The drools Guide

Theory, Usage and Reference

The Werken Company
www.werken.com

September 27, 2002

ii

Contents

1__Introduction 1
CTRualed e 1
L2 Rules Engined o ot i 2
C3—Sfandardd e e 3

1 0 =1 5 O 3
C3ZISREUA o e 3

2 U o6 5

PT droals Clienf APT 0 0 v o e e e e e e e e e e e e 5
11 Infroductionl 00000 5
B.I.Z TLocafing a Rule-basd 5
g.1.56 Creating a Working Memory 6
B. 1.4 Fact Manipulatiod 6

P2ISBEOZAPT o ot e e e e e e e e 7

B Drools Rule Langaugdg 9
Ll Introductionl L e e e e 9
B2 DRI FETed o o e e e e 9
B3 Loading DRL Filed v i i 9
B4 Base DRL Svnfax 10

BT arT=rmled v oo 11
B4Z2 dri:-rule=sefl00 11
B3 drT=ruld i e e e e 11
B4dZ drl:parameten] « v v vt e e e e e 12
B drT-decTaration v v v 12
B4b drl:-extraction 00w 12
B2 drT=condifiom« v v v v v i e e e 13
BAR_ArT-durationl« v v v v it e e 13
B49 drlI:comsequencd v ot vt 13
B2 drT-semantics v v v v e 13

A Java Semanfic Moduld 15
ETOVErVIEW . . . o v v o e v e e e e e e e e e e e 15
d.2 Usage with DL 0000, 16

iii

iv CONTENTS

B2 1T Loading the Moduld 16

EZ22 Java:clasg 16

EZ3 Java:condition v vt e e e e e 16

EZZd Java:extractol] v v v e e e e e e 17

EZ5 Java:ConSequencyq« « « v v v e e e e 17
p_Jython Semantic Modulq 19
b XM Semantic Maoduld 21
[[—Rule Assembly] 23
I Overvaesd o e 23
[[:2__Rule Assembly Exampld 24
B—_Semanfics Provider Inferfacd 27
BT Overviewl vt e e e e e 27
BZ Semantic Objecty 27
R.2.1 org.drools.sp1.Ubjectlypd 27

B.Z.2 org.drools.spi.Declarafion 28

BZ.3 org.drools.spi.Tupld 28

B.2.4 org.drools.spi.Extractod 29

B.2.5 org.drools.spi.Condition 29

B.Z.6 org.drools.spi.Consequencd 31

P Semantics Management Framework 33
10 Alg S 35
L[0T Efficient Matching 35
1 7= 7= 35
M3 RefeOO e 38
[A"Project Information 41
................................ 41

2 Mailing Tistd e 41

[A.3 Source Repository] 41
[A.4 Infernet Relay Chafl 42
[ASD Bug & Issue Tracking 42

B ol 43
BT droolsTicensd o v v v it e e e e e e 43

B 1T 1 1Thelacensd 43
BTZSummary]o oo e e e 44

B2 3rd-Parfy Licensed 45
B21 Apache Jakartd, 45

B 272 Beanshell 00000l 46

List of Figures

B.l org.drools.spi.Ubjectlype intertacqd.
B.2 org.drools.spi.Declarationclasy
B.o org.drools.spi.luple ntertacqd
.4 org.drools.spil.bkxtractor intertacd
B.o _org.drools.spi.Condition intertacqd

B.6 org.drools.spi.Consegeunce interrace

L0.2 Example tuple sety o000

L0 3 Rete-(Q0Q) network

vi

LIST OF FIGURES

Chapter 1

Introduction

1.1

Rules

Many enterprise software systems today already include the concept of rules.
Most times, these rules are directly implemented in code and are difficult to
adapt to a changing business landscape. The domain model many times includes
business logic which may change often. When these business ‘rules’ are coded
using normal systems programming techniques,[] modification and maintenance
of the logic can become difficult.

Examples of typical simple business rules include:

When a customer applies for a loan of more than $80,000 and has less
than $5,000 in their savings account and has had the account for less than
3 years, then reject the loan application.

When a customer orders a box of goods and a routed delivery vehicle can
include the delivery in today’s route by lengthening the route by no more
than 8 miles, then add the customer’s delivery to the vehicle.

When a trouble-ticket from a high-priority customer has been unresolved
for 60 minutes, then escalate the urgency of the ticket and notify the shift
manager.

When a customer buys pie, then suggest that he might enjoy some ice-
cream.

More complex rules that involve multiple participants or chunks of data may
also exist in systems:

When someone is selling a product desired by another person for a price
less-than-or-equal-to the price the other is is willing to pay, then notify
both parties.

TMany times, a long sequence of if /else statements is used to realize business rules.

2 CHAPTER 1. INTRODUCTION

o When an author submits an article and either three junior editors a single
senior editor has signed off on it, then send the article to the production
department work queue.

o When email which is not directly addressed to me arrives and the sender
is not on my ‘approved’ list, then direct it to my mail folder that holds
potential spam.

As companies are often changing the way they do business, responding
quickly to changes is important. Changing business logic which is realized in
compiled code can become quite an arduous job. Systems that respond to
changes in policy as quickly as the enterprise makes decisions reduce mainte-
nance costs and development cycle times.

1.2 Rules Engines

Rules engines were developed to make the creation and maintenance of collec-
tions of rules easier and less costly. Through the use of intelligent algorithms
(see Chapter [0 on page BY), some dedicated rules engine can also produce
efficiencies when working with a large amount of rules, events and data.

A good rules engine allows the business logic of a system to be specified
external to the system itself. No longer must these rules be codified by the
developers. Many rules engines even provide natural-language or wizard-style
GUIs for designing rules, allowing product managers or business analysts to
actually specify the logic. Separation of concerns and responsibility is achieved
by moving the business rule specification outside of the actual program logic.
Developers can concern themselves with systems engineering while the analysts
concentrate on the business logic.

