Esper Reference Documentation

Version: 0.9.1

Table of Contents

1= == TR \Y;
1. TeChNOIOQY OVEN VIBWeeieiiis s s asn s anasasnsnnnsssnsnsnsnnnnnnnnnsnnnnns 1
1.1. Introduction to CEP and event Stream analYSiSccccvvviiieieeeeiiciiiieee e e e e 1

1.2. CEP and relational datalasescoooeooiiioiiiiiiiie e 1

1.3. The ESper enginefor CEPovviiiiie et r e e e e e e 1

R N e 1o U =SSP 3
P2 @ Y= V= PSR PPRR 3

2.2. BUIlAING BN TESLING ..oiieeieieiiitie ettt ettt e e e e e et e e e e e e e e nees 3

G T o a1 o [0 = o o 4
3.1, ProgrammatiC CONfIQUIALIONcuviiiiiiee e et ce e e e e e e s e e e e e e s e aaa e e e aae e e ans 4

3.2. Configuration VIA XML FIl@ ..ot 4

3.3. XML Configuration fil€eeii i e e e e rre e e e e e 4

3.4, CONFIGUIALTON TTEIMISeiiiiiiiii e ettt e et e e s e e e et e e e abne e e e e annb e e e e e annneeeeans 5
3.4.1. Event type aliasto Java classS MaPPINg ...cceevveeeereiiieiiieeieeeeeeeeeeeeeee e eeeeeeeeerereeeeeeereeeeeees 5

N B L = = Tt USSR 6
4.1 APl OVEIVIEW ..eiieeeiiiiee e ettt e et e e e ettt e e st e e e e e st e e e e anseeeeeaassaeeeeasseeeeeansaeeeeaansneeeeeansnneenans 6

4.2. ENQINE INSIANCES ...ttt ettt e e e e e e e e e e e e e e s s st b ae e e e aaeesaennsstaaeeeaeeeeaans 6

4.3. The AdMINiStrative INEEITACE e e e e st ree e e e e e e ns 6

4.4. The RUNIIME INTEITACE ..o e s e e e nnbaeeeean 7

4.5. Event Class REQUITEIMENLScuuiiiiiiiiiie ittt e et e s e e e e nnbneeeeans 8
Y I YL 0 001 A 1Y = TP 8

4.6. TIME-KEEPING EVENTS ..ottt s e e e e nnbeeeeeans 9

4.7. Events Received from the ENGINEoooiiiiiiie e e e 9

5. EVENt PatterN REFEIENCEooiiiiiiii ittt et e e e e nnbe e e 11
5.1. EVENt PalterN OVEIVIEWooeeiiiiiiiiiiiiie ettt e e e ettt e e e e e s s s st aeeeaaeeeesnntsaneeeaaaeeaans 11

S.2. HOW LO USE PELEINS ... 11
5.2. 1. PATEIN SYNEBX ..eeviieieeeeeee ittt e et e e e e st e e e e e e s s s b e e e e e e e s e s anebrnreeeeas 11

5.2.2. Subscribing to Pattern EVENES ..o, 11

5.2.3. PUlling Datafrom PatternSccueiiiiiiiieeiiiiiee e 12

G = g o o === o] SO PESRR 12

5.4, PaterN OPEIAIOIS ...evvivieiiiiieiiiieetitiein e e ettt et e e e e s e e e r e e e et e e ettt aaseeeteeeaetbanseeaaeeeenres 13
DAL EVETY oottt ettt n e 14

ST B2 N oo PR PPRR 15

Lo T 15

ST o PSR SPRRR 15

5.4.5. FOHOWEH-DY ... e e e e s e e e e e s e eeeeas 15

oI €10 o SRR 16
5.5 L tIMENWITNIN oot 16

5.6. Paltern ODSEIVEIS ...ttt e e e e e e s e st e e e e e e s e et aeaaaaeeaans 16
5.6. 1. tIMErIINTEIVEL ..ot e e 16

a0 (] 011 = PRSP 16

6. EQL REFEIENCE ... 18
6.1 EQL INtrodUCION ..., 18

6.2, EQL SYNLBX ..vveieeiieiiieeeiiiiieeestiee e e e sttt e e e sttt e e e e s steeeeessseaeeeaassaeeeeaanseeeeeansneeeeeannaeeeeannreeeeeans 18

6.3. Choosing Event Properties And Events: the Select ClauSeccoovvivivieieee e, 19
6.3.1. Choosing all event properties: SEIECE *ooiiiiiie e 19

6.3.2. Choosing Specific eVent PrOPErtiESccuviiiiie e 19

5.3.3. EXPIESSIONS ...ceiuiitiie ettt ettt ettt ettt e ettt e e ettt e e e et e e e b e e e e e e e e e e nnes 19

Esper 0.9.1

Esper - Java Event Stream Processor

6.3.4. ReNaming eVent ProPEITIESccoiiuurieiiiiieee et e e st e et e e e e e e e e 19

6.4. Specifying Event Streams : the From ClaUSEcoiiiiiiiiiiie e e e 20
6.4.1. SPECITYING AN EVENE TYPE oottt 20
6.4.2. Specifying event filter Criteriaccooeeee e, 20
6.4.3. SPECITYING VIBWS ...ceiiiiiiiie ettt ettt e e e e e e 21

6.5. Specifying Search Conditions: the Where ClalSeccvvviiiiiieiiiieeeeeee e 21
6.6. Aggregates and grouping: the Group-by Clause and the Having Clausecccccccevveeeenn. 22
6.6.1. USINg 8ggregate fUNCLIONScoiuirieiiiiiiee ettt 22
6.6.2. Organizing statement results into groups. the Group-by clauseccccccoevveiivveeen..n. 23
6.6.3. Selecting groups of events: the Having Clause ..o 25
6.6.4. How the stream filter, Where, Group By and Having clausesinteract 25

6.7. Stabilizing and Limiting Output: the OULPUL ClaLSEccoiiiiiiiiiiiiee e 26
6.7.1. OULPUL ClalSE OPLIONSeeeeiieiiiiie e e e e ettt e e e e e e ettt e e e e e e e e s et eeeeeaeesseaneneeeeeeens 26
6.7.2. Group By, Having and Output clause interaCtioncccccceeeeiviiiiiieeeee e 26

6.8. SINQIE-TOW TUNCLION FEFEIENCEoii it 27
B.9. BUIIG-IN VIBWS ..ottt et e e et e e e et e e e sttt e e e e snnneaeeennteeeeeans 27
B.9.1. WINAOW VIBIWSeeeiiiiiiiiie e ettt e e e sttt e e e e e et e e e e e e e s s snntn e e eaaeeessnnssrnneeaens 27
6.9.1.1. Length Windowcoooeriiiiii 27

6.9.1.2. TIMEWINUOWveiiiiiiiiieeiiie e e sttt e s e e e et e e e st e e e s annneeeeenees 28

6.9.1.3. Externally-timed WiNAOWcccuviiiiiiiiieiiiiee e 28

6.9.1.4. TiMe WIiNdoW DUFFEroooiiiiii e 28

6.9.2. SANAAIA VIEW SELeeeiiieiee ettt e e e e e e st e e e e e e eee s 28
B.9.2.1. UNIQUE ..eeeeiieeeei ittt ettt e e e e e e e s et e e e e e e e s s e ntbreneeeaaeaean 28

B.9.2.2. GIOUP BY et 28

B.9.2.3. SIZE .eeeiiiiiie et a e e e e anaeeeeennnes 29

B.9.2.4. LS .oeiiiiiiiii ettt nees 29

B.9.3. SLALISHCS VIBWS ... ee ettt e ettt e e e e e e ettt e e e e e e e e e snnt e e e e e e e e e aanenaeeeeeens 29
6.9.3.1. UNIVariate StatiStICSeeeeeiiiiiie ittt 29

6.9.3.2. REOIESSION ...uiitiiieiitii ettt ettt et e e e st e e s s e e e s ann e e e e e e 29

6.9.3.3. COMTEI@LION ...coeeveieeeiiiiee ettt e e e e e et e e e s e e e e anneeeeeenees 30

6.9.3.4. WeIghted GVEIBOEeeveiiiiiiiee ittt ettt 30

6.9.3.5. Multi-dimensional SEaLISLICSceeiiieeeiiiiiiieiee e e e 30

6.9.4. EXTENSION VIBW SEL ...ttt ettt e e 31
6.9.4.1. SOrted WIiNdOW VIBWcooiiiiiiiiiieee et e e e e e e e e e e e 31

6.10. JOINING EVENE SIFEAMSoeoiiiiiiieeie et e e e e s e e e e e e e e s et eeeeaaeeeans 31
200 I 1= N o o OSSR 31
B.12. VIEW PIUG-IN oo 32
A Y =T 1 (= TP PP PP T PPPPPOPPPRP 33
80 o o= SRR 33
ST o [o 1o = PP PPPPPPRPOPPPRPN 34
Bl INEIO e 34
S22 1Y G 1 g [Tov= (o PSR OUPRRTPTRRRN 34
0. EXAMPIES ...ttt ettt e et e e e e e e e b e e e e nbrr e e aa 35
0.1, EXAMPIES OVEIVIEW ... 35
9.2. Transaction 3-EVent ChalleNgeuuiiiiiiiiie et 35
S T I L= Y= o (PSSP 35
0.2.2. COMDINET BVENLoiiiiieiee ittt e e nees 36
9.2.3. Real tiMe SUMMAY GBIevveeeiiiiiee ettt 36
9.2.4. FINA ProBIEMS e e e st as 36
O.2.5. EVENE QBNMEIAIONetiieiiiiiee e ittt e e e e e e e e s e st e e e e e e s s s b e e e e e e e s s s anrbrneeeeeas 36

LSRG S (o Tox I ot 1= SRR 37
0.4, MACNIMBKET ...t e e e e e et e e e e e e s s et eeeeae e e e aantrraaeraaaeeaans 37

Esper 0.9.1

Esper - Java Event Stream Processor

O.5. QUEAIITYOTFSEIVICEeeiiiiiiieie ettt e e e e e e e s e e e e e e e e e e nnnreeeeans 37
9.6. LINEAIROAA ... 38
e S (0o Lo g s RN 38
O T = = [0l TP TRPPRR 39
I = = (< ¢ (o= I RPN 39

Esper 0.9.1

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of custom applications.
Typicaly these applications must obtain the data to analyze, filter data, derive information and then indicate
this information through some form of presentation or communication. Data may arrive with high frequency re-
quiring high throughput processing. And applications may need to be flexible and react to changes in require-
ments while the data is processed. Esper is an event stream processor that aims to enable a short development
cycle from inception to production for these types of applications.

