Drools Usage Manual

version 2.0-beta-12

generated January 23, 2004

The Drools Project

drools.org

Preface

Why rules?

Rules are important...

Contents

Preface i
Why rules? i

List of Figures vii
Acknowledgements ix
About this manual X
Typographic conventions X
Productionnotes L o X

About the authors xi
Bob McWhirter o xi

Robert Searle xi

Part I Drools—How and why 1
1 50,000t view 2
2 Work Flow Engine 3
Part II Drools 4
3 Functional Overview 5
3.1 Rules. e)
3.1.1 Declarative Form 5

3.1.2 Applicable Context 6

3.2 Knowledge. 6
3.3 Why arule-engine? Lo Lo 6

3.4 A note about “business rules” 7

4 Drools Rule Language

4.1
4.2
4.3

Introduction
Core DRL namespace
Core DRL tags
4.3.1 <rule-set>
4.3.2 <rule>,
4.3.3 <parameter>
4.3.4 <declaration>
4.3.5 <duration>

5 Client API

5.1
5.2

5.3
5.4

9.5

Introductiono
Retrieving a RuleBase

5.2.1 Looking up a RuleBase from JNDI
5.2.2 Deserializing a RuleBase from a file

Creating a WorkingMemory
Working with knowledge
54.1 Adding knowledge
5.4.2 Removing knowledge
5.4.3 Modifying knowledge
Firingrules

6 Administrative API

6.1
6.2
6.3
6.4

6.5

Introduction oL
Building rules o L.
Building a RuleBase
6.3.1 Loadingrules
6.3.2 Conflict resolution
Deploying a RuleBase to a JNDI data store
6.4.1 JNDI deployment utility
Serializing a RuleBase to afile
6.5.1 Serialization utility

7 Conflict Resolution

7.1
7.2
7.3
7.4

Introduction. 0oL
SalienceConflictResolutionStrategy . .

ComplexityConflictResolutionStrategy
SimplicityConflictResolutionStrategy

Part III Semantic Modules

8 Java Semantic Module

8.1
8.2
8.3

Introduction
Java semantic module namespace URI . . .
Java Semantic Module tags

12
12
12
12
13
13
13
13
14
14
14

16
16
16
16
16
17
17
18
18
19

20
20
20
21
21

8.3.1 <class> e
8.3.2 <condition>
8.3.3 <extractor>
8.3.4 <comsequence>

9 Python Semantic Module
9.1 Imtroduction
9.2 <class>
9.3 <condition>
9.4 <extractor>o
9.0 <comsequence> u e e e

10 XML Semantic Module
10.1 Introduction
10.2 <document> e e
103 <expr>.
10.4 <extractor> i i e e e e e e e e e e e e e
10.5 <comsequence>o e

11 Dispatcher Semantic Module
11.1 Introduction L
11.2 <rule> e
11.3 <comsequence> oo

Part IV Drools Internals

12 Architecture
12.1 Rules, rule-sets, and rule-bases
12.1.1 Rule, Condition and Consequence
12.1.2 RuleSet e
12.1.3 RuleBase
12.2 Knowledge o
12.3 Complete Model oo

13 Semantic Module Framework
13.1 Introduction
13.2 Declaration objects
13.3 Tuple objects L
13.4 Semantic components oo
13.4.1 RuleType o v i it
13.4.2 ObjectType o v v i it
13.4.3 Condition
13.4.4 Extractor
13.4.5 Condition
13.4.6 Consequence

25
25
25
25
25
25

26
26
26
26
26
26

27
27
27
27

28

29
29
29
30
30
30
31

13.5 The Configuration structure
13.6 Semantic Module Descriptor
13.7 SemanticsRepository
13.8 The DefaultSemanticsRepository helper.

14 Rule Assembly API
14.1 Introduction
14.2 Requirements Lo

Part V Examples

Part VI Appendices

A Algorithms
A.1 Efficient Matching
A2 Rete e
A3 Rete-OO o e

B Frequently Asked Questions
B.1 Why are “or” conditions not allowed?
B.2 CanlInestrules?
B.3 What happened to version 1.07

C Project Information
C.l Web Site. o o
C.2 Mailing Lists o
C.3 Source Repository o
C.4 Internet Relay Chat
C.5 Bug, Issue & Feature Tracking
C.6 Project Team
C.6.1 Bob McWhirter
C.6.2 Thomas Diesler,
C.6.3 RogerF.Gay
C.6.4 Contributors

D Licensing
D.1 Droolslicense
D.1.1 Thelicense e
D.1.2 Summary

E JSR-94 : Java’™ Rule-Engine API
E.1 Introduction. s
E.2 Scope
E.3 JSR-94 and Droolso

Index

vi

54

List of Figures

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5

7.1

8.1
8.2

12.1
12.2
12.3
12.4
12.5

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Binding the DRL namespace URI to a prefix
Binding the DRL namespace URI as the default namespace . . .

Loading a RuleBase from a JNDI data source
Deserializing a RuleBase fromafile
Creation of a WorkingMemory from a RuleBase
Asserting knowledge into a WorkingMemory
Retracting knowledge from a WorkingMemory
Modifying knowledge within a WorkingMemory
Firing rules

Loading a RuleSet from a URL
Conflict-resolution strategies.
Using RuleBaseBuilder to build a RuleBase from a RuleSet . .
Deploying a RuleBase to a JNDI data store
Serializing a RuleBase toafile

Using a SalienceConflictResolutionStrategy

Binding of Java semantic module namespace URI to a prefix

Example of the <class>tag

Object model for Rule, Condition and Consequence
Object model for RuleSet and Rule
Object model for RuleBase and RuleSet
Object model for WorkingMemory and RuleBase
Complete object model

Method to retrieve an object by its Declaration from a Tuple .
RuleType interface
ObjectType interface
ConfigurableObjectType interface.
Condition interface L.
Attribute-related operations of Configuration
Text-related operation of Configuration

Vi

12
13
13
14
14
15
15

17
17
18
18
19

21

23
24

29
30
30
30
31

13.8 Child-related operations of Configuration 36
13.9 Usage of the SemanticsRepository 36
13.10Retrieving and using the DefaultSemanticsRepository helper . 37

A.1 Retenetwork 43
A2 Example tuplesets Lo o 43
A3 Rete-OOmnetwork 45

viii

Acknowledgements

About this manual

Typographic conventions

Production notes

This manual was produced without the aid of Microsoft products. It was au-
thored on a Linux laptop using XEmacs and I¥TEX. It was spell-checked on
a Mac OS X Apple PowerBook G4 using Fink’s ispell. Drafts were previewed
using xdvi. Diagrams were prepared using dia, exported in EPS format and
converted for inclusion in the PDF document with epstopdf. The index was
prepared using the makeindex package.

About the authors

Bob McWhirter

Robert Searle

Robert Searle is a senior consultant at Platinum Architecture Group, a firm
specializing in software and business work flow design.