There are currently many commercial and open-source implementations of
rules engines aside from drools. The commercial vendors have undoubtedly good
algorithms and have spent considerable time and effort on the user interfaces
and rule specification languages.

¢ ILOG JRules
http://www.ilog.com/

e Haley Eclipse
http://www.haley.com/

e Sandia Jess
http://herzberg.ca.sandia.gov/jess/

e CLIPS
http://www.ghg.net/clips/CLIPS.html

http://www.ilog.com/
http://www.haley.com/
http://herzberg.ca.sandia.gov/jess/
http://www.ghg.net/clips/CLIPS.html

1.3. STANDARDS 3

1.3 Standards
1.3.1 RuleML

RuleML is a mark-up language for describing rules. After brief research, we
decided that supporting RuleML was not a priority. RuleML tends to forcus
on inference rules and not the event-condition-action or trigger rules that are
drools’s primary focus.

1.3.2 JSR-94

JSR-94 is the specification working its way through the Java Community Process
toward defining a common API for rules engines. A draft version for commu-
nity review has recently been released. The drools project aims to be JSR-94
compliant in the near future.

CHAPTER 1. INTRODUCTION

Chapter 2

Usage

2.1 drools Client API

2.1.1 Introduction

drools is divided into several sets of APIs. The core client API is by far the
simplist and most commonly used by developers. The core drools client API
consists of locating a rule-base, creating a working memory, and then managing
fact assertion, modifcation and retraction.

2.1.2 Locating a Rule-base

RuleBase objects are typically loaded from a RuleBaseRepository. Different
repository implementations provide different mechanisms for the storage of each
RuleBase. The method by which your project obtains a RuleBaseRepository
is implementation-specific but may involve a lookup and discovery mechanism
such as JNDI.

Once a RuleBaseRepository has been obtained, the simple method
lookupRuleBase(..) method is used to retrieve a RuleBase by its URL]

RuleBaseRepository repo = myUtilities.getRepository();
String ruleBaseUri = "http://rules.werken.com/family-relationships";

RuleBase ruleBase = repo.lookupRuleBase(ruleBaseUri);

TURIs that identify rule bases are not necessarily deferenceable. They serve only as unique
identifiers for a collection of rules.

6 CHAPTER 2. USAGE

2.1.3 Creating a Working Memory

drools provides two different types of working memory implementations: a nor-
mal WorkingMemory and a TransactionWorkingMemory.

e WorkingMemory
The normal WorkingMemory implementation propagates fact assertions,
modifications and retractions through the Rete-OO network in real-time.
Once the fact manipulation methods return control to the client program,
all facts have been assimilated and acted upon.

e TransactionalWorkingMemory
The TransactionalWorkingMemory does not propagate fact manipulation
information through the Rete-OO in real-time. Instead, it calculate the
net fact changes and performs all manipulations immediately upon usage
of the commit() method. No actions are performed until commit () is
called, and all fact information is discarded if abort () is used.

The methods on RuleBase to construct working memories are:

/** Create a WorkingMemory session for this RuleBase.
*

* @see WorkingMemory
*

* Q@return A newly initialized WorkingMemory.
*/
public WorkingMemory createWorkingMemory ()

/*x Create a TransactionalWorkingMemory session for this RuleBase.
*

* @see TransactionalWorkingMemory
*

* Qreturn A newly initialized TransactionalWorkingMemory.
*/

public TransactionalWorkingMemory createTransactionalWorkingMemory ()

2.1.4 Fact Manipulation

Once you have a WorkingMemory in hand, you must assert fact objects to make
them available to drools for analysis. Additionally, as facts change, the engine
must be notified. Likewise, when a object should no longer be considered for
analysis, it must be retracted from the engine. Method for these three actions
are defined upon the WorkingMemory class.

/** Assert a new fact object into this working memory.
*

* @Oparam object The object to assert.

*

* Qthrows AssertionException if an error occurs during assertion.
*/

public void assertObject(Object object) throws AssertionException

2.2. JSR-94 API

/** Modify a fact object in this working memory.

* With the exception of time-based nodes, modification of

* a fact object is semantically equivelent to retracting and

* re-asserting it.

*

* Qparam object The object to modify.

*

* Qthrows FactException if an error occurs during modification.
*/

public void modifyObject(Object object) throws FactException

/** Retract a fact object from this working memory.
*

* @param object The object to retract.
*

* Q@throws RetractionException if an error occurs during retraction.
*/

public void retractObject(Object object) throws RetractionException

2.2 JSR-94 API

The drools project is currently working on a JSR-94 API binding,.

CHAPTER 2. USAGE

Chapter 3

Drools Rule Langauge

3.1 Introduction

drools defines a semantic-module-independant rule language created called the
Drools Rule Language. DRL is a an XML-based language that uses modern
XML features such as XML-Namespaces and XML Schema. The DRL engine
within drools is built on top of jakarta-commons-jelly, which is a general XML
tag library engine.

3.2 DRL Files

DRL files are XML files using the DRL tags. They are typically files that have
the .drl suffix. drools only requires that they be accessible through a URL:

e Local Filesystem
DRL files can be stored in the local filesystem and accessed using file://
URLs.

e Web/FTP Server
DRL files can be stored on the network and accessed using http:// and
ftp:// URLs.

e Java Classpath
DRL files can be stored in the Java classpath or in a JAR file, and ac-
cessed using the getResource () method on java.lang.ClassLoader and
java.lang.Class classes.

3.3 Loading DRL Files

A RuleSetLoader is provided for loading DRL files into a RuleBase. Given
a URL, the RuleSetLoader will retrieve the DRL file and load all rules and

9

10

CHAPTER 3. DROOLS RULE LANGAUGE

rule-sets into the specified RuleBase which can then immediately be use for
knowledge manipulation.

import org.drools.RuleBase;
import org.drools.WorkingMemory;
import org.drools.io.RuleSetLoader;

RuleBase ruleBase = new RuleBase();

RuleSetLoader loader = new RuleSetLoader();
loader.load(rulesUrl, ruleBase);

WorkingMemory memory = ruleBase.createWorkingMemory() ;

memory.assertObject(account);

3.4 Base DRL Syntax

The base syntax for DRL contains a small handful of tags representing the
general structure of rules and rule-sets. These tags are defined for the XML
namespace URI of http://drools.org/rules.