Esper is a 100% Java component that can be embedded in Java applications. It alows push and pull of datavia
its subscription and pull API. Esper can be extended by building custom views, functions, windows etc.

1. Read Section 1.1, “Introduction to CEP and event stream analysis’ if you are new to CEP and ESP
(complex event processing, event stream processing)

2. Read Section 5.1, “Event Pattern Overview” for an overview over event patterns
3. Read Section 6.1, “EQL Introduction” for an introduction to event stream processing via EQL

4. Then glance over the examples Section 9.1, “Examples Overview”

Esper 0.9.1 Y

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze and react to
events. Some typical examples of applications are:

» Business process management and automation (process monitoring, BAM, reporting exceptions)

» Finance (algorithmic trading, fraud detection, risk management)

¢ Network and application monitoring (intrusion detection, SLA monitoring)

» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air traffic)

What these applications have in common is the requirement to process events (or messages) in real-time or near
real-time. This is sometimes referred to as complex event processing (CEP) and event stream analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the logic required.

e High throughput - applications that process large volumes of messages (between 1,000 to 100k messages
per second)

* Low latency - applications that react in real-time to conditions that occur (from a few milliseconds to a few
seconds)

« Complex computations - applications that detect patterns among events (event correlation), filter events, ag-
gregate time or length windows of events, join event streams, trigger based on absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in which most datais
fairly static and complex queries are less frequent. Also, most databases store al data on disks (except for in-
memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the data 10 times per
second it must fire the query 10 times per second. This does not scale well to hundreds or thousands of queries
per second.

Database triggers can be used to fire in response to database update events. However database triggers tend to
be slow and often cannot easily perform complex condition checking and implement logic to react.

In-memory databases may be better suited to CEP applications then traditional relational database as they gen-
eraly have good query performance. Y et they are not optimized to provide immediate, real-time query results
required for CEP and event stream analysis.

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and running quer-
ies against stored data, the Esper engine allows applications to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur that match queries. The execution model is thus con-
tinuous rather then only when a query is submitted.

Esper 0.9.1 1

Technology Overview

Esper provides two principal methods or mechanisms to process events. event patterns and event stream quer-
ies.

Esper offers an event pattern language to specify expression-based event pattern matching. Underlying the pat-
tern matching engine is a state machine implementation. This method of event processing matches expected se-
quences of presence or absence of events or combinations of events. It includes time-based correlation of
events.

Esper aso offers event stream queries that address the event stream analysis requirements of CEP applications.
Event stream queries provide the windows, aggregation, joining and analysis functions for use with streams of
events. These queries are following the EQL syntax. EQL has been design for similarity with the SQL query
language but differs from SQL in its use of views rather then tables. Views represent the different operations
needed to structure datain an event stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

Esper 0.9.1 2

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the architecture: TODO

2.2. Building and Testing

The Esper code base consists of about 300 source code and 270 unit test (as of release 0.7.0) or test support
classes, excluding examples. After build there are over 500 unit test methods that are automatically run to veri-
fy the build. Some of the unit tests assert against performance data taken during the test. These tests are de-
signed to run on asingle 2.8 GHz Pentium 4 processor with 512MB memory.

Esper requires the following 3rd-party libraries:

ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EQL syntax.
Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license isin the lib directory. The library
isrequired for compile-time only.

CGLIB isthe code generation library for fast method calls. This open source software is under the Apache
license. The Apache 2.0 licenseisin thelib directory.

LOGA4J and Apache commons logging are logging components. This open source software is under the
Apache license. The Apache 2.0 licenseisin thelib directory.

BeanUltils is a JavaBean manipulation library. This open source software is under the Apache license. The
Apache 2.0 licenseisin the lib directory.

JUnit isagreat unit testing framework. Its license has also been placed in the lib directory. The library isre-
quired for build-time only.

Esper 0.9.1 3

Chapter 3. Configuration

Esper engine configuration is entirely optional. Esper has a very small number of configuration parameters that
can be used to simplify event pattern and EQL statements, and to tune the engine behavior to specific require-
ments. The Esper engine works out-of-the-box without configuration.

3.1. Programmatic configuration

An instance of net.esper.client.Configuration represents all configuration parameters. The Confi gur a-
ti on isused to build an (immutable) EPSer vi cePr ovi der , which provides the administrative and runtime inter-
faces for an Esper engine instance.

You may obtain a Confi gurati on instance by instantiating it directly and adding or setting values on it. The
Conf i gurat i on instance is then passed to EPSer vi cePr ovi der Manager to obtain a configured Esper engine.

Configuration configuration = new Configuration();
configuration. addEvent TypeAl i as("PriceLimt", PriceLinmit.class.getNane());
configuration. addEvent TypeAl i as(" St ockTi ck", StockTick. cl ass. get Name());

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der (" MyEngi ne", configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine represented by an
EPSer vi cePr ovi der isimmutable and does not retain any association back to the Confi gurati on.

3.2. Configuration via XML file

An aternative approach to configuration is to specify a configuration in an XML file.

The default name for the XML configuration file is esper . cf g. xnl . Esper reads this file from the root of the
CLASSPATH as an application resource viathe conf i gur e method.

Configuration configuration = new Configuration();
configuration. configure();

The configuration class can read the XML configuration file from other sources as well. The confi gure
method accepts URL, File and String filename parameters.

Configuration configuration = new Configuration();
configuration. configure("nyengi ne. esper.cfg.xm");

3.3. XML Configuration file

Here is an example configuration file. The schema for the configuration file can be found in the et ¢ folder and
is named esper - confi gurati on- 1- 0.

<?xm version="1.0" encodi ng="UTF-8""?>
<esper-configuration xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xxsi : noNanespaceSchenalLocat i on="esper - confi gurati on-1-0. xsd" >
<event-type alias="StockTi ck" class="net.esper.exanple.stockticker.event. StockTick"/>
<event-type alias="PriceLimt" class="net.esper.exanple.stockticker.event.PriceLimit"/>
</ esper-configuration>

Esper 0.9.1 4

Configuration

3.4. Configuration items

3.4.1. Event type alias to Java class mapping

This configuration item can be set to allow event pattern statements and EQL statements to use an event type
alias rather then the fully qualified Java class name. Interfaces and abstract classes are also supported as event
types.

every StockTick(symbol ="1BM)"
/1 via configuration equivalent to
every net.esper.exanpl e. st ockti cker. event. StockTi ck(synbol =' | BM)

Esper 0.9.1 5

Chapter 4. API Reference

4.1. APl Overview

Esper has 2 primary interfaces that this section outlines. The administrative interface and the runtime interface.

Use Esper's administrative interface to create event patterns and EQL statements as discussed in Section 5.1,
“Event Pattern Overview” and Section 6.1, “EQL Introduction”.

Use Esper's runtime interface to send events into the engine, emit events and get statistics for an engine in-
stance.

The JavaDoc documentation is also a great source for API information.

4.2. Engine Instances

Each instance of an Esper engine is completely independent of other engine instances and has its own adminis-
trative and runtime interface.

An instance of the Esper engine is obtained via static methods on the EPSer vi cePr ovi der Manager class. The
get Def aul t Provi der method and the get Provi der (String URI) methods return an instance of the Esper en-
gine. The latter can be used to obtain multiple instances of the engine for different URI values. The EPSer vi ce-

Provi der Manager determines if the URI matches all prior URI values and returns the same engine instance for
the same URI value. If the URI has not been seen before, anew Engine instance is created.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the default engine in-
stance return the same instance.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;

This code snippet gets an Esper engine for URI RFI DPr ocessor 1. Subsequent calls to get an engine with the
same URI return the same instance.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Provi der (" RFI DProcessor 1") ;

An existing Esper engine instance can be reset viathei ni ti al i ze method on the EPSer vi cePr ovi der instance.
This stops and removes all statements in the Engine.

4.3. The Administrative Interface

Create event patterns or EQL statements via the administrative interface EPAdni ni strat or.
This code snippet gets an Esper engine then creates an event pattern and an EQL statement.

EPSer vi ceProvi der epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPAdmi ni strator admin = epServi ce. get EPAdmi ni strator();
EPSt at enent 10secRecur Trigger = admin.createPattern("every tinmer:at(*, *, *, *, * */10)");
EPSt at enent wei ght edAvgVi ew = adni n. cr eat eEQ(
"sel ect * from Market Dat aBean(synbol =" IBM).w n:ti me(60).stat:wei ghted_avg('price', 'volune')");

Esper 0.9.1 6

APl Reference

The creat ePat t ern and cr eat eEQL methods return EPSt at enent instances. Statements are automatically star-
ted and active when created. A statement can also be stopped and started again viathe st op and st art methods
shown in the code snippet below.

wei ght edAvgVi ew. st op() ;
wei ght edAvgVi ew. start();

We can subscribe to updates posted by a statement via the addLi st ener and r enoveli st ener methods the EP-
St at enent Statement. We need to provide an implementation of the Updat eLi st ener interface to the statement.

Updat eLi st ener myLi stener = new MyUpdat eLi stener(); // MUpdatelListener inplenments Updateli stener
wei ght edAvgVi ew. addLi st ener (myLi st ener) ;

EQL statements and event patterns publish old data and new data to registered Updat eLi st ener listeners. Old
data published by views constists of the events representing the prior values of derived data held by the state-
ment. New data published by views is the events representing the new values of derived data held by the state-
ment.

Subscribing to events posted by a statement is following a push model. The engine pushes data to listeners
when events are received that cause data to change or patterns to match. Alternatively, statements can also
serve up datain a pull model viatheiterator method. This can come in handy if we are not interested in al
new updates, but only want to perform a frequent poll for the latest data. For example, an event pattern that
fires every 5 seconds could be used to pull data from an EQL statement. The code snippet below demonstrates
some pull code.