Mr. Searle has managed small teams of software developers, developed soft-
ware architectures for both JAVA and Microsoft’s Windows environments, and
improved many different companies reporting systems. His work experience
from various sectors including: Banks, Embedded Systems, Financial, Manu-
facturing, Transportation, and Research & Development.

Mr. Searle graduated from Carleton University, Ottawa, Canada in 1995.
He is a member of the Institute of Electrical and Electronics Engineers, the As-
sociation for Computing Machinery and the Professional Engineers of Ontario.

Robert Searle spends his free time training the family’s German Shepherd,
Rudi. Rudi will hopefully become a member of the volunteer search and rescue
dog club.

Please contact Mr. Searle through his e-mail account RobertSearle@hotmail.com.

Xi

http://www.carleton.ca/
mailto:robertsearle@hotmail.com

Part |

Drools—How and why

Chapter 1

50,000ft view

Chapter 2

Work Flow Engine

Part Il

Drools

Chapter 3

Functional Overview

3.1 Rules

3.1.1 Declarative Form

Drools directly supports declarative rules, as opposed to procedural logic. Declar-
ative rules typically take the form as follows:

if condition
then consequence

By “declarative’, it is meant that the rules declare, by way of the condition,
what should occur but do not specify the procedure for actually testing the
conditions. For example, a procedural method for ensuring you have an umbrella
if it is raining would be:

Step outside and determine if it is raining. If it is raining, then go
to the closet and get an umbrella.

In a declarative form, the above could be represented by two rules:

o if it is raining
then you need an umbrella

e if you need an umbrella
then get one from the closet

Given declarative rules, the knowledge that it is raining could produce two
courses of action:

1. You already have an umbrella, perhaps because you always carry one, in
which case, you’re ready.

2. You don’t have an umbrella, so you go get one from the closet.

5

Functional Overview Knowledge : 3.2

3.1.2 Applicable Context

The set of rules to be considered at any point of time depend upon the current
context. As a human, you have certain rules to think about when you dine
at a fine restaurant, which are exclusive to the set of rules you consider when
spending a sunny day at the swimming pool. Even so, there are some other
overriding rules that may be important regardless of the context, such as laws
against homicide.

So, in a given context, different sets of rules are pertinent. A single set of
rules may be user in one context, while a different set is used in a different
context. Within a rule-engine, available sets of rules are called rule sets. The
set or sets of rules currently applicable given the context is called a rule base.

3.2 Knowledge

You become aware of knowledge, in the form of facts, over time. Likewise, over
time, facts may change or cease to be true, in which case, they facts as you
know them must be altered or purged from your memory. Likewise, within a
rule-engine, there are operations for becoming aware of a fact, purging a fact,
or modifying a known fact. These operations are as follow:

e Assert Add a fact to what is known.
The weather is rainy. Betty is in the room.

e Retract Remove a fact from what is known.
Removing the fact Betty is in the room when Betty leave the room.

e Modify Alter a fact from what is know.
Changing the knowledge about the weather from The weather is rainy to
The weather is sunny when the rain stops and the clouds go away.

Within a rule-engine, the collected knowledge is called the working memory.
Knowledge is asserted, retracted and modified within the working memory and
the rules are evaluated to determine what actions, if any, should be taken.

3.3 Why a rule-engine?

While the logic expressed in a rule can and has often been written within the
code a system, a rule-engine offers many benefits. Instead of locking the logic
up in code written by developers, the logic can be moved out-board external to
the actual application. In this way it is possible for non-developers to change
the logic without having to rebuild the system. Additionally, by codifying all of
the system rules in a central location, they are no longer scattered throughout
the application. This allows for easier validation of the system’s requirements
and analysis of the logic of the system.

Functional Overview A note about “business rules” : 3.4

Additionally, a rule-engine such as Drools is built upon an intelligent algo-
rithm that allows for the evaluation of many rules against many facts in an
efficient manner. In a procedural system, a change in a single fact might require
double-checking every rule to determine if any action needs to be taken. A
rule-engine which uses the Rete algorithm is optimized to minimize the amount
of processing effort that is required to evaluate the rules that may have been
affected by a change in knowledge.

3.4 A note about “business rules”

A higher-level form of rule is the business rule. Business rules do not necessarily
follow the if-then form, but may be specified in different formats that are not
as closely linked to the underlying rule-engine implementation. Business rules
tend to use the must or must not form to expression constraints or inferences.

e An order must not be billed before it ships.

e An applicant for store credit must be 18 years of age.

Drools does not directly support this level of business rules, but other projects
built upon Drools! may easily support such notation.

TThe Fluxtapose suite of tools from The Werken Company is one such product that
supports business rules.

Chapter 4

Drools Rule Language

4.1 Introduction

The Drools Rule Language (DRL) is an XML-based language that uses an ex-
tensible tag mechanism. The available tags can be extended through the use of
semantic modules. By itself the DRL is not fully usable. At least one semantic
module must be selected and used. What follows is a reference for the available
core DRL tags.

4.2 Core DRL namespace

The core DRL tags belong to the http://drools.org/rules namespace. In
order to use the tags, the root tag must include an xmlns declaration binding
the DRL namespace to either a prefix (Figure 4.1) or as the default namespace
(Figure 4.2). Common practice is to bind the DRL namespace URI to the
default namespace upon the root <rule-set> tag of a document.

<drl:rule-set xmlns:drl="http://drools.org/rules">

Figure 4.1: Binding the DRL namespace URI to a prefix

<rule-set xmlns="http://drools.org/rules">

Figure 4.2: Binding the DRL namespace URI as the default namespace

Drools Rule Language Core DRL tags : 4.3

4.3 Core DRL tags

4.3.1 <rule-set>

The root tag of a DRL document is the <rule-set> tag, which serves to collect
a group of rules. A rule-set must have a name attribute defining its name.

<rule-set>

Attribute Description

name Name of the rule-set.

Tag Description

<rule> One or more rule members of the set.

<rule-set xmlns="http://drools.org/rules"
name="My First Rule Set">

</rule-set>

4.3.2 <rule>

A <rule> tag defines a single rule within the rule-set. A rule must have at
least one parameter'. A rule contains conditions, extractors and exactly one
consequence.

<rule>
Attribute Description
name Name of the rule.
salience Optional rule salience/priority.
Tag Description
<parameter> Parameter declaration.
<declaration> Additional local declaration.

<ns:condition>

Semantic condition.

<ns:extractor>

Semantic extractor.

<ns: consequence>

Semantic consequence.

<duration>

Truthness duration.

TSemantic modules may add implicit parameters to rules, so it’s not strictly true that each
<rule> must have a <parameter> or a <consequence>

Drools Rule Language Core DRL tags : 4.3

<rule-set xmlns="http://drools.org/rules"
name="My First Rule Set">

<rule name="My First Rule"
salience="10">

</rule>

</rule-set>

4.3.3 <parameter>

A <parameter> defines an input parameter for a rule. Each input parameter will
be supplied an object from the working memory in order to attempt satisfying
the conditions. Each <parameter> is required to have an identifier that is
unique within the rule and a semantic object type as its child element.