<rules>
General outter-level wrapper tag.

<rule-set>
A named collection of rules.

<rule>
A single rule.

<parameter>
A root fact-object parameter.

<declaration>
A local variable declaration.

<extraction>
A fact extraction.

<condition>
A filtering condition.

<duration>
The match duration.

<consequence>
The rule match consequence.

<semantics>
Load a semantic module.

3.4. BASE DRL SYNTAX 11

3.4.1 drl:rules

The outtermost tag in each DRL file is the <rules> tag. It has no attributes
and serves only to aggregate <rule-set>s and <rule>s. The XML namespace
declaration for the base DRL should be affixed to this element.

<rules xmlns:drl="http://drools.org/rules">
<drl:rule-set ...>

</drl:rule-set>
<drl:rule ...>

</drl:rule>
</drl:rules>

3.4.2 drl:rule-set

The <rule-set> is a named container for <rules>. Its only attribute is name
to provide for a name.

<drl:rule-set name="Gold-Level Member Rules">
<drl:rule ...>

</drl:rule>
</drl:rule-set>

3.4.3 drl:rule

The <rule> tag is the most complex. It must contain at least one <parameter>

and a <consequence> tag. It may optionally contain <declaration>, <extraction>,
<condition> and <duration> tags. The name attribute must be present. A
<rule> may exist inside either a <rules> or <rule-set> tag.

<drl:rule name="Over Credit Limit">
<drl:parameter ..>

</drl:parameter>
<drl:declaration ..>

</drl:declaration>
<drl:extraction ..>

</drl:extraction>
<drl:condition ..>

</drl:condition>
<drl:duration ..>

</drl:duration>
<drl:consequence ..>

</drl:consequence>
</drl:rule>

12 CHAPTER 3. DROOLS RULE LANGAUGE

3.4.4 drl:parameter

The <parameter> tag defines a root fact object that the rule expects to be pro-
vided from external resources. The only attribute is identifier which provides
the variable identifier to be used to refer to the object elsewhere in the rule.
The content of the tag is dependent upon the semantic module used for the rule.
For illustration purposes, the Java Semantic Module has been used.

<parameter identifier="customer">
<java:class type="com.werken.Customer"/>

</parameter>

<parameter identifier="account">
<java:class type="com.werken.Account"/>

</parameter>

3.4.5 drl:declaration

A <declaration> tag is similar to a <parameter> in that it defines a typed and
named object. It must contain an identifier attribute to specify the name
that may be used to refer to the declared object elsewhere in the rule. This tag
declares a variable that must be populated internally using an <extraction>.
For illustration purposes, the Java Semantic Module has been used.

<drl:declaration identifier="custName">
<java:class type="java.lang.String"/>

</drl:declaration>

<drl:declaration identifier="acctBalance">
<java:class type="java.math.BigInteger"/>

</drl:declaration>

3.4.6 drl:extraction

An <extraction> defines a fact extraction. Its only attribute is target which
names the parameter or declaration that the extracted fact should be assigned
to. The content of the tag is dependent upon the semantic module used for the
rule. For illustration purposes, the Java Semantic Module has been used.

<drl:extraction identifier="customer">
<java:extractor>account.getCustomer()</java:extractor>

</drl:extraction>

<drl:extraction identifier="custName">
<java:extractor>customer.getName()</java:extractor>

</drl:extraction>

<drl:extraction identifier="acctBalance">
<java:extractor>account.getBalance()</java:extractor>

</drl:extraction>

3.4. BASE DRL SYNTAX 13

3.4.7 drl:condition

The <condition> defines a condition that must be met in order for the rule to
match. It contains the main logic of the rule. The content of the tag is dependent
upon the semantic module used for the rule. For illustration purposes, the Java
Semantic Module has been used.
<drl:condition>
<java:condition>custName.equals("McWhirter")</java:condition>
</drl:condition>
<drl:condition>
<java:condition>acctBalance.signum() == 0</java:condition>
</drl:condition>>

3.4.8 drl:duration

The <duration> tag is used to specify a temporal condition. The truth duration
of a rule is the amount of time that all other conditions must hold true before
a match is determined. The content of the tag is dependent upon the semantic
module used for the rule. A simple <fixed-duration> tag is supplied as part of
the base DRL syntax in order to specify static durations that are not dependent
upon rule data.

<drl:duration>
<drl:fixed-duration seconds=".."
minutes=".."
hours=".."
days=".."
weeks=".."/>
</drl:duration>

3.4.9 drl:consequence

The <consequence> tag defines the action to be taken once a rule matches for a
set of root fact objects. The content of the tag is dependent upon the semantic
module used for the rule. For illustration purposes, the Java Semantic Module
has been used.
<drl:consequence>
<j ava: consequence>
account.addMoney(new BigInteger("1000000"));

</java:consequence>
</drl:consequence>

3.4.10 drl:semantics

The <semantics> tag is used to load a semantic module. It has no content and
the module attribute is required in order to identify a semantic module to load.

<drl:semantics module="org.drools.semantics.java"/>

14

CHAPTER 3. DROOLS RULE LANGAUGE

Chapter 4

Java Semantic Module

4.1

Overview

The Java Semantic Module provides implementations of semantic components
that adhere to the Java language semantics. The components can be used
directoy from Java with through a DRL file.

org.drools.semantics.java.ClassObject Type
A ObjectType implementation that adheres to Java class types. Usable
within <parameter> and <declaration> DRL tags.

org.drools.semantics.java.ExprCondition
A Condition implementation that uses boolean Java expressions for fil-
tering. Usable within <condition> DRL tags.

org.drools.semantics.java.ExprExtractor
A Extractor implementation that uses Java expressions for extracting
new facts. Usable within <extraction> DRL tags.

org.drools.semantics.java.BlockConsequence
A Consequence impementation that uses A block of Java statements as
the action of a matched rule. Usable within <consequence> DRL tags.