Iterator<Event Bean> eventlter = wei ghtedAvgView iterator();
for (EventBean event : eventlter) {

/1 .. do something ..
}

Thisis a second example:

doubl e averagePrice = (Double) eql Statenent.iterator().next().get("average");

4.4. The Runtime Interface

The EPRunt i me interface is used to send events for processing into an Esper engine, and to emit Events from an
engine instance to the outside world.

The below code snippet shows how to send events to the engine.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;
EPRunti ne runtine = epService. get EPRunti me();

/1 Send an exanpl e event containing stock market data
runti me. sendEvent (new Mar ket Dat aBean(' 1 BM, 75.0));

Another important method in the runtime interface is the r out e method. This method is designed for use by Up-
dat eLi st ener implementations that need to send events into an engine instance.

The et and addEni t t edLi st ener methods can be used to emit events from a runtime to a registered set of
one or more emitted event listeners. Events are emitted on an event channel identified by a name. Listeners are
implementations of the Eni t t edLi st ener interface. Listeners can specify a channel to listen to and thus only
receive events posted to that channel. Listeners can also supply no channel name and thus receive emitted

Esper 0.9.1 7

APl Reference

events posted on any channel. Channels are uniquely identified by a string channel name.

4.5. Event Class Requirements

An event is an immutable record of a past occurence of an action or state change. An event can have a set of
event properties that supply information about the event. An event also has an event class.

In Esper, events are object instances that expose event properties through JavaBean-style getter methods.
Events classes or interfaces do not have to be fully compliant to the JavaBean specification; however for the
Esper engine to obtain event properties, the required JavaBean getter methods must be present.

Esper supports JavaBean-style event classes that extend a superclass or implement one or more interfaces.
Also, Esper event pattern and EQL statements can refer to Javainterface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state change or action
that occured in the past, the relevant event properties should not be changable. However this is not a hard re-
quirement and the Esper engine accepts events that are mutable as well.

4.5.1. Event Property Types

The set of possible property types supported by a JavaBean and by Esper can be broken into below categories --
some of which are supported by the standard JavaBeans specification, and some of which are uniquely suppor-
ted by Esper:

» Smple properties have a single value that may be retrieved. The underlying property type might be a Java
language primitive (such as int, a simple object (such as a javalang.String), or a more complex object
whose class is defined either by the Javalanguage, by the application, or by aclass library included with the
application.

¢ Indexed - An indexed property stores an ordered collection of objects (all of the same type) that can be indi-
vidually accessed by an integer-valued, non-negative index (or subscript). Alternatively, the entire set of
values may be retrieved using an array.

* Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that accepts a String-
valued key a mapped property.

¢ Nested - A nested property is a property that lives within another Java object which itself is a property of an
event.

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed propertiesin this ex-
ample return Java objects but could also return Java language primitive types (such as int or String). The Ad-
dress object and Employee objects can themselves have properties that are nested within them, such as a street-
Name in the Address object or a name of the employee in the Employee abject.

public class Enpl oyeeEvent {
public String getFirstNane();
publ i c Address get Address(String type);
publ i ¢ Enpl oyee get Subordi nate(int index);
publ i c Enpl oyee[] get Al |l Subordinates();

}

Smple event properties require a getter-method that returns the property value. In this example, the get Fi r st -
Name getter method returnsthef i r st Name event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes an integer-
type key value and returns the property value, such as the get Subor di nat e method. Or a method that returns an
array-type such as the get Subor di nat es getter method, which returns an array of Employee. In an EQL or

Esper 0.9.1 8

APl Reference

event pattern statement, indexed properties are accessed viathe propert y[i ndex] Syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns the property
value, such as the get Addr ess method. In an EQL or event pattern statement, mapped properties are accessed
viatheproperty(' key') syntax.

Nested event properties require a getter-method that returns the nesting object. The get Addr ess and get Subor -
di nat e methods are mapped and indexed properties that return a nesting object. In an EQL or event pattern
statement, nested properties are accessed viathe pr oper t y. nest edPr oper t y Syntax.

All event pattern and EQL statements allow the use of indexed, mapped and nested properties (or a combina-
tion of these) anywhere where one or more event property names are expected. The below example shows dif-
ferent combinations of indexed, mapped and nested propertiesin filters of event pattern expressions.

every Enpl oyeeEvent (firstName=' nyNane')

every Enpl oyeeEvent (address(' honme'). street Nane=' Park Avenue')

every Enpl oyeeEvent (subor di nat e[0] . nane=" anot her Nang')

every Enpl oyeeEvent (al | Subor di nat es[1] . name="t hat Nare")

every Enpl oyeeEvent (subordi nat e[0] . address(' hone'). street Name=' Water Street')

Similarly, the syntax can be used in EQL statements in all places where an event property name is expected,
such asin select lists, where-clauses or join criteria.

sel ect firstNanme, address('work'), subordinate[0].nane, subordinate[1].nanme
from Enpl oyeeEvent
where address('work').streetNane = ' Park Ave'

4.6. Time-Keeping Events

Special events are provided that can be used to control the time-keeping of an engine instance. There are two
models for an engine to keep track of time. Interna clocking is when the engine instance relies on the
java.util.Timer classfor time tick events. External clocking can be used to supply time ticks to the engine.
The latter is useful for testing time-based event sequences or for synchronizing the engine with an external time
source.

By default, the Esper engine uses internal time ticks. This behavior can be changed by sending a timer control
event to the engine as shown below.

EPSer vi ceProvi der epService = EPServi ceProvi der Manager . get Def aul t Provi der () ;

EPRunti ne runtine = epService. get EPRunti me();

/1l switch to external clocking

runti nme. sendEvent (new Ti mer Cont r ol Event (Ti mer Control Event . Cl ockType. CLOCK_EXTERNAL)) ;

Il send a time tick
long tinelnMIlis = SystemcurrentTineMIlis(); // O get the time somewhere el se
runti ne. sendEvent (new Current Ti reEvent (tinelnM11lis));

4.7. Events Received from the Engine

The Esper engine posts events to registered Updat eLi st ener instances (‘push’ method for receiving events). For
many statements events can also be pulled from statements viathei t er at or method. Both pull and push sup-
ply Event Bean instances representing the events generated by the engine or events supplied to the engine. Each
Event Bean instance represents an event, with each event being either an artificial event, composite event or an
event supplied to the engine viaits runtime interface.

Esper 0.9.1 9

APl Reference

The get Event Type method supplies an event's event type information represented by an Event Type instance.
The Event Type supplies event property names and types as well as information about the underlying object to
the event.

The engine may generate artificial events that contain information derived from event streams. A typical ex-
ample for artificial eventsis the events posted for a statement to calculate univariate statistics on an event prop-
erty. The below example shows such a statement and queries the generated events for an average value.

/1 Derive univariate statistics on price for the |ast 100 nmarket data events

String viewExpr = "select * from Market Dat aBean(synbol ="' 1 BM). wi n: | engt h(100).stat:uni (' price')";
EPSt at enent priceStatsView = epService. get EPAdni ni strator (). creat eEQ.(Vvi ewExpr);

priceStat sVi ew. addLi st ener (t estLi stener);

/| Exanple |istener code
public class MyUpdat elLi stener inplenments UpdatelLi stener

{
public void update(Event Bean[] newData, EventBean[] ol dDat a)
{
/1 Interrogate events
Systemout. println("new average price=" + newData[O0].get("average");
}
}

Composite events are events that aggregate one or more other events. Composite events are typically created by
the engine for statements that join two event streams, and for event patterns in which the causal events are re-
tained and reported in a composite event. The example below shows such an event pattern.

/1 Look for a pattern where AEvent follows BEvent

String pattern = "a=AEvent -> b=BEvent";

EPSt at enent stnt = epService. get EPAdmi ni strator().createPattern(pattern);
st nt . addLi st ener (t est Li stener);

/1 Exanple |istener code
public class MyUpdat elLi stener inplenments Updat eLi st ener

{
public void update(Event Bean[] newData, EventBean[] ol dDat a)
{
Systemout.println("a event=" + newData[0].get("a").getUnderlying());
Systemout.println("b event=" + newData[0].get("b").getUnderlying());
}
}

Esper 0.9.1 10

Chapter 5. Event Pattern Reference

5.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition. Patterns can
also be time-based.

Pattern expressions can consist of filter expressions combined with pattern operators. Expressions can contain
further nested pattern expressions by including the nested expression(s) in () round brackets.

There are 5 types of operators.

Operators that control pattern finder creation and termination: every

Logical operators: and, or, not

Temporal operators that operate on event order: - > (followed-by)

Guards are where-conditions that filter out events and cause termination of the pattern finder. Examples
aretimer:wthin.

5. Observers observe time events as well as other events. Examplesaretimer:interval andtiner: at.

AwbdPRE

5.2. How to use Patterns

5.2.1. Pattern Syntax

Thecr eat ePat t er n method on the EPAdni ni st rat or administrative interface creates pattern statements for the
given pattern expression string.

This is an example pattern expression that matches on every Ser vi ceMeasur enent events in which the value of
the | at ency event property is over 20 seconds, and on everysSer vi ceMeasur enent events in which the success
property isfalse. Either one or the other condition must be true for this pattern to match.

every (spi ke=Servi ceMeasurenent (| at ency>20000) or error=Servi ceMeasur ement (success=fal se))

The Java code to create thistrigger is below.

EPAdmi ni strator admi n = EPServi ceProvi der Manager . get Def aul t Provi der () . get EPAdmi ni strator () ;
String event Name = Servi ceMeasur enent. cl ass. get Name() ;

EPSt at enent nyTrigger = adm n. createPattern(
"every (spike=" + eventName + "(|atency>20000) or error=" + eventName + "(success=false))");

The pattern expression starts with an every operator to indicate that the pattern should fire for every matching
events and not just the first matching event. Within the every operator in round brackets is a nested pattern ex-
pression using the or operator. The left hand of the or operator is afilter expression that filters for eventswith a
high latency value. The right hand of the operator contains a filter expression that filters for events with error
status. Filter expressions are explained in Section 5.3, “Filter Expressions”.

5.2.2. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The listener inter-

Esper 0.9.1 11

Event Pattern Reference

faceisthenet . esper. client. Updat eLi st ener interface.