<parameter>
Attribute Description
identifier Parameter identifier.
Tag Description
<ns:objectType> Object type of the parameter.

<rule name="My First Rule">
<parameter identifier="factOne">

</parameter>
<parameter identifier="factTwo">

</parameter>

</rule>

4.3.4 <declaration>

A <declaration> defines an addition local declared fact which may be the
target of an extractor. Its identifier must be unique across all <parameter>
and <declaration> tags. As with a <parameter>, it must have a semantic
object type as its child element.

10

Drools Rule Language

Core DRL tags : 4.3

<declaration>
Attribute Description
identifier Declaration identifier.
Tag Description

<ns:objectType>

Object type of the local declaration.

</rule>

<rule name="My First Rule">
<declaration identifier="factOne">

</declaration>
<declaration identifier="factTwo">

</declaration>

4.3.5 <duration>

The <duration> tag is optionally used to specify the truthness duration of the
rule. The truthness duration determines how long the rule’s conditions must be
continually true in order to activate the rule.

Implementor’s Note

The RuleSetReader currently doesn’t allow

<duration> tags, which is merely an oversight.

<duration>
Attribute Description
weeks Number of weeks.
days Number of days.
hours Number of hours.
minutes Number of minutes.
seconds Number of seconds.

</rule>

<rule name="My First Rule">

<duration hours="2"
minutes="30"/>

11

Chapter 5

Client APl

5.1 Introduction

The Drools client API is simply a fairly lightweight interface for starting a
session, manipulating knowledge and executing rules.

5.2 Retrieving a RuleBase

Before any activities may be performed, the client application must obtain a
RuleBase through either building one using the administrative API or by per-
forming a lookup within a JNDI directory or other managed object data source.
Building a RuleBase is discussed in the next chapter.

5.2.1 Lookingup a RuleBase from JNDI

A RuleBase may be a managed object which is deployed by an administrator
within a JNDI directory. This method of deployment allows an application to
be isolated from changes in the rules. The rules can be easily altered and rede-
ployed, enabling an on-the-fly modification of the behaviour of an application.
See Figure 5.1 for an example of accessing a RuleBase deployed within a JNDI
data source.

DirContext ctx = new InitialDirContext(props);

RuleBase ruleBase = ctx.lookup("cn=’MyRuleBase’");

Figure 5.1: Loading a RuleBase from a JNDI data source

12

Client API Creating @ WorkingMemory : 5.3

File ser = new File(...);

Figure 5.2: Deserializing a RuleBase from a file

RuleBase ruleBase = obtainRuleBase();

WorkingMemory workingMemory = ruleBase.newWorkingMemory () ;

Figure 5.3: Creation of a WorkingMemory from a RuleBase

5.2.2 Deserializing a RuleBase from a file

Fully assembled RuleBase objects may be serialized to a file or other bytestream.
This allows for the rules to be assembled before deployment and enables easy
loading. See Figure 5.2 for an example of loading a serialized RuleBase from a
file.

5.3 Creating a WorkingMemory

A WorkingMemory object represents an isolated rule session where knowledge is
manipulated and evaluated to determine which rules should fire. Each WorkingMemory
is independent from all other instances. Each WorkingMemory is backed by the
RuleBase that created it (Figure 5.3) using newWorkingMemory ().

5.4 Working with knowledge

The three knowledge manipulation operations that can be performed are asser-
tion, retraction, and modification. The WorkingMemory class models these three
operations through three methods:

e assertObject(...) Adds a fact to the working knowledge.
e retractObject(...) Removes a fact from the working knowledge.

e modifyObject(...) Modifies a fact within the working knowledge.

5.4.1 Adding knowledge

To add knowledge to a WorkingMemory, a fact, in the form of any Java object is
asserted into it (Figure 5.4 on the next page). A FactHandle is returned from
each assertion and is used when performing further manipulation of the asserted
fact. Once asserted, the fact may be used to satisfy some portion of any rule’s
activation condition.

13

[SA T VR R

[T VR R

Client API Firing rules : 5.5

WorkingMemory memory = ruleBase.newWorkingMemory() ;

FactHandle handlel
FactHandle handle2
FactHandle handle3

memory.assertObject (factOne);
memory.assertObject (factTwo);
memory.assertObject (factThree);

Figure 5.4: Asserting knowledge into a WorkingMemory

WorkingMemory memory = ruleBase.newWorkingMemory();
FactHandle handle = memory.assertObject(factOne);

memory.retractObject (handle);

Figure 5.5: Retracting knowledge from a WorkingMemory

5.4.2 Removing knowledge

To remove knowledge from a WorkingMemory, a FactHandle obtained from a
previous invocation of assertObject(...) is used to reference the fact to be
removed (Figure 5.5). Once retracted, the fact can not be used to satisfy any
portion of any rule’s activation condition.

5.4.3 Modifying knowledge

Over time, knowledge may change. Instead of always retracting old facts and
asserting new ones, it is sometimes advisable to view a change in knowledge as
the modification of a single fact. For example, the fact about the current state of
the weather may change as the weather changes. Instead of retracting a “rainy”
fact and asserting a “sunny” fact, it is possible to simply change the value of
the general “weather” fact (Figure 5.6 on the next page). As with retraction,
modification of knowledge depends on a FactHandle obtained from a previous
assertObject(...) call (Figure 5.6 on the following page).

The most important reason to perform fact modification instead of an as-
sertion and a retraction is that rules with truth durations will automatically
deactivate if a matching fact is retracted. If a fact is modified but still matches
a rule with a truth duration, the clock on the duration timer is not reset.

5.5 Firing rules

As knowledge is manipulated within a WorkingMemory, no rules are actually
triggered to be fired. Instead, rules are activated, which makes them candidates
for being fired. Rule activations are placed upon the agenda.

14

Lo N

N

I

Client API Firing rules : 5.5

WorkingMemory memory = ruleBase.newWorkingMemory() ;
FactHandle weatherHandle = memory.assertObject(new Weather("rainy"));

memory.modifyObject (weatherHandle,
new Weather("sunny"));

Figure 5.6: Modifying knowledge within a WorkingMemory

WorkingMemory memory = ruleBase.newWorkingMemory() ;
FactHandle weatherHandle = memory.assertObject(new Weather("rainy"));

memory.fireAllRules();

Figure 5.7: Firing rules

When an application determines that the current state of knowledge is con-
sistent and should be acted upon, the application may cause the activations
on the agenda to begin firing (Figure 5.7). The fireAllRules(...) method
blocks until the agenda has been completely cleared of activations.

Note that as an activation fires, its consequence may perform knowledge
manipulation by assertion new facts, retracting existing facts, or modifying
existing facts. All of these activities may cause activations to be added to or
removed from the agenda.