15

16 CHAPTER 4. JAVA SEMANTIC MODULE

4.2 Usage with DRL

4.2.1 Loading the Module

The Java Semantic Module’s tags exist within the XML namespace URI of
http://drools.org/semantics/java and within the Java package of
org.drools.semantics. java. To use the Java Semantic Module within a DRL
file, the DRL <semantics> tag must be used, as must an XML namespace prefix
binding.

<drl:rules xmlns:drl="http://drools.org/rules"
xmlns:java="http://drools.org/semantics/java">

<drl:semantics module="org.drools.semantics.java"/>

<drl:rule ...>
<drl:parameter identifier="account">
<java:class type="com.werken.Account"/>
</drl:parameter>
</drl:rule>

</drl:rules>

4.2.2 java:class

The <java:class> tag defines an object type that adheres to Java class seman-
tics for types. It has a single attribute of type which takes a class name as
a value. The tag may be used as the content of both <drl:parameter> and
<drl:declaration> DRL tags.

<drl:parameter identifier="account">
<java:class type="com.werken.Account"/>

</drl:parameter>

<drl:declaration identifier="person">
<java:class type="com.werken.Person"/>

</drl:declaration>

4.2.3 java:condition

The <java:condition> tag defines an condition that adheres to Java boolean
expression semantics. It has no attributes and the body content is the boolean
expression to evaluate. The tag may be used as the content of a <drl:condition>
tag.

<drl:condition>
<java:condition>acctBalance == 0</java:condition>
</drl:condition>

4.2. USAGE WITH DRL 17

4.2.4 java:extractor

The java:extractor tags defines a fact extractor that adheres to Java ex-
pression semantics. It has no attributes and the body content is the expres-
sion to generate the new fact. The tag may be used as the content of a
<drl:extraction> tag.

<drl:extraction target="accountBalance">
<java:extractor>person.getAccount () .getBalance()</java:extractor>
</drl:extraction>

4.2.5 java:consequence

The <java:consequence> tag defines a rule consequence that adheres to Java
statement block semantics. It may exist as the content of a <drl:consequence>
tag. It has no attributes and the body content is the set of statements to execute
upon rule match.

<drl:consequence>
System.err.println("The balance is: " + acctBalance);
theRepoMan. addAccount (account);
assertObject (theRepoMan) ;

</drl:consequence>

18

CHAPTER 4. JAVA SEMANTIC MODULE

Chapter 5

Jython Semantic Module

...not implemented yet ...

19

20

CHAPTER 5. JYTHON SEMANTIC MODULE

Chapter 6

XML Semantic Module

...not implemented yet ...

21

22

CHAPTER 6. XML SEMANTIC MODULE

Chapter 7

Rule Assembly

7.1

Overview

Only a handful of classes are required to assemble rules once a semantic module
has been selected. Each rule is codified as an instance of the Rule class which
may be a member of a RuleSet collection.

1.
2.

6.
7.

Instantiate a Rule.

Add a Declaration for each root fact object.

. Add a Extraction for each fact extraction.

Add a Condition for each restrictive condition.

. Add a Consequence for performing the result of a match.

Add the Rule to a RuleBase.

Optionally register the RuleBase with a RuleBaseRepository

When adding a Rule to a RuleBase, it is possible that the rule cannot be
integrated into the network. This is caused by Extraction or Condition objects
that expect Declarations that are otherwise not present in the rule.

23

24 CHAPTER 7. RULE ASSEMBLY

7.2 Rule Assembly Example

Rules may be assembled using classes from the org.drools.rule package along
with one or more semantic modules. Additional tools to allow for assembling

rules from a file or database are possible.
// -- Create a new Rule
Rule rule = new Rule("example");

// —-- Create the semantic Person object type

// -- which maps directly to java Person type.

ObjectType personType = new ObjectType() {

public boolean matches(Object object) {
return (object instanceof Person);
}
b
// —-- Create the semantic String object type.
// -- which maps directly to java String type.
ObjectType stringType = new ObjectType() {
public boolean matches(Object object) {
return (object instanceof String);
}
s
// -- Declare two root fact Person objects
// -- with the identifiers ’sisOne’ and ’sisTwo’

final Declaration sisOneDecl = new Declaration(personType,

"sisOne");

final Declaration sisTwoDecl = new Declaration(personType,

// -- Declare the extracted String object
// -- with the identifier ’petName’

"sisTwo");

final Declaration petNameDecl = new Declaration(stringType,

// -- Add the root fact Person declarations
// -- to the rule.

rule.addParameterDeclaration(sisOneDecl);
rule.addParameterDeclaration(sisTwoDecl);

"petName") ;

7.2. RULE ASSEMBLY EXAMPLE

// -- Create the fact extractor for the dog name

Extractor dogNameExtractor = new Extractor() {
public Declaration[] getRequiredTupleMembers() {
return new Declaration[] { sisOneDecl };
}

public Object extractFact(Tuple tuple) {
Person person = (Person) tuple.get(sisOneDecl);
return person.getDog() .getName();

}
);

// -- Create the fact extractor for the cat name

Extractor catNameExtractor = new Extractor() {
public Declaration[] getRequiredTupleMembers() {
return new Declaration[] { sisTwoDecl };

public Object extractFact(Tuple tuple) {
Person person = (Person) tuple.get(sisTwoDecl);
return person.getCat().getName();

}
)

// -- Add the extractions for the dog and cat
// -- name, both to the ’petName’ variable.