The example below shows an anonymous implementation of the net . esper. cli ent. Updat eLi st ener inter-
face. We add the anonymous listener implementation to the nyPat t er n statement created earlier. The listener
code simply extracts the underlying event class.

nyPat t er n. addLi st ener (new Updat eLi st ener ()

{
public void update(Event Bean[] newEvents, EventBean[] ol dEvents)
{
Servi ceMeasurenment spi ke = (Servi ceMeasurenment) newEvents[0].get("spi ke");
Servi ceMeasurenment error = (Servi ceMeasurenent) newEvents[0].get("error");
. I/ either spike or error can be null, depending on which occured
. // add nore |logic here
}
5)s

Listenersreceive an array of Event Bean instances in the newevent s parameter. There is one Event Bean instance
passed to the listener for each combination of events that matches the pattern expression. At least one Event -
Bean instance is always passed to the listener.

The properties of each Event Bean instance contain the underlying events that caused the pattern to fire, if
events have been named in the filter expression via the nane=event Type Syntax. The property name is thus the
name supplied in the pattern expression, while the property type is the type of the underlying class, in this ex-
ample Ser vi ceMeasur enent .

5.2.3. Pulling Data from Patterns

Data can also be pulled from pattern statements via the i terat or () method. If the pattern had fired at least
once, then the iterator returns the last event for which it fired. The hasNext () method can be used to determine
if the pattern had fired.

if (myPattern.iterator().hasNext())

{
Servi ceMeasur enent event = (ServiceMeasurement) view. iterator().next().get("alert");
. I/ sone nore code here to process the event
}
el se
{
. I/ no matching events at this tine
}

5.3. Filter Expressions

This chapter outines how to filter events based on their properties.

The simplest form of filter is afilter for events of a given type without any conditions on the event property
values. This filter matches any event of that type regardliess of the event's properties. The example below is
such afilter. Note that this event pattern would stop firing as soon as the first RfidEvent is encountered.

com nypackage. nyevent s. Rf i dEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the every keyword.

every com nypackage. myevents. Rf i dEvent

Esper 0.9.1 12

Event Pattern Reference

The example above specifies the fully-qualified Java class name as the event type. Via configuration, the event
pattern above can be simplified by using the aias that has been defined for the event type. Interfaces and ab-
stract classes are al so supported as event types.

every Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example | Rf i dReadabl e iS an inter-
face class.

every org.nyorg.rfid.|Rfi dReadabl e

The filtering criteria to filter for events with certain event property values are placed within parenthesis after
the event type name.

mypackage. Rf i dEvent (cat egor y="Peri shabl e")

The supported filter operators are

e equas=
e CcOomparison operators< , >, >=, <=
e rangesusethekeywordin andround(...) or square brackets|]

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates whether an end-
point isincluded or excluded.

* Open ranges that contain neither endpoint (I ow: hi gh)

¢ Closed ranges that contain both endpoints[| ow: hi gh]

» Half-open ranges that contain the low endpoint but not the high endpoint [| ow: hi gh)
« Half-closed ranges that contain the high endpoint but not the low endpaint (I ow: hi gh]

Filter criteriaare listed in a comma-separated format. In the example below we look for Rfi dEvent events with
agr ade property between 1 and 2 (endpointsincluded), apri ce lessthen 1, and a category of "Perishable”.

nmypackage. Rfi dEvent (cat egor y="Peri shabl e", price<1.00, grade in [1:2])

Filter criteria can also refer to events machting prior named events in the same expression. Below pattern is an
example in which the pattern matches once for every RfidEvent that is preceded by an RfidEvent with the same
itemid.

every A=nypackage. Rfi dEvent -> B=nypackage. Rfi dEvent (item d=A.itenl d)

The syntax shown above allows filter criteriato reference prior results by specifying the event name and event
property. This syntax can be used with all filter operators.

Some limitations of filters are:

» Range and comparison operators require the event property to be of a numeric type.

e Null valuesin filter criteriaare currently not allowed.

« Filter criteriacan list the same event property only once.

« Eventsthat have null values for event properties listed in the filter criteria do not match the criteria.

5.4. Pattern Operators

Esper 0.9.1 13

Event Pattern Reference

5.4.1. Every

The every operator indicates that the pattern expression should restart when the pattern matches. Without the
every operator the pattern expressions matcher stops when the pattern matches once.

Thus the every operator works like a factory for the pattern expression contained within. When the pattern ex-
pression within it fires and thus quits checking for events, the every causes the start of a new pattern matcher
listening for more occurances of the same event or set of events.

Every time a pattern expression within an every operator turns true a new active pattern matcher is started
looking for more event(s) or timing conditions that match the pattern expression. If the every operator is not
specified for an expression, the expression stops after the first match was found.

This pattern fires when encountering event A and then stops looking.

A

This pattern keeps firing when encountering event A, and doesn't stop looking.

every A

Let's consider an example event sequence as follows.

A;B,C B A, D ABE AR B,

Table5.1. '"Every' operator examples

Example Description

every (A->B) Detect event A followed by event B. At the time when B occurs the pattern
matches, then the pattern matcher restarts and looks for event A again.

1. Matcheson B, for combination {A1’ Bl}
2. Matcheson B3 for combination {Az, BS}
3. Matcheson B 4 for combination { A 4B 4}

every A -> B The pattern fires for every event A followed by an event B.

1. Matcheson B, for combination {Al, Bl}
2. Matcheson B3 for combination {Az’ BS} and {As, Bs}
3. Matcheson B, for combination {A ,, B}

A -> every B The pattern fires for an event A followed by every event B.
1. Matcheson B, for combination {Al, Bl} .
2. Matcheson B, for combination {Al, Bz} .
3. Matcheson B, for combination {A , B}
4. MatchesonB 4 for combination {Al, B 4}

every A -> every B The pattern fires for every event A followed by every event B.

1. Matcheson B, for combination {Al, Bl}.
2. Matcheson B, for combination {Al, Bz}'

Esper 0.9.1 14

Event Pattern Reference

Example Description

3. Matcheson B, for combination {A1’ B3} and {Az’ B3} and {A3, B3}
4. Matcheson B, for combination {Al, B4} and {Az, B4} and {A3, B4} and
{A, B}

The examples show that it is possible that a pattern fires for multiple combinations of events that match a pat-
tern expression. Each combination is posted as an Event Bean instance to the updat e method in the Updat eL-
i st ener implementation.

5.4.2. And

Similar to the Java & & operator the and operator requires both nested pattern expressions to turn true before the
whole expression turnstrue (ajoin pattern).

Pattern matches when both event A and event B are found.

A and B

Pattern matches on any sequence A followed by B and C followed by D, or C followed by D and A followed by
B

(A->B) and (C -> D

5.4.3. Or

Similar to the Java “||” operator the or operator requires either one of the expressions to turn true before the
whole expression turns true.

Look for either event A or event B. Asaways, A and B can itself be nested expressions as well.

A or B

Detect all stock ticks that are either above or below a threshold.

every (StockTick(synbol ="1BM, price < 100) or StockTick(synbol="IBM, price > 105)

5.4.4. Not

The not operator negates the truth value of an expression. Pattern expressions prefixed with not are automatic-
ally defaulted to true.

This pattern matches only when an event A is encountered followed by event B but only if no event C was en-
countered before event B.

(A->B) and not C

5.4.5. Followed-by

The followed by - > operator specifies that first the left hand expression must turn true and only then is the right
hand expression evaluated for matching events.

Esper 0.9.1 15

Event Pattern Reference

Look for event A and if encountered, look for event B. As always, A and B can itself be nested event pattern
expressions.

A->B
Thisis a pattern that fires when 2 status events indicating an error occur one after the other.

St at usEvent (status="' ERROR) -> Stat usEvent (stat us=" ERROR)

5.5. Guards

5.5.1. timer:within

Theti mer: wi t hi n guard acts like a stopwatch. If the associated pattern expression does not turn true within the
specified time period it is stopped and permanently false.

This pattern firesfor all A events that arrive within 5 seconds.

every A where tiner:w thin (5000)
This pattern matches for any A or B eventsin the next 5 seconds.

(Aor B) where tiner:w thin (5000)

This pattern matches for any 2 errors that happen 10 seconds within each other.

every (StatusEvent(status='ERROR) -> StatusEvent(status='ERROR) where tiner:w thin (10000))

5.6. Pattern Observers

5.6.1. timer:interval

Thetimer:interval observer takes await time in milliseconds and waits for the defined time before the truth
value of the observer turnstrue.

After event A arrived wait 10 seconds then indicate that the pattern matches.

A -> tiner:interval (10000)

The pattern below fires every 20 seconds.

every timer:interval (20000)

5.6.2. timer:at

Thetimer: at observer is similar in function to the Unix “crontab” command. At a specified time the expres-
sionturnstrue. The at operator can also be made to pattern match at regular intervals by using an ever y operat-
or infront of theti mer: at operator.

Esper 0.9.1 16

Event Pattern Reference

Thesyntax is. timer:at (nminutes, hours, days of nmonth, nonths, days of week [, seconds]).

The value for seconds is optional. Each element allows wildcard * values. Ranges can be specified by means of
lower bounds then acolon *:’ then the upper bound. The division operator */ x can be used to specify that every
X, valueisvalid. Combinations of these operators can be used by placing these into square brackets([]).

This expression pattern matches every 5 minutes past the hour.

every timer:at(5, *, *, *, *)

The below at operator pattern matches every 15 minutes from 8am to 5pm on even numbered days of the month
aswell ason thefirst day of the month.

timer:at (*/15, 8:17, [*/2, 1], *, *)

Esper 0.9.1 17

Chapter 6. EQL Reference

6.1. EQL Introduction

EQL statements are used to derive and aggregate information from one or more streams of events, and to join
event streams. This section outlines EQL syntax. It also outlines the built-in views, which are the building
blocks for deriving and aggregating information from event streams.

EQL issimilar to SQL inits use of the sel ect clause and the wher e clause. Where EQL differs most from SQL
isinthe use of tables. EQL replaces tables with the concept of event streams.

EQL statements contain definitions of one or more views. Similar to tables in an SQL statement, views define
the data available for querying and filtering. Some views represent windows over a stream of events. Other
views derive statistics from event properties, group events or handle unique event property values. Views can
be staggered onto each other to build a chain of views. The Esper engine makes sure that views are reused
among EQL statements for efficiency.