15

Chapter 6

Administrative API

6.1 Introduction

The administrative functions of drools include the assembly and deployment
of rules. These activities may certainly be performed by the same application
that acts as the client, The API has been designed to allow for the separation
between the client and administrative responsibilities.

6.2 Building rules

Programmatically building rules using the Java API is covered in Chapter 14
on page 38. The next section discusses loading rules that were built using the
Drools Rule Language, which is described in depth in Chapter 4 on page 8.

6.3 Buildinga RuleBase
6.3.1 Loading rules

Rule-sets can be loaded using the RuleSetReader from a variety of sources
including URL, InputStream and Reader objects. A RuleSetReader builds a
RuleSet from the contents of a DRL document (Chapter 4 on page 8).

The RuleSetReader by default may use any and all semantic modules avail-
able on the classpath (see Chapter 13 on page 32). It may be optionally pa-
rameterized with a SAXReader and a SemanticsRepository. By default, the
RuleSetReader uses the Java API for XML Parsing (JAXP) for reading the
XML documents. See Figure 6.1 on the following page for an example of load-
ing a RuleSet from a URL.

16

Administrative API Deployinga RuleBase to a JNDI data store : 6.4

RuleSetReader reader = new RuleSetReader();
URL ruleSetUrl = new URL("http://myco.com/theRuleSet.xml");
RuleSet ruleSet = reader.read(ruleSetUrl);

Figure 6.1: Loading a RuleSet from a URL

6.3.2 Conflict resolution

When constructing a RuleBase, a conflict resolution strategy must be selected.
Conflict resolution is described fully in Chapter 7 on page 20, but a summary
of available strategies appears in Figure 6.2.

Class Description

SalienceConflictResolutionStrategy Resolve conflicts based upon the
salience of the rules. If two conflict-
ing rules have the same salience, one
is selected at random to be fired first.

ComplexityConflictResolutionStrategy | Resolves conflicts based upon the
complexity of the rules as measured
by the number of conditions. Rules
with more conditions have higher pri-
ority than those with fewer condi-
tions. If two conflicting rules have the
same measure of complexity, conflict
is then resolved as with the salience
conflict resolution strategy.

SimplicityConflictResolutionStrategy | Resolves conflicts based upon the
simplicity of the rules as measured by
the number of conditions. Rules with
fewer conditions have higher priority
than those with more conditions. If
two conflicting rules have the same
measure of complexity, conflict is then
resolved as with the salience conflict
resolution strategy.

Figure 6.2: Conflict-resolution strategies

6.4 Deploying a RuleBase to a JNDI data store

A fully-constructed RuleBase may be serialized and stored within a JNDI-
accessible directory (Figure 6.4 on the next page). This method allows for an
administrator to deploy a RuleBase as a managed object. Multiple applications
may use the JNDI-accessible RuleBase without being concerned with parsing
DRL documents and building a RuleBase directly. Additionally, the deployed
RuleBase may be easily replaced, with the replacement being immediately ac-

17

® N o oA W N e

Administrative API Serializinga RuleBase to afile: 6.5

RuleBaseBuilder builder = new RuleBaseBuilder();
builder.addRuleSet(theRuleSet);

builder.setConflictResolutionStrategy(
SalienceConflictResolutionStrategy.getInstance());

RuleBase ruleBase = builder.buildRuleBase();

Figure 6.3: Using RuleBaseBuilder to build a RuleBase from a RuleSet

DirContext ctx = new InitialDirContext(props);
ctx.bind("cn=’MyRuleBase’");

Figure 6.4: Deploying a RuleBase to a JNDI data store

cessible to a running application.

All components of the Rule must be serializable in order for the constructed
RuleBase to be deployed against a JNDI datastore. The various semantic
component interfaces and rule-assembly classes have already been marked as
Serializable. The class definition files must be in the application’s classpath
in order to deserialize the object structure once retrieved from the directory.
Failure to have the classes available will result in an exception being thrown.

6.4.1 JNDI deployment utility
Implementor’s Note
...Not yet done
The command-line utility name-me-please is available to assist in the cre-

ation of a serialized RuleBase in a JNDI directory from a DRL rule definition
file (Chapter 4 on page 8).

name-me-please -Dprop=value --classpath xx:yy:zz myRules.drl ’cn=MyRules’

6.5 Serializing a RuleBase to a file

A RuleBase can be serialized in full to a file on disk (Figure 6.5 on the next
page). This method allows for a rule-base to be “frozen” prior to deployment.
An application merely has to unserialize the file to use the contained RuleBase.

18

Lo N R

Administrative API Serializinga RuleBase to afile: 6.5

File ruleBaseFile = new File(pathToFile);

FileOutputStream fileOut = new FileOutputStream(ruleBaseFile);
ObjectOutputStream objOut = new ObjectOutputStream(fileOut);

objOut.writeObject(ruleBase);

Figure 6.5: Serializing a RuleBase to a file

6.5.1 Serialization utility
Implementor’s Note

...Not yet done

The command-line utility name-me-please is available to assist in the cre-
ation of a serialized RuleBase from a DRL rule definition file (Chapter 4 on

page 8).

name-me-please --classpath xx:yy:zz myRules.drl myRules.ser

19

Chapter 7

Conflict Resolution

7.1 Introduction

When knowledge is manipulated, many rules may become activated. The con-
sequences of the rules fire serially and thus must be ordered in the activation
queue'. Since firing one consequence may manipulate knowledge, the order of
rule firing is important. Different end-results may occur based upon different
firing order. Applying an order to the activations is called a conflict resolution
strategy. Fach RuleBase has a conflict resolution strategy that determines how
rules are prioritized. Custom conflict resolution strategies may be devised for
each rule-base, but several standard ones are available for use.

7.2 SalienceConflictResolutionStrategy

Each Rule has a salience property attached to it. By default every rule has a
salience of zero, but during assembly, either programmatically using the Rule
Assembly API (Chapter ?? on page 77) or through the DRL (Chapter 4 on
page 8) a specific non-default salience value may be applied to each rule.

Salience is a form of priority where rules with higher salience values are given
higher priority when ordered in the activation queue. In the event that multiple
rules are assigned the same salience value, they are placed upon the queue in
an arbitrary order.

To use a salience-based conflict resolution strategy, the RuleBase should be
built using an instance of the SalienceConflictResolutionStrategy class.
For ease of use a getInstance() method is provided (Figure 7.1 on the next

page).

TThe activation queue is formally known as the agenda.

20

I VR

Conflict Resolution ComplexityConflictResolutionStrategy : 7.3

RuleBaseBuilder builder = new RuleBaseBuilder();

builder.setConflictResolutionStrategy(
SalienceConflictResolutionStrategy.getInstance());

Figure 7.1: Using a SalienceConflictResolutionStrategy

7.3 ComplexityConflictResolutionStrategy

Built upon the SalienceConflictResolutionStrategy, a strategy that first
takes into account the complexity of the conflicting rules is available. The
ComplexityConflictResolutionStrategy initially orders activations by their
complexity as measured by the number of conditions in each rule. Rules with
more conditions have a higher complexity and thus a higher priority when com-
pared to rules with fewer conditions. When rules have the same complexity, ties
are broken using their salience values.