rule.addExtraction(new Extraction(petNameDecl,
dogNameExtractor));

rule.addExtraction(new Extraction(petNameDecl,
catNameExtractor));

// -- Add a filter that only allows two
// -- Persons who are sisters to pass.

rule.addCondition(new Condition() {
public Declaration[] getRequiredTupleMembers() {
return new Declaration[] { sisOneDecl, sisTwoDecl };

public boolean isAllowed(Tuple tuple) {
Person sisOne = (Person) tuple.get(sisOneDecl)
Person sisTwo = (Person) tuple.get(sisTwoDecl)
return sisOne.hasSister(sisTwo) ;

25

26 CHAPTER 7. RULE ASSEMBLY

// -- Attach an action to fire when matched.

rule.setConsequence(new Action() {
public void invoke(Tuple tuple, WorkingMemory memory) {
System.err.println("sisOne: " + tuple.get(sisOneDecl));
System.err.println("sisTwo: " + tuple.get(sisTwoDecl));
System.err.println("petName: " + tuple.get(petNameDecl));

}
)

// -- Create a new rule base
RuleBase ruleBase = new RuleBase();
try

{

// -- Add the rule to the rule-base.

//
// -- May throw a ReteConstructionException
// -- if the Rule cannot be integrated into

// -- the Rete-00 network.

ruleBase.addRule(rule);

}

catch (ReteConstructionException e)

{

e.printStackTrace();
return;

}

// -- Create a repository.
SimpleRepository repo = new SimpleRepository();
// -- Register the RuleBase with the repository.

repo.registerRuleBase("http://rules.werken.com/family-relationships",
ruleBase);

Chapter 8

SPI

Semantics Provider Interface

8.1 Overview

At its core, drools is merely an algorithmic engine. The Semantics Provide
Interface, also known as the SPI, provides for wrapping the drools Rete-OO al-
gorithm with arbitrary application semantics. The semantics of several concepts
are left open for definition by an implementation.

| concept | interface | description |
object type org.drools.spi.0ObjectType Differentiates objects by type
condition org.drools.spi.Condition Tests tuples
fact extraction | org.drools.spi.Extractor Extracts attributes from objects
action org.drools.spi.Consequence | The result of a rule match

Additionally, implementations of some of these interfaces must work with
the Tuple and Declaration objects that flow through the network.

The SPI provides for drools customizations to be tightly linked to the core
Rete-OO0 algorithm engine. By using SPI implementations, no external trans-
lation or mapping process is required. Rules can expressed directly using the
semantics provided by the semantics module and manipulated directly by the
engine.

8.2 Semantic Objects

8.2.1 org.drools.spi.ObjectType

While the type of any object presented to drools though the fact manipulation
methods of a WorkingMemory is determined by the Java class of that object,
drools provides the ObjectType interface for determining the object’s semantic
type within the algorithm.

27

28 CHAPTER 8. SEMANTICS PROVIDER INTERFACE

public interface ObjectType

{

/** Determine if the passed Object belongs to
* the object type defined by this ObjectType.

@param object The Object to test.

@return true if the Object matches this
object type, Otherwise false.

R I

*/
boolean matches(Object object);

Figure 8.1: org.drools.spi.0ObjectType interface

In the XML Semantics Module, all presented objects are of the class Document.
The ObjectType implementation for the module inspects the root-level XML
element to determine the object’s type for the context of drools.

Semantic modules provide implementation of the ObjectType interface that
are able to determine an object’s type within a semantic realm.

The matches(..) method can perform any necessary logic to determine if
semantic type of the object matches the type described by the ObjectType im-
plementation. If the type does match, then true is returned. Otherwise, false
indicates a non-match. A single asserted object may match several ObjectTypes
as the core engine presents each object to every ObjectType for type determi-
nation. This allows for a single rule-base to contain a multitude of rules written
against many semantic realms.

8.2.2 org.drools.spi.Declaration

A Declaration represents a named and typed object. Internally, the drools
engine uses strongly-typed semantic objects. Named objects involved in a rule
have a Declaration that binds an object identifier to an ObjectType. If an
object is bound to a Declaration then the ObjectType of the Declaration
must return true from its matches(..) method when evaluated against the
bound object.

8.2.3 org.drools.spi.Tuple

While the external drools API is object-oriented, the core is still constructed of
nodes through which tuples flow. A tuple is simply a dictionary of key-to-value
mappings. A tuple may be considered to be similar to a row in a relational
database table, where the key matches the column type and name, and the
value matches the column data cell for that row.

The key used to index the associated value is always a Declaration object.
When an object is initially asserted into a WorkingMemory it gets wrapped by

8.2. SEMANTIC OBJECTS 29

public class Declaration

{

/** Retrieve the ObjectType of this Declaration.
*

* Qreturn The ObjectType of this Declaration.
*/
public ObjectType getObjectType() { ... }

/** Retrieve the variable’s identifier.
*

* Qreturn The variable’s identifier.
*/
public String getIdentifier() { ... }

Figure 8.2: org.drools.spi.Declaration class

all matching ParameterNodes into single-column tuples with the object bound
to the Declaration of each ParameterNode.

An example set of tuples was presented in table [0-4 on page B7. With
the exception of the ObjectType interface, semantic modules operate on Tuple
objects.

8.2.4 org.drools.spi.Extractor

Fact extration is the process of performing an operation upon a Tuple to create
additional columns or attribute on the Tuple. All Tuples initially have a single
column matching a Declaration of the rule. Through fact extraction additional
columns can be added based upon knowledge gained from the existing columns.

The Java Semantic Module uses normal Java expressions to extract other ob-
jects and values reachable from those already in the Tuple. The XML Semantic
Module uses XPath [?] expressions to evaluate expressions against documents.
The extracted values are associated with a Declaration and inserted into the
Tuple.

Semantics modules provide implementations of the Extractor interface to
perform fact extraction. A Extractor may require more than a single column to
perform extraction. To specify which columns are required, the getRequiredTupleMembers ()
method should return an array of Declarations which must be present in any
tuple presented for extraction.