The built-in set of viewsis:

1. Views that represent moving event windows: wi n: | engt h, wi n: ti me, win:ti me_batch, win: ext_tinme,

ext:sort_w ndow

Views for aggregation: st d: uni que, st d: gr oupby, st d: | ast event

3. Views that derive statistics. std:size, stat:uni, stat:linest, stat:correl, stat:weighted_ avg,
stat:nultidi mstat

N

Esper can be extended by plugging-in custom developed views.

6.2. EQL Syntax

EQL queries are created and stored in the engine, and publish results as events are received by the engine or
timer events occur that match the criteria specified in the query. Events can also be pulled from running EQL
queries.

The select clause in an EQL query specifies the event properties or events to retrieve. The fromclause in an
EQL query specifies the event stream definitions and stream names to use. The wher e clause in an EQL query
specifies search conditions that specify which event or event combination to search for. For example, the fol-
lowing statement returns the average price for IBM stock ticks in the last 30 seconds if the average hit 75 or
more.

sel ect average from StockTi ck(synmbol =" IBM).win:tine(30).stat:uni('price') where average >= 75;

EQL queries follow the below syntax. EQL queries can be simple queries or more complex queries. A simple
select contains only a select clause and a single stream definition. Complex EQL queries can be build that fea-
ture a more elaborate select list utilizing expressions, may join multiple streams or may contain a where clause
that with search conditions.

sel ect select list

fromstreamdef [as nane] [, streamdef [as nane]] [,...]
[where search_condi tions]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

[out put out put _specification]

Esper 0.9.1 18

EQL Reference

6.3. Choosing Event Properties And Events: the Select Clause

The select clauseisrequired in all EQL statements. The select clause can be used to select all properties viathe
wildcard *, or to specify a list of event properties and expressions. The select clause defines the event type
(event property names and types) of the resulting events published by the statement, or pulled from the state-
ment.

6.3.1. Choosing all event properties: select *
The syntax for selecting all event propertiesin astreamiis:

select * from stream def

The following statement selects all univariate statistics properties for the last 30 seconds of IBM stock ticks for
price.

select * from StockTi ck(synbol ="IBM).w n:time(30).stat:uni('price')

In ajoin statement, using the sel ect * syntax selects event properties that contain the events representing the
joined streams themselves.

6.3.2. Choosing specific event properties
To chose the particular event propertiesto return:

sel ect event _property [, event_property] [, ...] from stream def

The following statement selects the count and standard deviation properties for the last 100 events of IBM
stock ticks for volume.

sel ect count, stdev from StockTi ck(synbol =" 1 BM).w n: | ength(100).stat: uni ('vol ume')

6.3.3. Expressions
The select clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

The following statement selects the volume multiplied by price for a time batch of the last 30 seconds of stock
tick events.

sel ect volune * price from StockTick.w n:tine_bat ch(30)

6.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

sel ect [event property | expression] as identifier [, ...]

Esper 0.9.1 19

EQL Reference

The following statement selects volume multiplied by price and specifies the name volPrice for the event prop-
erty.

sel ect volune * price as vol Price from StockTi ck. wi n: | ength(100)

6.4. Specifying Event Streams : the From Clause

The fromclause is required in al EQL statements. It specifies one or more event streams. Each event stream
can optionally be given a name by means of the as syntax.

fromstreamdef [as nanme] [, streamdef [as nane]] [, ...]

The event stream definition stream_def as shown in the syntax above consists of an event type, an optiona fil-
ter property list and an optional list of views that derive data from a stream must be supplied. The syntax for an
event stream definition is as below:

event _type ([filter_criteria]) [.view spec] [.view spec] [...]

The following EQL statement selects all event properties for the last 100 events of IBM stock ticks for volume.
In the example, the event type is the fully qualified Java class name or g. esper . exanpl e. St ockTi ck. The ex-
pression filters for events where the property synmbol has avalue of "IBM". The optional view specifications for
deriving data from the StockTick events are a length window and a view for computing statistics on volume.
The name for the event stream is "volumeStats'.

select * from org. esper. exanpl e. St ockTi ck(synbol =" I BM). w n: | engt h(100) . stat: uni (' volune') as vol uneS

Instead of the fully-qualified Java class name any other event name can be mapped via Configuration to a Java
class, making the resulting statement more readable.

select * from StockTi ck(synbol ="IBM).w n:length(100).stat: uni('volune') as voluneStats

6.4.1. Specifying an event type

In the example above the event type was or g. esper . exanpl e. St ockTi ck. The event type is smply the fully
qualified Java class name. Interfaces and abstract classes are also supported. Alternatively, via configuration an
alias for an event type can be defined and used instead of the fully qualified class name. The below example
shows one way to obtain the fully qualified class name of a given Javaclass St ockTi ck.

String event Name = St ockTi ck. cl ass. get Nane() ;

String stnt = “"from" + eventNane + ".w n:|ength(100)"

6.4.2. Specifying event filter criteria

Filter criteria follow the same syntax as outlined in the event pattern section on filters; see Section 5.3, “Filter
Expressions’. Filter criteria operatorsare. =, <, > , >=, <=. Rangesusethein keyword and round (.. .)
or sguare brackets[] .

Esper filters out events in an event stream as defined by filter criteria before it sends events to subsequent
views. Thus, compared to search conditions in awhere-clause, filter criteriaremove unneeded events early.

The below example is afilter criterialist that removes events based on category, price and grade.

Esper 0.9.1 20

EQL Reference

from mypackage. Rf i dEvent (cat egor y="Peri shabl e", price<1.00, grade in [1, 2])

6.4.3. Specifying views

Views are used to derive or aggregate data. Views can be staggered onto each other. The section below outlines
the views available and plug-in of custom views.

Views can optionally take one or parameters. These parameters can consist of primitive constants such as
String, boolean or numeric types. String arrays are also supported as a view parameter type.

Views can optionally take one or parameters. These parameters can consist of primitive constants such as
String, boolean or numeric types. String arrays are also supported as a view parameter type.

The below example uses the car location event. It specifies an empty list of filter criteria by adding a empty
round brackets () after the event type. The first view "st d: groupby(' carld')" groups car location events by
car id. The second view " wi n: | engt h(4) " keeps a length window of the 4 last events, with one length window
for each car id. The next view "std: groupby({' expressway', 'direction', 'segment'})" groups each
event by it's expressway, direction and segment property values. Again, the grouping is done for each car id
considering the last 4 events only. The last view " st d: si ze() " is used to report the number of events. Thus the
below example reports the number of events per car id and per expressway, direction and segment considering
the last 4 events for each car id only. The"as accSegnent " syntax assigns the name accSegment to the result-
ing event stream.

String carLocEvent = CarLocEvent. cl ass. get Nane();
String joinStatenent = "select * from" +

carLocEvent + ".std:groupby('carld).w n:length(4).std:groupby({'expressway', 'direction'

carLocEvent + ".win:time(30).std:unique('carld) as curCarSeg" +
' where accSeg. size >= 4" +
and accSeg. expressway = cur Car Seg. expr essway" +
and accSeg. direction = curCarSeg.direction" +

and (" +
"(accSeg.direction=0 " +
' and cur Car Seg. segnent < accSeg.segnent" +
' and cur Car Seg. segnent > accSeg. segnent - 5)" +
"‘or " +

"(accSeg.direction=1 " +
' and cur Car Seg. segnent > accSeg. segnent" +
' and cur Car Seg. segnent < accSeg.segnent + 5)" +

6.5. Specifying Search Conditions: the Where Clause

The where clause is an optional clause in EQL statements. Via the where clause event streams can be joined
and events can befiltered.

Comparison operators=, <, >, >=, <=, !=, <> is null, is not null and logical combinations via
and and or are supported in the where clause. The where clause can also introduce join conditions as outlined in
Section 6.10, “Joining Event Streams’. Where-clauses can also contain expressions. Some examples are listed
below.

..where fraud.severity = 5 and ambunt > 500

..wWhere (orderltemorderlid is null) or (orderltemclass != 10)
...where (orderltemorderld = null) or (orderltemclass <> 10)
.. where itenCount / packageCount > 10

Esper 0.9.1 21

'S¢

EQL Reference

6.6. Aggregates and grouping: the Group-by Clause and the
Having Clause

6.6.1. Using aggregate functions

The aggregate functions are sum avg, count, max, min, nedian, stddev, avedev.YOU Ccan use aggregate
functions to calculate and summarize data from event properties. For example, to find out the total price for all
stock tick eventsin the last 30 seconds, type:

sel ect sun(price) from StockTi ckEvent.wi n:time(30)

Hereisthe syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to al events in an event stream window or other view, or to one or more
groups of events. From each set of events to which an aggregate function is applied, Esper generates a single
value.

Expr essi on isusually an event property name. However it can also be a constant, function, or any combination
of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the price was
doubled:

sel ect avg(price * 2) from StockTi ckEvent.w n:time(30)

You can use the optional keyword di sti nct with all aggregate functions to eliminate duplicate values before
the aggregate function is applied. The optiona keyword al I which performs the operation on all eventsis the
defaullt.

The syntax of the aggregation functions and the results they produce are shown in below table.

Table 6.1. Syntax and results of aggregate functions

Aggregate Function Result

sum([al|distinct] expression)
Totals the (distinct) values in the expression, returning a value of | ong,

doubl e, float or integer typedepending on the expression

avg([all|distinct] expression)
Average of the (distinct) values in the expression, returning a value of
doubl e type

count([all|distinct] expression)
Number of the (distinct) non-null values in the expression, returning a
value of | ong type

count(*)
Number of events, returning avalue of | ong type

max([all|distinct] expression)
Highest (distinct) value in the expression, returning a value of the same

Esper 0.9.1 22

EQL Reference

Aggregate Function Result

type as the expression itself returns

min([al|distinct] expression)
Lowest (distinct) value in the expression, returning a value of the same
type as the expression itself returns

median([all[distinct] expression)
Median (distinct) value in the expression, returning a value of doubl e

type

stddev([al|distinct] expression)
Standard deviation of the (distinct) values in the expression, returning a
value of doubl e type

avedev([all|distinct] expression)
Mean deviation of the (distinct) values in the expression, returning a
value of doubl e type

Y ou can use aggregation functions in asel ect clause and in a havi ng clause. Y ou cannot use aggregate func-
tionsin awher e clause, but you can use the where clause to restrict the events to which the aggregate is applied.
The next query computes the average and sum of the price of stock tick events for the symbol IBM only, for the
last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sum(price) as sunPrice
from St ockTi ckEvent . wi n: | engt h(10)
wher e synbol =' | BM

In the above example the length window of 10 elementsis not affected by the where-clause, i.e. all events enter
and leave the length window regardless of their symbol. If we only care about the last 10 IBM events, we need
to add filter criteria as below.

select 'IBMstats' as title, avg(price) as avgPrice, sum(price) as sunPrice
from St ockTi ckEvent (synbol =' | BM). wi n: | engt h(10)
wher e synbol =' | BM

Y ou can use aggregate functions with any type of event property or expression, with the following exceptions:

1. Youcanusesum avg, nedian, stddev, avedev wWith numeric event propertiesonly

Esper ignores any null values returned by the event property or expression on which the aggregate function is
operating, except for the count (*) function, which counts null values as well. All aggregate functions return
null if the data set contains no events, or if all events in the data set contain only null values for the aggregated
expression.