7.4 SimplicityConflictResolutionStrategy

Also built upon the SalienceConflictResolutionStrategy, a strategy that
first takes into account the simplicity of the conflicting rules is available. The
SimplicityConflictResolutionStrategy may be thought of as the inverse
of the complexity-based strategy. Rules with less conditions are given higher
priority than those with more. Once again, when conflicting rules have the same
measure of simplicity, the strategy falls back to resolving conflicts based upon
salience.

21

Part Il

Semantic Modules

Chapter 8

Java Semantic Module

8.1 Introduction

The Java semantic module defines addition tags which may be used within a
DRL document (Chapter 4 on page 8). The tags provided by this module allow
for semantics based upon the Java programming language. Object types may
be determined using Java classes while conditions and extractors are formulated
in terms of Java expressions. A consequence may be an arbitrary block of Java
statements.

8.2 Java semantic module namespace URI

That tags for the Java semantic module are defined within the XML namespace
http://drools.org/semantics/java. In order to use the tags of the Java
semantic module, this namespace should be bound to a prefix with the DRL
document. Typically this is done on the root rule-set tag (Figure 8.1).

<rule-set xmlns="http://drools.org/rules"
xmlns:java="http://drools.org/semantics/java">

</rule-set>

Figure 8.1: Binding of Java semantic module namespace URI to a prefix

23

Java Semantic Module Java Semantic Module tags : 8.3

<java:class>

Figure 8.2: Example of the <class> tag

8.3 Java Semantic Module tags

8.3.1 <class>

<class>
No attributes

Content

Name of the java class.

8.3.2 <condition>
8.3.3 <extractor>

8.3.4 <consequence>

24

Chapter 9

Python Semantic Module

9.1 Introduction

9.2 <class>

See Section 8.3.1 on the preceding page.

9.3 <condition>
9.4 <extractor>

9.5 <consequence>

25

Chapter 10

XML Semantic Module

Implementor’s Note

Not yet implemented...

10.1 Introduction
10.2 <document>
10.3 <expr>

10.4 <extractor>

10.5 <consequence>

26

Chapter 11

Dispatcher Semantic Module

Implementor’s Note

Not yet implemented...

11.1 Introduction
11.2 <rule>

11.3 <consequence>

27

Part IV

Drools Internals

Chapter 12

Architecture

12.1 Rules, rule-sets, and rule-bases

Within Drools, the concepts of rules, rule-sets and rule-bases are directly mod-
elled by the classes Rule, RuleSet and RuleBase. A Rule may be a member
of multiple RuleSets, and multiple RuleSets may be active within a given
RuleBase.

12.1.1 Rule, Condition and Consequence

A single Rule may have one-or-more Conditions associated with it. Each con-
dition must be met before the rule is considered to be activated. Once activated
the rule’s Consequence is a candidate for being fired. In pattern parlance, the
Condition class is simply a predicate object which evaluates itself against the
known facts to return a boolean value of either true or false. The Consequence
class is likewise simply a functor which objectifies a function and performs an
arbitrary task when executed.

Rule

L. 1

Condition Consequence

Figure 12.1: Object model for Rule, Condition and Consequence

29

Architecture Knowledge : 12.2

RuleSet r—> Rule

Figure 12.2: Object model for RuleSet and Rule

0.
RuleBase — RuleSet

Figure 12.3: Object model for RuleBase and RuleSet

12.1.2 RuleSet

A RuleSet is simply a collection of Rules. It serves only to associate a group
of rules with one another so that they may be worked with as a set.

12.1.3 RuleBase

A RuleBase is an active collection of RuleSets. A RuleBase contains rules that
are all considered to be in effect for a given set of knowledge. Multiple RuleSets
may be a part of a given RuleBase.

12.2 Knowledge

The set of knowledge that is examined is modelled by the class WorkingMemory,
which is backed by a particular RuleBase. It is through the WorkingMemory
that knowledge is asserted, retracted and modified. Each WorkingMemory is
backed by exactly one RuleBase which determines which rules are evaluated as
knowledge is manipulated.

RuleBase

backing rulebase

WorkingMemory

Figure 12.4: Object model for WorkingMemory and RuleBase

30

Architecture

Complete Model : 12.3

12.3 Complete Model

RuleBase

backing rulebase

WorkingMemory

0“*
—> RuleSet
l 0“*
Rule

f

Condition

Consequence

Figure 12.5: Complete object model

31

Chapter 13

Semantic Module Framework

13.1 Introduction

Implementor’s Note

Wait wait wait...
Reworking the SMF. ConfigurableFoo is just crappy.

The Semantic Module Framework (SMF) provides an extension point to the
Drools Rule Language syntax (see Chapter 4 on page 8). By creating semantic
modules, domain-specific rule types, object-types, conditions, extractors and
consequences can be added to the core DRL language.

13.2 Declaration objects

Each has a set of parameters that specify what input objects are required
through the evaluation of the rule. Each parameter is modelled through a
Declaration object which specifies the parameter’s identifier and object type.
The identifier of a Declaration is simply a string name that uniquely distin-
guishes one parameter from another. The object type is defined through an
ObjectType component (Section 13.4.2 on the following page). Various seman-
tic components, notably Condition and Consequence implementations must be
cognizant of the available declarations of a rule.

13.3 Tuple oObjects

Object flow through the conditions and consequence of a rule in the form
of a Tuple. A tuple is merely an associative array, not unlike a HashMap,
which indexes the value of the objects by its Declaration. Condition and
Consequence implementations operate upon Tuple objects by retrieving values
by their Declaration (Figure 13.1 on the next page).

32

© N o oA W N e

0w N e G A W N e

Semantic Module Framework Semantic components : 13.4

package org.drools.spi;

public interface Tuple

{

Object get(Declaration declaration);

Figure 13.1: Method to retrieve an object by its Declaration from a Tuple

package org.drools.smf;

public interface RuleType
{
void initializeRule(Rule rule,
Configuration config)
throws RuleTypeException;

Figure 13.2: RuleType interface

13.4 Semantic components

13.4.1 RuleType
Implementor’s Note

This doesn’t exist at the moment, but will soon.
RuleType components will allow a module to be re-
sponsible for the initialization of rule, possibly adding
parameters, condition and consequences implicitly.

Implementations of RuleType allow a module to initialize a new rule, possi-
bly by adding parameters, conditions or consequences. The RuleType is passed
the new Rule for initialization.

13.4.2 O0ObjectType

Implementations of ObjectType allow rules to be defined in terms of semantic
types. Instead of requiring all rules to be defined in terms of Java classes,
rules may be defined in terms of higher semantics. For example, while all XML
documents may be instances of org.w3c.dom.Document each document may
have a different semantic type based upon the name and namespace of the root
tag. Given an Object, an ObjectType implementation must simply determine
if it matches its semantic type (Figure 13.3 on the following page).