8.2.5 org.drools.spi.Condition

A Condition is a predicate which evaluates against a Tuple to determine if the
Tuple should pass or fail the condition. The isAllowed(Tuple tuple) method
allows the condition to be evaluated against a Tuple. If the Tuple passes the

30 CHAPTER 8. SEMANTICS PROVIDER INTERFACE

public interface Tuple

/** Retrieve the value bound to a particular Declaration.
*

* Qparam declaration The Declaration key.

*

* Qreturn The currently bound Object value.

*/

Object get(Declaration declaration);

/** Retrieve the Se of all Declarations active in this tuple.
*

* Qreturn The Set of all Declarations in this tuple.

*/

Set getDeclarations();

Figure 8.3: org.drools.spi.Tuple interface

public interface Extractor
{
/** Retrieve the array of Declarations required by this
* Extractor to perform extraction.
*
* Qreturn The array of Declarations expected
* on incoming Tuples.
*/
Declaration[] getRequiredTupleMembers();

/** Extract a new fact from the incoming Tuple.
*

@param tuple The source data tuple.

*
* Qreturn The newly extract fact object.

*

* Q@throws ExtractionException if an error occurs during
* fact extraction activities.

*/

Object extractFact(Tuple tuple) throws ExtractionException;

Figure 8.4: org.drools.spi.Extractor interface

8.2. SEMANTIC OBJECTS 31

public interface Condition extends Condition

{

/** Retrieve the array of Declarations required
* by this condition to perform its duties.
*

* Q@return The array of Declarations expected
* on incoming Tuples.
*/

Declaration[] getRequiredTupleMembers();

/** Determine if the supplied Tuple is allowed
* by this filter.

@param tuple The <code>Tuple</code> to test.

*
*
*
* Q@return <code>true</code> if the <code>Tuple</code>
* passes this filter, else <code>false</code>.
*
*

Q@throws ConditionException if an error occurs during testing.
*/

boolean isAllowed(Tuple tuple) throws ConditionException;

Figure 8.5: org.drools.spi.Condition interface

filter, then the method should return true otherwise false indicates that the
Tuple does not pass.

Like the Extractor, a Condition may only be applicable to Tuple objects
that contain some minimal set of columns. Condition implementations must
also supply the getRequiredTupleMembers () method.

8.2.6 org.drools.spi.Consequence

When a collection of facts, represented by a Tuple satisifies all conditions
of a rule then an Consequence is given an opportunity to fire and perform
some activity. Since Consequences may require the ability to manipulate more
facts, instaces are provided not only the matching Tuple, but also the current
WorkingMemory instance. Consequence also has a subclass named Action which
allows directly modelling of trigger rules. Action is purely a marker interface.

32 CHAPTER 8. SEMANTICS PROVIDER INTERFACE

public interface Consequence

{
/** Execute the consequence for the supplied
* matching <code>Tuple</code>.

*

* Qparam tuple The matching tuple.

* @param workingMemory The working memory session.

*

* Qthrows ConsequenceException If an error occurs while
* attempting to invoke the consequence.

*/

void invoke(Tuple tuple,
WorkingMemory workingMemory) throws ActionInvokationException;

Figure 8.6: org.drools.spi.Conseqeunce interface

Chapter 9

SMF

Semantics Management Framework

...not implemented yet ...

33

34

CHAPTER 9. SEMANTICS MANAGEMENT FRAMEWORK

Chapter 10

Algorithms

10.1 Efficient Matching

While it may be simple to create a rules engine that allows specification of
business logic in a format that is comfortable to business analysts, the matching
of the rules may still be problematic without a good algorithm.

The rules engine must be made aware of its environment, typically through
a process called fact assertion. Fact assertion consists of the program asserting
facts into a rules session, or working memory.

Whenever a fact is asserted, retracted or modified within the working mem-
ory, many rules may become candidates for firing, or may have become inval-
idated. A simplistic approach is to reevaluate all rules against the entirety of
the working memory. This method is guaranteed to be correct but will also
certainly be sub-optimal. Any individual fact modification only affects a small
number of conditions in a small number of rules.

Variations of the Rete algorithm allow the rules engine to maintain a memory
of the results of partial rule matches across time. Reevaluation of each condition
is no longer necessary, as the engine knows which conditions might possibly
change for each fact, and only those must be reevaluated.

10.2 Rete

Charles Forgy created the original Rete algorithm [?] around 1982 as part of
his DARPA-funded research. Compared to many previous production-matching
algorithms, Rete was very advanced. Even today, there have been few improve-
ments to it in the general casef]. Variations on Rete, such as TREAT [?], may
have different performance characteristics depending on the environment. Some
perform better with large rule sets but small numbers of objects, while other

TBoth ILOG and Haley claim to have optimized Rete algorithms, but details are not
currently public.

35

36 CHAPTER 10. ALGORITHMS

perform well for steady-state environments, but react poorly to numerous suc-
cessive changes in the data.

A Rete network is a graph through which data flows. Originally, data was
specified using Cambridge-prefix tuples since Lisp-like languages were in style for
logic programming.f] The tuples were used to express attributes about objects.
For example, tuples may be used to express a person’s name and her pets. The
tuples are dropped into the Rete network, and those that reach the far end cause
the firing of a rule. The original production-matching was based upon matches
against tuple patterns.

The Rete network is comprise of two types of nodes:

e l-input/1-output nodes
The 1/1 nodes are constrictive nodes that only allow matching tuples to
flow through. Any tuples that do not match are discarded by the node.

e 2-input/1-output nodes
The 2/1 nodes simply connect the output arcs from two other nodes (ei-
ther 1/1 nodes or 2/1 nodes) merging tuples from both the left and right
incoming arcs into a single tuple on the outgoing arc. Maintains a memory
of tuples for matching against future facts.