6.6.2. Organizing statement results into groups: the Group-by clause

The group by clause is optional in al EQL statements. The group by clause divides the output of an EQL
statement into groups. Y ou can group by one or more event property names, or by the result of computed ex-
pressions. When used with aggregate functions, gr oup by retrieves the calculations in each subgroup. Y ou can
use group by without aggregate functions, but generally that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in the last 30
seconds:

Esper 0.9.1 23

EQL Reference

sel ect synmbol, sun{price) from StockTi ckEvent.wi n:tine(30) group by symnbol

The syntax of the group by clauseis:

group by arregate_free_expression [, arregate free_expression] [, ...]

Esper places the following restrictions on expressionsin the gr oup by clause:

1. Expressionsinthegroup by cannot contain aggregate functions
2. Event properties that are used within aggregate functions in the sel ect clause cannot also be used in a
group by expression

Y ou can list more then one expression in the group by clause to nest groups. Once the sets are established with
group by the aggregation functions are applied. This statement posts the median volume for all stock tick
events in the last 30 seconds per symbol and tick data feed. Esper posts one event for each group to statement
listeners:

sel ect synbol, tickDataFeed, mnedian(vol une)
from St ockTi ckEvent . wi n: time(30)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also listed in the
group by clause. The statement thus follows the SQL standard which prescribes that non-aggregated event
propertiesinthe sel ect list must match the gr oup by columns.

Esper also supports statements in which one or more event properties in the sel ect list are not listed in the
group by clause. The statement below demonstrates this case. It calculates the standard deviation for the last 30
seconds of stock ticks aggregating by symbol and posting for each event the symbol, tickDataFeed and the
standard deviation on price.

sel ect synbol, tickDataFeed, stddev(price) from StockTi ckEvent.w n:tinme(30) group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces one event per
incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event propertiesin the group by clause are not
listed in the sel ect list. This is an example that calculates the mean deviation per symbol and ti ckDat aFeed
and posts one event per group with synbol and mean deviation of price in the generated events. Since tick-
DataFeed is not in the posted results, this can potentially be confusing.

sel ect synmbol, avedev(price)
from St ockTi ckEvent . wi n: ti me(30)
group by synbol, tickDataFeed

Expressions are also allowed in the gr oup by list:

sel ect synmbol * price, count(*) from StockTi ckEvent.w n:ti me(30) group by synmbol * price

If the group by expression resulted in a null value, the null value becomes its own group. All null values are
aggregated into the same group. If you are using the count (expr essi on) aggregate function which does not
count null values, the count returns zero if only null values are encountered.

Y ou can use awher e clausein a statement with group by. Eventsthat do not satisfy the conditions in the wher e
clause are eliminated before any grouping is done. For example, the statement below posts the number of stock
ticksin the last 30 seconds with avolume larger then 100, posting one event per group (symbol).

Esper 0.9.1 24

EQL Reference

sel ect symbol, count(*) from StockTi ckEvent.w n:tinme(30) where volune > 100 group by synbo

6.6.3. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng clause sets condi-
tions for the group by clause in the same way wher e sets conditions for the sel ect clause, except wher e cannot
include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total price per symbol
for the last 30 seconds of stock tick events for only those symbols in which the total price exceeds 1000. The
havi ng clause eliminates al symbols where the total priceisequal or less then 1000.

sel ect synbol, sun(price)

from St ockTi ckEvent . wi n: ti me(30)
group by synbol

havi ng sun(price) > 1000

To include more then one condition in the havi ng clause combine the conditions with and, or or not. Thisis
shown in the statement below which selects only groups with a total price greater then 1000 and an average
volume less then 500.

sel ect synbol, sun{price), avg(vol une)

from St ockTi ckEvent . wi n: time(30)

group by synbol

havi ng sum(price) > 1000 and avg(vol une) < 500

Esper places the following restrictions on expressionsin the havi ng clause:

1. Any expressionsthat contain aggregate functions must also occur inthe sel ect clause

A statement with the havi ng clause should also have a group by clause. If you omit gr oup- by, al the events
not excluded by the wher e clause return as a single group. In that case havi ng acts like awher e except that hav-
i ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The example below
posts events where the price is less then the current running average price of all stock tick eventsin the last 30
seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent . wi n: ti me(30)
havi ng price < avg(price)

6.6.4. How the stream filter, Where, Group By and Having clauses interact

When you include filters, the wher e condition, the group by clause and the havi ng condition in an EQL state-
ment the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is used). The
filter discards any events not meeting filter criteria.

The wher e clause excludes events that do not meet its search condition.

Aggregate functions in the select list calculate summary values for each group.

4. Thehavi ng clause excludes events from the final results that do not meet its search condition.

w N

The following query illustrates the use of filter, where, group by and havi ng clauses in one statement with a

Esper 0.9.1 25

EQL Reference

sel ect clause containing an aggregate function.

sel ect tickDataFeed, stddev(price)

from St ockTi ckEvent (synbol ="' I BM). wi n: | engt h(10)
where vol une > 1000

group by tickDat aFeed

havi ng stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream St ockTi ckEvent . In the example above only
events with symbol IBM enter the length window over the last 10 events, all other events are simply discarded.
The wher e clause removes any events posted by the length window (events entering the window and event
leaving the window) that do not match the condition of volume greater then 1000. Remaining events are ap-
plied to the st ddev standard deviation aggregate function for each tick data feed as specified in the group by
clause. Each ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
passfor ti ckDat aFeed groups with a standard deviation of price greater then 0.8.

6.7. Stabilizing and Limiting Output: the Output Clause

6.7.1. Output Clause Options

The out put clauseisoptional in Esper and is used to stabilize the rate at which events are output. For example,
the following statement batches old and new events and outputs them at the end of every 90 second interval.

select * from StockTi ckEvent.wi n: | ength(5) output every 90 seconds

Hereisthe syntax for output rate limiting:

output [all | last] every nunber [minutes | seconds | events]

The optional 1 ast keyword specifies to only output the very last event, while the al | keyword is the default
and specifies to output all events in a batch. The batch size can be specified in terms of time or number of
events.

Thetimeinterval can aso be specified in terms of minutes; the following statement isidentical to the first one.

select * from StockTi ckEvent.wi n: | ength(5) output every 1.5 mnutes

A second way that output can be stabilized is by batching events until a certain number of events have been col-
lected. The next statement only outputs when either 5 (or more) new or 5 (or more) old events have been
batched.

select * from StockTi ckEvent.wi n:time(30) output every 5 events

Additionally, event output can be further modified by the optional last keyword, which causes output of only
the last event to arrive into an output batch.

sel ect * from StockTi ckEvent.w n:ti me(30) output |ast every 5 events

6.7.2. Group By, Having and Output clause interaction

The out put clause interacts in two ways with the group by and havi ng clauses. First, in the out put every n
events case, the number n refers to the number of events arriving into the group by cl ause. That is, if the

Esper 0.9.1 26

EQL Reference

group by clause outputs only 1 event per group, or if the arriving events don't satisfy the havi ng clause, then
the actual number of events output by the statement could be fewer than n.

Second, the I ast and al I keywords have special meanings when used in a statement with aggregate functions
and the group by clause. The | ast keyword specifies that only groups whose aggregate values have been up-
dated with the most recent batch of events should be output. The al I keyword (the default) specifies that the
most recent data for all groups seen so far should be output, whether or not these groups' aggregate values have
just been updated.

6.8. Single-row function reference

Single-row functions return a single value for every single event result row generated by your statement. These
functions can appear inthe sel ect clause, in thewher e clause and in the havi ng clause.

The below table outlines the single-row functions available.

Table 6.2. Syntax and results of single-row functions

Single-row Function Result

max (expression, expression, [, expression [,...]])
Returns the highest numeric value among the

2 or more comma-separated expressions.

min(expression, expression, [, expression [,...]])
Returns the lowest numeric value among the
2 or more comma-separated expressions.

An example showing the use of the i n single-row function is below.

sel ect synmbol, mn(ticks.tinmestanp, news.tinestanp) as mnT
from St ockTi ckEvent.win:ti me(30) as ticks,

NewsEvent . wi n:ti me(30) as news
wher e ticks. synbol = news. synbol

6.9. Build-in views

This chapter outlines the views that are built into Esper.

6.9.1. Window views

Length window
Creates a moving window extending the specified number of elementsinto the past.
The below example calculates basic univariate statistics for the last 5 stock ticks for symbol IBM.

St ockTi ckEvent (synbol =" IBM). w n: |l ength(5).stat:uni('price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. The statistics on priceis calculated only for the last 10 events for each symbol.

Esper 0.9.1 27

EQL Reference

St ockTi ckEvent . st d: groupby(' synbol '). wi n: |l engt h(10).stat: uni (' price')

Time window

Thetime window creates a moving time window extending from the specified time interval in seconds into the
past based on the system time.

For the IBM stock tick eventsin the last 1000 milliseconds, calculate statistics on price.

St ockTi ckEvent (synbol =" IBM). win:tinme(l).stat:uni('price')

Externally-timed window

Similar to the time window this view moving time window extending from the specified time interval in
seconds into the past, but based on the millisecond time value supplied by an event property.

Thisview holds stock tick events of the last 10 seconds based on the timestamp property in St ockTi ckEvent .

