

	10.4. AutoID RFID Reader
	10.5. StockTicker
	10.6. MatchMaker
	10.7. QualityOfService
	10.8. LinearRoad
	10.9. StockTick RSI

	Chapter 11. References
	11.1. Reference List