A forest of 1/1 nodes acts as the entry-point into the entire Rete network
for any incoming tuple. The network-entry nodes filter tuples purely by their
type. Tuples about dogs and tuples about cats may each have a different type
and may be differentiated from each other by the 1/1 network-entry nodes.

Each condition of a rule is merely a pattern for a particular tuple type. The
condition describes the attributes that a tuple must have and acts as a filter.
Each condition is transformed into a /1 node that only allows tuples matching
the specified attributes to pass. An attribute value may be specified as a variable
and implies that the variable must hold the same value in all occurrences. The
1/1 filter nodes are attached to the network downstream from the 1/1 entry-
node that differentiates their tuple type.

Consider a condition such as “For any person who has a dog that has the
same name as that person’s sister’s cat, then...” This could be expressed with
the condition patterns of:

(1) (person name=person? sister=sister?)
(2) (person name=person? dog=petName?)
(3) (person name=sister? cat=petName?)

Condition #1 models the sister relationship so that the rule only applies to
two people who are sisters. The person? and sister? tokens are variables that
must be consistent across any set of tuples that match this rule.

Conditions #2 and #3 serve two roles. The dog and cat attributes share
the same petName? variable and serve to identify two people who have a cat

2As it is for many artificial intelligence projects.

10.2. RETE 37

and a dog with the same name. They each contain a name attribute with either

the variable person? or sister? which ties the last two conditions back to the
first two.

L)
type(person)
condition(1) condition(2) condition(3)
join(1)
join(2)
terminal
Figure 10.1: Rete network
’ type H person ‘ sister ‘ cat ‘ dog ‘
‘ tuple set # 1 ‘
person || rebecca | jeannie | zoomie null
person || jeannie | rebecca null zoomie
‘ tuple set # 2 ‘
person || rebecca | jeannie | zoomie null
person || jeannie | rebecca null toby

Figure 10.2: Example tuple sets

38 CHAPTER 10. ALGORITHMS

If two sets of tuples (see Figure [[0.2) were asserted against the rule, tuple
set #1 would cause a firing of the rule, where tuple set #2 would not. In
both cases, the two tuples would pass node condition(1), as the nodes simply
associate the person? and sister? variables with the appropriate values from
each tuple.

The join(1) node would allow both tuples to merge and propagate past it
in both the first and second case. Additionally, for both cases, the rebecca
tuple would pass node condition(2) and the jeannie tuple would pass node
condition(3).

The join(2) node is where the two cases differ. In the first case, nodes
condition(2) and condition(3) have each associated the value of “ugly” to the
petName? variable. In the second case, the two nodes has assigned different
values to the variable. The join(2) node only allows those tuples that have
consistent associations with all variables to pass.

10.3 Rete-O0

The Rete algorithm works wonderfully in language systems such as Lisp where
pertinent attributes about objects are directly asserted to the rules engine. In
an object-oriented language, such as C++ or Java, and entire graph of objects
can be reachable from a single named root object. Expressing highly complex re-
lationships between entities using Cambridge-prefix notation may require many
separate assertions. In an OO language, the single root object is all that should
be asserted, since attributes and relationships can be extracted using normal
langauge constructs.

Bob McWhirter of The Werken Company adapted Forgy’s original Rete
algorithm to object-oriented constructs, creating the Rete-OO algorithm. As
with Rete, there are 1/1 nodes and 2/1 nodes. Unlike Rete, there are nodes
that exist simply to extract reachable attributes and add columns to passing
tuples. Rete always constructs the condition 1/7 nodes toward the root of the
tree leaving the bottom portion to be comprised of purely aggregating 2/1 join
nodes. Rete-OO must interleave both 1/1 and 2/1 nodes.

The same example as in section [[0.2, the conditions could be expressed in
terms of object-oriented language boolean and assignment expressions. The
choice of Java as the expression language is purely arbitrary.

(0 Person personOne, personTwo

(1) personOne.hasSister(personTwo)
(3
(

3

petName = personOne.getCat() .getName()

o D — T

petName = personTwo.getDog() .getName ()

Rete-OO0 adds the concept of root object declaration, where the root objects
of the condition are declared with a name and type. The object’s type maps
directly to the tuple type in Rete. The root object name has no direct map-
ping in Rete and causes the addition of a parameter node in Rete-OO. Boolean

10.3. RETE-OO 39

expressions in Rete-OO conditions are equivalent to Rete’s condition patterns
against attributes. The assignment expressions map to place-holder variables in
Forgy’s algorithm.

The types of nodes used in Rete-OO graph construction are listed here.
Those that are new or different from Rete are denoted with a *’.

e Object type
Object type nodes differentiate objects by filtering on their defined type.

e Parameter*
Parameter nodes create a tuple with a single entry binding the object to
the name.

e Condition
Condition nodes simply tests a tuple against an a boolean expression.

e Extraction*
Extraction nodes extract new attributes, create new columns on tuples,
and store the results.

e Join
Join nodes connect the output arcs from two other nodes and allows con-
sistent tuples to be merged and passed through.

e Terminal
Terminal nodes fire to indicate a successful match for the rule.

The resulting Rete-OO graph is constructed in a different manner than the
equivalent Rete graph, due to the addition and rearrangement of some nodes.