St ockTi ckEvent . wi n: ext _ti med(10, 'tinestanp')

Time window buffer

This window view buffers events and rel eases them every specified time interval in one update.

The below example batches events into a 5 second window releasing new batches every 5 seconds. Listenersto
updates posted by this view receive updated information only every 5 seconds.

St ockTi ckEvent . wi n: ti me_bat ch(5)

6.9.2. Standard view set

Unique

The uni queview is a view that includes only the most recent among events having the same value for the spe-
cified field.

The below example creates a view that retains only the last event per symbol.

St ockTi ckEvent . st d: uni que(' synbol ')

Group By
This view groups events into sub-views by the value of the specified field.
This example calculates statistics on price separately for each symbol.

St ockTi ckEvent . st d: groupby(' synbol '). stat:uni (' price')

The next example keeps a length window of 10 events of stock trade events, with a separate window for each
symbol. Now the statistics on priceis calculated only for the last 10 events for each symbol.

St ockTi ckEvent . st d: groupby(' synbol '). wi n: | ength(10).stat: uni('price')

Esper 0.9.1 28

EQL Reference

Size
This view returns the number of elementsin view.
This example view reports the number of events within the last 1 minute.

St ockTi ckEvent . wi n: ti me(60000). std: size()

Last
This view exposes the last element of its parent view.
This example view retains statistics calculated on stock tick price for the symbol IBM.

St ockTi ckEvent (synbol =" IBM). stat: uni (' price').std:|astevent()

6.9.3. Statistics views

Univariate statistics

This view calculated basic univariate statistics on an event property.

Table 6.3. Univariate statistics derived properties

Property Name Description

count Number of values

sum Sum of values

aver age Average of values

vari ance Variance

st dev Sampl e standard deviation (square root of variance)
st devpa Population standard deviation

The below example cal cul ates price statistics on stock tick events for the last 10 events.

St ockTi ckEvent . wi n: | engt h(10) . stat: uni (' price')

Regression

This view calculates regression on two event properties.

Table 6.4. Regression derived properties

Property Name Description
sl ope Slope
yi nt er cept Y Intercept

Esper 0.9.1

29

EQL Reference

Calculate slope and y-intercept on price and offer for all eventsin the last 10 seconds.

St ockTi ckEvent . wi n: ti me(10000).stat:linest('price', 'offer')

Correlation

This view calculates the correlation value on two event properties.

Table 6.5. Correlation derived properties

Property Name Description

correl Correlation between two event properties

Calculate correlation on price and offer over all stock tick eventsfor IBM.

St ockTi ckEvent (synbol =" IBM) .stat:correl (' price', 'offer")

Weighted average
This view returns the weighted average given a weight field and a field to compute the average for. Syntax:

weighted_avg(field, weightField)

Table 6.6. Weighted average derived properties

Property Name Description

aver age Weighted average

Viewsthat derive the volume-weighted average price for the last 3 seconds.

St ockTi ckEvent (synbol =" I BM). wi n: ti me(3000). st at: wei ghted_avg(' price', 'volune')

Multi-dimensional statistics

This view works similar to the st d: gr oupby Vviews in that it groups information by one or more event proper-
ties. The view accepts 3 or more parameters: The first parameter to the view defines the univariate statistics
values to derive. The second parameter is the property name to derive data from. The remaining parameters
supply the event property names to use to derive dimensions.

Table 6.7. Multi-dim derived properties

Property Name Description

cube The cube following the interface

The example below derives the count, average and standard deviation latency of service measurement events
per customer.

Servi ceMeasurenent . stat: nultidimstats({‘count’, ‘average’, ‘stdev’'},
"latency', 'custoner')

Esper 0.9.1 30

EQL Reference

This example derives the average latency of service measurement events per customer, service and error status
for eventsin the last 30 seconds.

Servi ceMeasur enment . wi n: | engt h(30000) . stat: multi dimstats({‘average’'},
"latency', 'customer', 'service', 'status')

6.9.4. Extension View Set

Sorted Window View
This view sorts by valuesin the specified event property and keeps only the top elements up to the given size.
The syntax for thisview is: sort (String propertyName, bool ean i sDescending, int size) .

These view can be used to sort on price descending keeping the lowest 10 prices and reporting statistics on
price.

St ockTi ckEvent . ext:sort (' price', true, 10).stat:uni('price'))

6.10. Joining Event Streams

Two or more event streams can be part of the f r omclause and thus both streams determine the resulting events.
The where-clause lists the join conditions that Esper uses to relate eventsin the two or more streams.

Each point in time that an event arrives to one of the event streams, the two event streams are joined and output
events are produced according to the where-clause.

This example joins 2 event streams. The first event stream consists of fraud warning events for which we keep
the last 30 minutes (1800 seconds). The second stream is withdrawal events for which we consider the last 30
seconds. The streams are joined on account number.

sel ect fraud. account Nunmber as accnt Num fraud.warning as warn, w thdraw anobunt as anount,
max(fraud.timestanp, wthdraw timestanp) as tinmestanp, 'w thdraw Fraud' as desc
from net. esper. exanpl e. at m Fr aud\War ni ngEvent . wi n: ti ne(1800) as fraud,
net . esper. exanpl e. at m Wt hdr awal Event. wi n: ti me(30) as w t hdraw
wher e fraud. account Number = w t hdr aw. account Nunber

6.11. Outer Join

Esper supports left outer joins, right outer joins and full outer joins between an unlimited number of event
streams.

If the outer join is aleft outer join, there will be an output event for each event of the stream on the left-hand
side of the clause. For example, in the left outer join shown below we will get output for each event in the
stream RfidEvent, even if the event does not match any event in the event stream OrderList.

select * fromnet. esper.exanple.rfid.RfidEvent.win:tinme(30) as rfid
left outer join
net . esper.exanpl e.rfid. OrderList.wn:length(10000) as orderli st
on rfid.itemd = orderList.itemd

Similarly, if thejoin isaRight Outer Join, then there will be an output event for each event of the stream on the

Esper 0.9.1 31

EQL Reference

right-hand side of the clause. For example, in the right outer join shown below we will get output for each event
in the stream OrderList, even if the event does not match any event in the event stream RfidEvent.

select * from net.esper.exanple.rfid. RfidEvent.wi n:tine(30) as rfid
right outer join
net . esper. exanpl e.rfid. OrderList.wn:|ength(10000) as orderli st
on rfid.itemd = orderList.itemd

For al types of outer joins, if the join condition is not met, the select list is computed with the event properties
of the arrived event while al other event properties are considered to be null.

sel ect * from net.esper.exanple.rfid. RfidEvent.win:tine(30) as rfid
full outer join
net. esper. exanpl e.rfid. OrderList.wn:|ength(10000) as orderli st
on rfid.itemd = orderList.itemd

The last type of outer join isafull outer join. In afull outer join, each point in time that an event arrives to one

of the event streams, one or more output events are produced. In the example below, when either an RfidEvent
or an OrderList event arrive, one or more output event is produced.

6.12. View Plug-in

Thisis currently not supported (planned).

Esper 0.9.1 32

Chapter 7. Adapters

This chapter discusses adapters (TODO)

7.1. Adapter

Adapters adapt event executions in the outside world into a format for processing by Esper, and feed events to
Esper.

Currently there are no pre-build adapters available for Esper.

Esper 0.9.1 33

Chapter 8. Indicators

8.1. Intro

Indicators are pluggable modules that communicate the results of event stream processing to the external world.
Indicators can act as visualizers that present a graphical view of their event inputs. They can also be warning
agents (monitors) that send alerts, warnings or other control eventsto the outside world.

In their implementation indicators can be classes that implement the Updat eLi st ener interface and that can
thus be attached directly to one or more statements. Indicactors can aso be attached to one or more EPSt at e-
ment instances. This makes is possible for indicators to merge data as well as pull data from trigger and state-
ment views.

Indicators may be integration components that plug together with other software, an some indicators will be
supplied by Esper. Esper currently only has one indicator module as described below.

8.2. JMX Indicator

The net . esper . i ndi cat or. j mx. JMXLast Event | ndi cat or displays the last event in a IMX MBean it registers
with the MBeanServer obtained via ManagementFactory.getPl atformM BeanServer();

Esper 0.9.1 34

Chapter 9. Examples

9.1. Examples Overview

This chapters outlines the examples that come with Esper in the eg/ sr ¢ folder of the distribution. The code for
examples can be found in the net . esper. exanpl e packages.

In order to compile and run the sampl es please follow the below instructions:

1. MakesureJavalb or greater isinstaled and the JAVA_HOME environment variable is set.
2. Open aconsole window and change directory to esper/eg/etc.

3. Run"setenv.bat" (Windows) or "setenv.sh" (Unix) to verify your environment settings.

4. Run"compile.bat" (Windows) or "compile.sh" (Unix) to compile the examples.

5. Now you are ready to run the examples. Some examples require mandatory parameters. Further informa-
tion to running each example can be found in "readme.txt".

6. Modify thelogger logging level in the "logdj.xml" configuration file changing DEBUG to INFO on a class
or package level to reduce the volume of text output.

JUnit tests exist for the example code. The JUnit test source code for the examples can be found in the eg/ t est
folder. To build and run the example JUnit tests, use the Maven 2 goal t est . The JUnit test source code can
also be helpful in understanding the example and in the use of Esper APIs.

9.2. Transaction 3-Event Challenge

The classes for this example live in package net. esper. exanpl e. transaction. Run "run_txnsim.bat"
(Windows) or "run_txnsim.sh" (Unix) to start the transaction simulator. Please see the readme file in the same
folder for build instructions and command line parameters.

9.2.1. The Events

The use case involves tracking three components of a transaction. It's important that we use at least three com-
ponents, since some engines have different performance or coding for only two events per transaction. Each
component comes to the engine as an event with the following fields:

e Transaction ID
¢ Time stamp

In addition, we have the following extrafields:

Inevent A:

e Customer ID

In event C:

e Supplier ID (the ID of the supplier that the order was filled through)

Esper 0.9.1 35

Examples

9.2.2. Combined event

We need to take in events A, B and C and produce a single, combined event with the following fields:

e Transaction ID

e Customer ID

e Time stamp from event A
e Time stamp from event B
e Time stamp from event C

What we're doing here is matching the transaction IDs on each event, to form an aggregate event. If al these
events were in arelational database, this could be done as a simple SQL join... except that with 10,000 events
per second, you will need some serious database hardware to do it.