33

N o U A W N e

N o oA W N e

Semantic Module Framework Semantic components : 13.4

package org.drools.spi;

public interface ObjectType
extends SemanticComponent
{

}

boolean matches(Object object);

Figure 13.3: ObjectType interface

package org.drools.smf;

public interface ConfigurableObjectType
extends ObjectType
{

}

void configure(Configuration config) throws ConfigurationException;

Figure 13.4: ConfigurableObjectType interface

ConfigurableObjectType

Configuration information may be passed to an ObjectType if the implementa-
tion is marked with the ConfigurableObjectType interface. A configure(...)
method is added by the ConfigurableObjectType interface. through which ad-
ditional information may be passed (Figure 13.4).

13.4.3 Condition

Implementations of the Condition interface allow for custom conditions to be
created. Each condition is effectively a predicate object that returns a boolean
value given some input data. In order to insert the Condition into the ap-
propriate location within the Rete graph, each Condition must specify the
declarations of the variables with which is analyzes (Section 13.2 on page 32).

Figure 13.5 on the next page show Condition interface. Any value ex-
pected to be used by the isAllowed(...) method must be accounted for
in the array of Declaration objects returned by getRequiredTupleMembers.
For example, a rule may declares three object: a, b, and c. A particular
Condition implementation might only test attributes of the b object. In that
case, the Declaration associated with the b object must be returned from
getRequiredTupleMembers(...).

The isAllowed(...) method is passed a Tuple when enough knowledge
to satisfy the required members is available. It may then use the operations of
Tuple to retrieve the objects and perform its test to return a boolean.

34

© 0 N O U A W N e

Semantic Module Framework The Configuration structure : 13.5

package org.drools.spi;

public interface Condition
extends SemanticComponent

Declaration[] getRequiredTupleMembers();

boolean isAllowed(Tuple tuple) throws ConditionException;

Figure 13.5: Condition interface

String[] attrNames
String someValue

config.getAttributeNames() ;
config.getAttribute(someName);

Figure 13.6: Attribute-related operations of Configuration

ConfigurableCondition

13.4.4 Extractor

ConfigurableExtractor

13.45 Condition

ConfigurableCondition

13.4.6 Consequence

ConfigurableConsequence

13.5 The Configuration Structure

For the Configurable. .. form of the semantic components, configuration in-
formation is communicated through a tree of Configuration objects. Each
Configuration object acts as a node in the tree, and may contain the following
data:

o Attributes. Zero or more name/value pairs of strings (Figure 13.6).
e Text. A single string text value (Figure 13.7 on the next page).

e Child Configuration nodes. Zero or more named child Configuration
nodes (Figure 13.8 on the following page).

The tree of Configuration nodes may be thought of as a simplified version
of an XML structure. For configurable semantic components used through the

35

Semantic Module Framework Semantic Module Descriptor : 13.6

String nodeText = config.getText();

Figure 13.7: Text-related operation of Configuration

config.getChildren() ;
config.getChild(someName);
config.getChildren(someName);

Configuration[] allChildren
Configuration someFirstChild
Configuration[] someChildren

Figure 13.8: Child-related operations of Configuration

DRL (Chapter 4 on page 8), the root Configuration is based upon the com-
ponent’s own tag, and children tags are represented by children Configuration
nodes.

13.6 Semantic Module Descriptor

Conforming semantic modules are packaged as individual JAR files which can be
added to the application’s classpath. Each JAR should contain, in the META-INF
directory a file named drools-semantics.properties which provides meta-
information about the module and its available semantic components.

Implementor’s Note

Still working on the module descriptor format.

13.7 SemanticsRepository

A SemanticsRepository manages a set of SemanticModule objects and allows
each to be looked-up by its URI (Figure 13.9). Primary a SemanticsRepository
is used by a RuleSetReader (Section 6.3.1 on page 16) in order to extend the
core DRL (Chapter 4 on page 8) syntax.

locateSemanticsRepository();
repo.getSemanticModules();
repo.lookupSemanticModule(someUri);

SemanticsRepository repo
SemanticModule[] modules
SemanticModule someModule

Figure 13.9: Usage of the SemanticsRepository

36

Semantic Module Framework The DefaultSemanticsRepository helper: 13.8

SemanticsRepository repo = DefaultSemanticsRepository.getInstance();
SemanticModule[] modules = repo.getSemanticModules();

Figure 13.10: Retrieving and using the DefaultSemanticsRepository helper

13.8 The DefaultSemanticsRepository helper

The DefaultSemanticsRepository helper class is useful in that it contains all
conforming semantic modules available on the classpath. Each module that
has a module descriptor (Section 13.6 on the page before) located within the
META-INF directory. Each drools-semantics.properties will be automati-
cally discovered by the DefaultSemanticsRepository upon first use.

Being a help class that is initialized once, it follows the singleton pattern.
To use the DefaultSemanticsRepository, the getInstance() method will re-
trieve the singleton instance (Figure 13.10).

37

Chapter 14

Rule Assembly API

14.1 Introduction

The DRL (Chapter 4 on page 8) constructs rules using the Rule Assembly API
This API may also be used directly by applications that wish to programmati-
cally construct Rule instances without using the DRL.

The org.drools.rule package contains the classes and interfaces that form
the Rule Assembly API. The two concrete classes of note are Rule and RuleSet.
Other concrete classes used in the assembly of rules are pulled from various
semantic module implementations.

14.2 Requirements

Each Rule is required to have at least one Parameter and a Consequence. Zero
or more Condition objects may be attached to each Rule’.

TThough, a Rule without a Condition is not much of a rule.

38

Part V

Examples

Part VI

Appendices

Appendix A

Algorithms

A.1 Efficient Matching

While it may be simple to create a rules engine that allows specification of
business logic in a format that is comfortable to business analysts, the matching
of the rules may still be problematic without a good algorithm.

The rules engine must be made aware of its environment, typically through
a process called fact assertion. Fact assertion consists of the program asserting
facts into a rules session, or working memory.

Whenever a fact is asserted, retracted or modified within the working mem-
ory, many rules may become candidates for firing, or may have become inval-
idated. A simplistic approach is to reevaluate all rules against the entirety of
the working memory. This method is guaranteed to be correct but will also
certainly be sub-optimal. Any individual fact modification only affects a small
number of conditions in a small number of rules.

Variations of the Rete algorithm allow the rules engine to maintain a memory
of the results of partial rule matches across time. Reevaluation of each condition
is no longer necessary, as the engine knows which conditions might possibly
change for each fact, and only those must be reevaluated.

A.2 Rete

Charles Forgy created the original Rete algorithm [?] around 1982 as part of
his DARPA-funded research. Compared to many previous production-matching
algorithms, Rete was very advanced. Even today, there have been few improve-
ments to it in the general case'. Variations on Rete, such as TREAT [?], may
have different performance characteristics depending on the environment. Some
perform better with large rule sets but small numbers of objects, while other

TBoth ILOG and Haley claim to have optimized Rete algorithms, but details are not
currently public.