40 CHAPTER 10. ALGORITHMS

l

type(Person)

\
parameter(ﬁ)ersonOne) parameter(personTwo)
extractioni(petN ame) extractioni(pet]\f ame)

\ J 0¢in

condition(%msSister)
terniinal

Figure 10.3: Rete-OO network

Appendix A

Project Information

A.1 Web Site

The main focal point of the drools project is the website, where information
regarding source & binary distributions, source repository, mailing lists and
chat archives can be found:

http://drools.org/

A.2 DMailing Lists

The drools project maintains two mailing lists. The first, known as drools-interest
is for general discussion by users and developers of drools. The second list is
drools-cvs which simply tracks changes made to the source-code through the
CVS repository. For information about subscribing to each list or access to the

list archives:

http://lists.werken.com/listinfo/drools-interest

http://lists.werken.com/listinfo/drools—-cvs

A.3 Source Repository
The drools project maintains a revision control repository using CVS. To check-

out the latest sources, you must issue two CVS commands. The first is used to
login. When presented with a prompt for a password, simply press ENTER.

cvs -d:pserver:anonymous@cvs.werken.com:/cvsroot/drools login
cvs —d:pserver:anonymous@cvs.werken.com:/cvsroot/drools co drools

41

http://drools.org/
http://lists.werken.com/listinfo/drools-interest
http://lists.werken.com/listinfo/drools-cvs

42 APPENDIX A. PROJECT INFORMATION

A.4 Internet Relay Chat

There is a dedicated channel on The Werken Company’s IRC server for drools:

address irc.werken.com
port 6667
channel #drools

url idrc://irc.werken.com:6667/drools
Archives of chats in the channel are maintained on-line:

http://irc.werken.com/channels/drools/

A.5 Bug & Issue Tracking

The Werken Company provides access to their JIRA issue tracking server to
support drools:

http://jira.werken.com/

irc://irc.werken.com:6667/drools
http://irc.werken.com/channels/drools/
http://jira.werken.com/

Appendix B

Licensing

B.1 drools License

B.1.1 The License
Copyright 2002 (C) The Werken Company. All Rights Reserved.

Redistribution and use of this software and associated documentation (“Software”),
with or without modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain copyright statements and notices.
Redistributions must also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name drools must not be used to endorse or promote products derived from
this Software without prior written permission of The Werken Company. For
written permission, please contact info@werken.com.

4. Products derived from this Software may not be called drools nor may drools
appear in their names without prior written permission of The Werken Company.
drools is a registered trademark of The Werken Company.

5. Due credit should be given to The Werken Company.

THIS SOFTWARE IS PROVIDED BY THE WERKEN COMPANY AND CON-
TRIBUTORS AS IS AND ANY EXPRESSED OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE WERKEN COMPANY OR ITS CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

43

44 APPENDIX B. LICENSING

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

B.1.2 Summary

drools is provided under a license similar to that used by The Apache Software
Foundation. It is a commercial-friendly license in that it allows you to modify
and distribute drools in either source or binary form. While you are encouraged
to contribute changes back to the project, you are by no means required to do
so. The drools license is not viral or infectious. It does not alter how you license
you own product. If you have any questions regarding the licensing of drools,
please contact info@werken. com.

B.2. 3RD-PARTY LICENSES 45

B.2 3rd-Party Licenses

drools contains software written by The Werken Company and by other third-
party groups. Included are the licenses of included components.

B.2.1 Apache Jakarta

The Apache Software License, Version 1.1

Copyright (c) 2001 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must in-
clude the following acknowledgment: “This product includes software developed
by the Apache Software Foundation (http://www.apache.org/).” Alternately,
this acknowledgment may appear in the software itself, if and wherever such
third-party acknowledgments normally appear.

4. The names “Apache” and “Apache Software Foundation” must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called “Apache”, nor may
“Apache” appear in their name, without prior written permission of the Apache
Software Foundation.

THIS SOFTWARE IS PROVIDED AS IS AND ANY EXPRESSED OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFT-
WARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

46 APPENDIX B. LICENSING

B.2.2 Beanshell
Copyright (C) 2002 The Beanshell Project

This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

B.2.3 ANTLR
SOFTWARE RIGHTS

ANTLR 1989-2000 Developed by jGuru.com, (Magelang Institute),
http://www.ANTLR.org and http://www.jGuru.com

We reserve no legal rights to the ANTLR—it is fully in the public domain. An
individual or company may do whatever they wish with source code distributed with
ANTLR or the code generated by ANTLR, including the incorporation of ANTLR, or
its output, into commerical software.

We encourage users to develop software with ANTLR. However, we do ask that
credit is given to us for developing ANTLR. By ”credit”, we mean that if you use
ANTLR or incorporate any source code into one of your programs (commercial prod-
uct, research project, or otherwise) that you acknowledge this fact somewhere in the
documentation, research report, etc... If you like ANTLR and have developed a nice
tool with the output, please mention that you developed it using ANTLR. In addition,
we ask that the headers remain intact in our source code. As long as these guidelines
are kept, we expect to continue enhancing this system and expect to make other tools
available as they are completed.

Bibliography

47

	Introduction
	Rules
	Rules Engines
	Standards
	RuleML
	JSR-94

	Usage
	drools Client API
	Introduction
	Locating a Rule-base
	Creating a Working Memory
	Fact Manipulation

	JSR-94 API

	Drools Rule Langauge
	Introduction
	DRL Files
	Loading DRL Files
	Base DRL Syntax
	drl:rules
	drl:rule-set
	drl:rule
	drl:parameter
	drl:declaration
	drl:extraction
	drl:condition
	drl:duration
	drl:consequence
	drl:semantics

	Java Semantic Module
	Overview
	Usage with DRL
	Loading the Module
	java:class
	java:condition
	java:extractor
	java:consequence

	Jython Semantic Module
	XML Semantic Module
	Rule Assembly
	Overview
	Rule Assembly Example

	Semantics Provider Interface
	Overview
	Semantic Objects
	org.drools.spi.ObjectType
	org.drools.spi.Declaration
	org.drools.spi.Tuple
	org.drools.spi.Extractor
	org.drools.spi.Condition
	org.drools.spi.Consequence

	Semantics Management Framework
	Algorithms
	Efficient Matching
	Rete
	Rete-OO

	Project Information
	Web Site
	Mailing Lists
	Source Repository
	Internet Relay Chat
	Bug & Issue Tracking

	Licensing
	drools License
	The License
	Summary

	3rd-Party Licenses
	Apache Jakarta
	Beanshell
	ANTLR