9.2.3. Real time summary data

Further, we need to produce the following:

* Min,Max,Average total latency from the events (difference in time between A and C) over the past 30
minutes.

* Min,Max,Average latency grouped by (a) customer ID and (b) supplier ID. In other words, metrics on the
the latency of the orders coming from each customer and going to each supplier.

« Min,Max,Average latency between events A/B (time stamp of B minus A) and B/C (time stamp of C minus
B).

9.2.4. Find problems

We need to detect a transaction that did not make it through all three events. In other words, a transaction with
events A or B, but not C. Note that, in this case, what we care about is event C. The lack of events A or B could
indicate a failure in the event transport and should be ignored. Although the lack of an event C could also be a
transport failure, it merits looking into.

9.2.5. Event generator

To make testing easier, standard and to demonstrate how the example works, the example is including an event
generator. The generator generates events for a given number of transactions, using the following rules:

* Onein 5,000 transactions will skip event A

¢ Onein 1,000 transactions will skip event B

¢ Onein 10,000 transactions will skip event C.

e Transaction identifiers are randomly generated

e Customer and supplier identifiers are randomly chosen from two lists

« The time stamp on each event is based on the system time. Between events A and B as well as B and C,
between 0 and 999 is added to the time. So, we have an expected time difference of around 500 milli-
seconds between each event

« Eventsare randomly shuffled as described below

To make things harder, we don‘t want transaction events coming in order. This code ensures that they come
completely out of order. To do this, we fill in a bucket with events and, when the bucket is full, we shuffle it.
The buckets are sized so that some transactions' events will be split between buckets. So, you have afairly ran-
domized flow of events, representing the worst case from a big, distributed infrastructure.

Esper 0.9.1 36

Examples

The generator lets you change the size of the bucket (small, medium, large, larger, largerer). The larger the
bucket size, the more events potentially come in between two eventsin a given transaction and so, the more the
performance characteristics like buffers, hashes/indexes and other structures are put to the test as the bucket
size increases.

9.3. StockTicker

The StockTicker example comes from the stock trading domain. The example creates event patterns to filter
stock tick events based on price and symbol. When a stock tick event is encountered that falls outside the lower
or upper price limit, the example simply displays that stock tick event. The price rangeitself is dynamically cre-
ated and changed. Thisis accomplished by an event patterns that searches for another event class, the price lim-
it event.

The classes net . esper. exanpl e. st ockti cker. event. St ockTi ck and PricelLi nit represent our events. The
event patterns are created by the classnet . esper . exanpl e. st ockt i cker. noni t or. St ockTi cker Moni t or .

Summary:

e Good exampleto learn the APl and get started with event patterns

» Dynamically creates and removes event patterns based on price limit events received

« Simple, highly-performant filter expressions for event properties in the stock tick event such as symbol and
price

9.4. MatchMaker

In the MatchMaker example every mobile user hasan X and Y location, a set of properties (gender, hair color,
age range) and a set of preferences (one for each property) to match. The task of the event patterns created by
this example is to detect mobile users that are within proximity given a certain range, and for which the proper-
ties match preferences.

The event class representing mobile users is net . esper. exanpl e. mat chmmaker . event . Mobi | eUser Bean. The
net . esper . exanpl e. mat chnaker . moni t or . Mat chMaki ngMoni tor class contains the patterns for detecing
matches.

Summary:

» Dynamically creates and removes event patterns based on mobile user events received
e Usesrange matching for X and Y properties of mobile user events

9.5. QualityOfService

This example develops some code for measuring quality-of-service levels such as for a service-level agreement
(SLA). A SLA isacontract between 2 parties that defines service constraints such as maximum latency for ser-
vice operations or error rates.

The example measures and monitors operation latency and error counts per customer and operation. When one
of our operations oversteps these constraints, we want to be alerted right away. Additionally, we would like to
have some monitoring in place that checks the health of our service and provides some information on how the
operations are used.

Esper 0.9.1 37

Examples

Some of the constraints we need to check are:

» That the latency (timeto finish) of some of the operationsis aways less then X seconds.
» That the latency average is dwayslessthen Y seconds over Z operation invocations.

The net . esper. exanpl e. qos_sl a. event s. Oper at i onMeasur enent event class with its latency and status
properties is the main event used for the SLA analysis. The other event Lat encyLi i t servesto set latency lim-
itson the fly.

The net . esper . exanpl e. qos_sl a. noni t or. Aver ageLat encyMoni t or creates an EQL statement that computes
latency statistics per customer and operation for the last 100 events. The DynalLat encySpi keMoni t or USES an
event pattern to listen to spikes in latency with dynamically set limits. The Error Rat eMoni t or uses the timer
"at' operator in an event pattern that wakes up periodically and polls the error rate within the last 10 minutes.
The Servi ceHeal t hvoni t or Simply alerts when 3 errors occur, and the Spi keAndEr r or Moni t or alerts when a
fixed latency is overstepped or an error status is reported.

Summary:

¢ Thisexample combines event patterns with EQL statements for event stream analysis.

e Showstheuseof thetimer ' at* operator and followed-by operator - > in event patterns

e Qutlines basic EQL statements

« Shows how to pull data out of EQL statements rather then subscribing to events a statement publishes

9.6. LinearRoad

The Linear Road example is a very incomplete implementation of the Stream Data Management Benchmark [3]
by Standford University.

Linear Road simulates a toll system for the motor vehicle expressways of a large metropolitan area. The main
event in this example is a car location report which the class net . esper. exanpl e. | i near r oad. Car LocEvent
represents. Currently the event stream joins are performed by JUnit test classes in the eg/ t est folder. See the
net. esper. exanpl e. | i nearroad. Test Acci dent Not i fy and the Test Car Segnent Count classes. Please consider
thisawork in progress.

Summary:

e Shows more complex joins between event streams.

9.7. StockTick RSI

The RSI gives you the trend for a stock and for more complete explanation, you can visit the link: ht-
tp:/lwww .stockcharts.com/education/IndicatorAnaysis/indic_RSI.html.

After a definite number of stock events, or accumulation period, the first RSI is computed. Then for each sub-
sequent stock event, the RSI calculations use the previous period’s Average Gain and Loss to determine the
“smoothed RSI”.

Summary:

e Uses a simple event pattern with a filter which feeds a listener that computes the RSI, which publishes
events containing the computed RSI.

Esper 0.9.1 38

Chapter 10. References

10.1. Reference List

» Luckham, David. 2002. The Power of Events. Addison-Wesley.

e The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide.

e Arasu, Arvind, et.al.. 2004. Linear Road: A Stream Data Management Benchmark, Stanford University ht-
tp://www.cs.brown.edu/research/aurora/Linear_Road Benchmark_Homepage.htm.

Esper 0.9.1 39

	Esper - Java Event Stream Processor
	Table of Contents
	Preface
	Chapter 1. Technology Overview
	1.1. Introduction to CEP and event stream analysis
	1.2. CEP and relational databases
	1.3. The Esper engine for CEP

	Chapter 2. Architecture
	2.1. Overview
	2.2. Building and Testing

	Chapter 3. Configuration
	3.1. Programmatic configuration
	3.2. Configuration via XML file
	3.3. XML Configuration file
	3.4. Configuration items
	3.4.1. Event type alias to Java class mapping

	Chapter 4. API Reference
	4.1. API Overview
	4.2. Engine Instances
	4.3. The Administrative Interface
	4.4. The Runtime Interface
	4.5. Event Class Requirements
	4.5.1. Event Property Types

	4.6. Time-Keeping Events
	4.7. Events Received from the Engine

	Chapter 5. Event Pattern Reference
	5.1. Event Pattern Overview
	5.2. How to use Patterns
	5.2.1. Pattern Syntax
	5.2.2. Subscribing to Pattern Events
	5.2.3. Pulling Data from Patterns

	5.3. Filter Expressions
	5.4. Pattern Operators
	5.4.1. Every
	5.4.2. And
	5.4.3. Or
	5.4.4. Not
	5.4.5. Followed-by

	5.5. Guards
	5.5.1. timer:within

	5.6. Pattern Observers
	5.6.1. timer:interval
	5.6.2. timer:at

	Chapter 6. EQL Reference
	6.1. EQL Introduction
	6.2. EQL Syntax
	6.3. Choosing Event Properties And Events: the Select Clause
	6.3.1. Choosing all event properties: select *
	6.3.2. Choosing specific event properties
	6.3.3. Expressions
	6.3.4. Renaming event properties

	6.4. Specifying Event Streams : the From Clause
	6.4.1. Specifying an event type
	6.4.2. Specifying event filter criteria
	6.4.3. Specifying views

	6.5. Specifying Search Conditions: the Where Clause
	6.6. Aggregates and grouping: the Group-by Clause and the Having Clause
	6.6.1. Using aggregate functions
	6.6.2. Organizing statement results into groups: the Group-by clause
	6.6.3. Selecting groups of events: the Having clause
	6.6.4. How the stream filter, Where, Group By and Having clauses interact

	6.7. Stabilizing and Limiting Output: the Output Clause
	6.7.1. Output Clause Options
	6.7.2. Group By, Having and Output clause interaction

	6.8. Single-row function reference
	6.9. Build-in views
	6.9.1. Window views
	Length window
	Time window
	Externally-timed window
	Time window buffer

	6.9.2. Standard view set
	Unique
	Group By
	Size
	Last

	6.9.3. Statistics views
	Univariate statistics
	Regression
	Correlation
	Weighted average
	Multi-dimensional statistics

	6.9.4. Extension View Set
	Sorted Window View

	6.10. Joining Event Streams
	6.11. Outer Join
	6.12. View Plug-in

	Chapter 7. Adapters
	7.1. Adapter

	Chapter 8. Indicators
	8.1. Intro
	8.2. JMX Indicator

	Chapter 9. Examples
	9.1. Examples Overview
	9.2. Transaction 3-Event Challenge
	9.2.1. The Events
	9.2.2. Combined event
	9.2.3. Real time summary data
	9.2.4. Find problems
	9.2.5. Event generator

	9.3. StockTicker
	9.4. MatchMaker
	9.5. QualityOfService
	9.6. LinearRoad
	9.7. StockTick RSI

	Chapter 10. References
	10.1. Reference List