41

Algorithms Rete : A.2

perform well for steady-state environments, but react poorly to numerous suc-
cessive changes in the data.

A Rete network is a graph through which data flows. Originally, data was
specified using Cambridge-prefix tuples since Lisp-like languages were in style for
logic programming.? The tuples were used to express attributes about objects.
For example, tuples may be used to express a person’s name and her pets. The
tuples are dropped into the Rete network, and those that reach the far end cause
the firing of a rule. The original production-matching was based upon matches
against tuple patterns.

The Rete network is comprise of two types of nodes:

e l-input/1-output nodes
The 1/1 nodes are constrictive nodes that only allow matching tuples to
flow through. Any tuples that do not match are discarded by the node.

e 2-input/1-output nodes
The 2/1 nodes simply connect the output arcs from two other nodes (ei-
ther 1/1 nodes or 2/1 nodes) merging tuples from both the left and right
incoming arcs into a single tuple on the outgoing arc. Maintains a memory
of tuples for matching against future facts.

A forest of 1/1 nodes acts as the entry-point into the entire Rete network
for any incoming tuple. The network-entry nodes filter tuples purely by their
type. Tuples about dogs and tuples about cats may each have a different type
and may be differentiated from each other by the 1/1 network-entry nodes.

Each condition of a rule is merely a pattern for a particular tuple type. The
condition describes the attributes that a tuple must have and acts as a filter.
Each condition is transformed into a /1 node that only allows tuples matching
the specified attributes to pass. An attribute value may be specified as a variable
and implies that the variable must hold the same value in all occurrences. The
1/1 filter nodes are attached to the network downstream from the 1/1 entry-
node that differentiates their tuple type.

Consider a condition such as “For any person who has a dog that has the
same name as that person’s sister’s cat, then...” This could be expressed with
the condition patterns of:

1 (person name=person? sister=sister?)
p p

(2) (person name=person? dog=petName?)

(3) (person name=sister? cat=petName?)

Condition #1 models the sister relationship so that the rule only applies to
two people who are sisters. The person? and sister? tokens are variables that
must be consistent across any set of tuples that match this rule.

Conditions #2 and #3 serve two roles. The dog and cat attributes share
the same petName? variable and serve to identify two people who have a cat

2As it is for many artificial intelligence projects.

42

Algorithms Rete : A.2

and a dog with the same name. They each contain a name attribute with either
the variable person? or sister? which ties the last two conditions back to the
first two.

|

type(person)

| ST

condition(1) condition(2) condition(3)

T

join(1)

T

join(2)
terminal
Figure A.1: Rete network
’ type H person ‘ sister ‘ cat ‘ dog ‘
’ tuple set # 1 ‘
person || rebecca | jeannie | zoomie null
person || jeannie | rebecca null zoomie
’ tuple set # 2 ‘
person || rebecca | jeannie | zoomie null
person || jeannie | rebecca null toby

Figure A.2: Example tuple sets

43

Algorithms Rete-OO : A.3

If two sets of tuples (see Figure A.2) were asserted against the rule, tuple set
#1 would cause a firing of the rule, where tuple set #2 would not. In both cases,
the two tuples would pass node condition(1), as the nodes simply associate the
person? and sister? variables with the appropriate values from each tuple.

The join(1) node would allow both tuples to merge and propagate past it
in both the first and second case. Additionally, for both cases, the rebecca
tuple would pass node condition(2) and the jeannie tuple would pass node
condition(3).

The join(2) node is where the two cases differ. In the first case, nodes
condition(2) and condition(3) have each associated the value of “zoomie” to
the petName? variable. In the second case, the two nodes has assigned different
values to the variable. The join(2) node only allows those tuples that have
consistent associations with all variables to pass.

A.3 Rete-O0

The Rete algorithm works wonderfully in language systems such as Lisp where
pertinent attributes about objects are directly asserted to the rules engine. In
an object-oriented language, such as C++ or Java, and entire graph of objects
can be reachable from a single named root object. Expressing highly complex re-
lationships between entities using Cambridge-prefix notation may require many
separate assertions. In an OO language, the single root object is all that should
be asserted, since attributes and relationships can be extracted using normal
language constructs.

Bob McWhirter of The Werken Company adapted Forgy’s original Rete
algorithm to object-oriented constructs, creating the Rete-OO algorithm. As
with Rete, there are 1/1 nodes and 2/1 nodes. Unlike Rete, there are nodes
that exist simply to extract reachable attributes and add columns to passing
tuples. Rete always constructs the condition /1 nodes toward the root of the
tree leaving the bottom portion to be comprised of purely aggregating 2/1 join
nodes. Rete-OO must interleave both 1/1 and 2/1 nodes.

The same example as in Section A.2, the conditions could be expressed in
terms of object-oriented language boolean and assignment expressions. The
choice of Java as the expression language is purely arbitrary.

(0) Person personOne, personTwo

(1) personOne.hasSister (personTwo)

(3) petName = personOne.getCat().getName ()
(3) petName = personTwo.getDog() .getName ()

Rete-O0 adds the concept of root object declaration, where the root objects
of the condition are declared with a name and type. The object’s type maps
directly to the tuple type in Rete. The root object name has no direct map-
ping in Rete and causes the addition of a parameter node in Rete-OO. Boolean
expressions in Rete-OO conditions are equivalent to Rete’s condition patterns

44

Algorithms Rete-OO : A.3

/

type(Person)
\
parameter (J;?ersonOne) parameter(personTwo)
extractioni(pet]\f ame) extraction\%pet]\f ame)
\ J C}in
condz’tion(l;msSister)
terrrJ:inal

Figure A.3: Rete-OO network

against attributes. The assignment expressions map to place-holder variables in
Forgy’s algorithm.

The types of nodes used in Rete-OO graph construction are listed here.
Those that are new or different from Rete are denoted with a *’.

e Object type
Object type nodes differentiate objects by filtering on their defined type.

e Parameter*
Parameter nodes create a tuple with a single entry binding the object to
the name.

e Condition
Condition nodes simply tests a tuple against an a boolean expression.

e Extraction*
Extraction nodes extract new attributes, create new columns on tuples,
and store the results.

e Join
Join nodes connect the output arcs from two other nodes and allows con-
sistent tuples to be merged and passed through.

e Terminal
Terminal nodes fire to indicate a successful match for the rule.

The resulting Rete-OO graph is constructed in a different manner than the
equivalent Rete graph, due to the addition and rearrangement of some nodes.

45

Appendix B

Frequently Asked Questions

B.1 Why are “or” conditions not allowed?
B.2 Can | nestrules?

B.3 What happened to version 1.0?

46

Appendix C

Project Information

C.1 Web Site

All development resources related to Drools are hosted by The Codehaus, the
open-source arm of The Werken Company. Drools maintains a website at:

http://drools.org/

C.2 Mailing Lists

The drools project maintains two mailing lists. The first, known as drools-interest
is for general discussion by users and developers of drools. The second list is
drools-cvs which simply tracks changes made to the source-code through the
CVS repository. For information about subscribing to each list or access to the

list archives:

http://lists.codehaus.org/listinfo/drools-interest
http://lists.codehaus.org/listinfo/drools-cvs
C.3 Source Repository

The drools project maintains a revision control repository using CVS. To check-
out the latest sources, you must issue two CVS commands. The first is used to
login. When presented with a prompt for a password, simply press ENTER.

cvs -d:pserver:anonymous@cvs.codehaus.org:/scm/cvspublic login
cvs -d:pserver:anonymous@cvs.codehaus.org:/scm/cvspublic co drools

47

http://drools.org/
http://lists.codehaus.org/listinfo/drools-interest
http://lists.codehaus.org/listinfo/drools-cvs

Project Information Internet Relay Chat : C.4

C.4 Internet Relay Chat

There is a dedicated channel on The Werken Company’s IRC server for drools:

address irc.codehaus.org
port 6667
channel #drools

url irc://irc.codehaus.org:6667/drools

C.5 Bug, Issue & Feature Tracking

For bug, issue and feature tracking, the Drools project uses the Jira project
management system provided by The Codehaus.

http://jira.codehaus.org/

48

irc://irc.codehaus.org:6667/drools
http://jira.codehaus.org/

Project Information Project Team : C.6

C.6 Project Team

C.6.1 Bob McWhirter

Bob McWhirter originally founded the Drools project in 2000 and developed the
Rete-OO0 algorithm used by the engine. Bob is also the founder of The Werken
Company and the chief architect behind the commercial Fluxtapose suite of
tools which build upon Drools to provide a complete solution for implementing
business rules.

C.6.2 Thomas Diesler

Thomas Diesler researched and supplied the JSR-94 Rule-Engine API bindings
for Drools.

Editor’s Note

Thomas, please send more details to
bob@werken. com.

C.6.3 Roger F. Gay

Roger F. Gay devised the XML Schemas for the core DRL syntax and each
semantic module.

Editor’s Note

Likewise, Roger, please send more details to
bob@werken. com.

C.6.4 Contributors
Others have contributed ideas, patches and testing assistance over the years:
e Dave Cramer (eBoz)
e Martin Hald
e Matt Ho
e Pete Kazmier (iBasis)
e Christiaan ten Klooster
e James Roome
e Bart Selders (iBanz)
e James Strachan (Core Developers Network)

e Tom Vasak

49

Project Information Project Team : C.6

Editor’s Note

Hello to contributors: send your current affiliation
information to bob@werken. com if you wish it to be in-
cluded.

50

Appendix D

Licensing

D.1 Drools license
D.1.1 The license

Copyright 2001-2003 (C) The Werken Company. All Rights Reserved.

Redistribution and use of this software and associated documentation (“Software”), with or
without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistri-
butions must also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The name ”Drools” must not be used to endorse or promote products derived from
this Software without prior written permission of The Werken Company. For written
permission, please contact bob@werken.com.

4. Products derived from this Software may not be called ”Drools” nor may ”Drools”
appear in their names without prior written permission of The Werken Company.
”Drools” is a trademark of The Werken Company.

5. Due credit should be given to The Werken Company. (http://werken.com/)

THIS SOFTWARE IS PROVIDED BY THE WERKEN COMPANY AND CONTRIBU-
TORS AS IS AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
WERKEN COMPANY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

51

Licensing Drools license : D.1

D.1.2 Summary

Drools is provided under a license similar to that used by The Apache Software
Foundation. It is a commercial-friendly license in that it allows you to modify
and distribute Drools in either source or binary form. While you are encouraged
to contribute changes back to the project, you are by no means required to do
so. The Drools license is not viral or infectious. It does not alter how you license
you own product. If you have any questions regarding the licensing of Drools,
please contact info@werken.com.

52

Appendix E

JSR-94

Java’™ Rule Engine API

E.1 Introduction

The Java”™ Rule-Engine API, known as JSR-9/ is a specification developed
by the Java Community Process (JCP) which attempts to standardize the way
that applications interact with rule-engines.

E.2 Scope

JSR-94 only attempts to standardize the actual Java API for working with rule-
engines and does not address the authoring of rules at all. Each rule-engine still
has its own syntax for writing rules. JSR-94 does proscribe a method of loading
a rule definition document using a DOM Document but does not speak as to the
content of the document being loaded.

The specification also does not address any details regarding the underlying
implementation or algorithms. It simply provides a consistent manner in which
to obtain a rule session, manipulate knowledge within it, and to fire rules.

E.3 JSR-94 and Drools

The JSR-94 binding for Drools is an optional module that provides a thin wrap-
per around the client (Chapter 5 on page 12) and administrative (Chapter 6 on
page 16) APIs.

53

Index

activation queue, 20
agenda, 14, 20
assert, 6

assertion, 13

business rules, 7

<class> tag, 24, 25
Codehaus, The, 47

Frequently Asked Questions, 46
Gay, Roger F., 49

Hald, Martin, 49
Ho, Matt, 49

Java Community Process, 53
JAXP, 16

ComplexityConflictResolutionStrategy class, JCP, see Jva Community Process53

17, 21
Condition class, 29, 32, 34, 35, 38
getRequiredTupleMembers, 34
getRequiredTupleMembers(...), 34
isAllowed(...), 34
<condition> tag, 24, 25
ConfigurableCondition class, 35
ConfigurableConsequence class, 35
ConfigurableExtractor class, 35
ConfigurableObjectType class, 34
configure(...), 34
Configuration class, 35, 36
conflict resolution, 20
Consequence class, 29, 32, 35, 38
<consequence> tag, 24-27
Cramer, Dave, 49

Declaration class, 32-34

<declaration> tag, 10

declarative, 5

DefaultSemanticsRepository class, 37
getInstance(), 37

Diesler, Thomas, 49

Document class, 53

<document> tag, 26

Drools rule language, 8

<duration> tag, 11

<expr> tag, 26
Extractor class, 35
<extractor> tag, 24-26

FactHandle class, 13, 14

FAQ), see Fequently Asked Questions46
Fluxtapose, 7

Forgy, Charles, 41

JNDI, 12, 17
JSR-94, 53

Kazmier, Pete, 49
Klooster, Christiaan ten, 49
knowledge, 6

IEX, v

McWhirter, Bob, 44, 49
modification, 13
modify, 6

ObjectType class, 33, 34

Parameter class, 38
<parameter> tag, 10
predicate object, 29
procedural, 5

Rete, 7, 34, 41, 44
network, 42
Rete-0O0, 44
retract, 6
retraction, 13
Roome, James, 49

Rule, 32
Rule class, 20, 29, 30, 33, 38
rule

activation, 14

firing, 14

<rule> tag, 9, 27
rule base, 6

rule set, 6
rule-engine, 6
<rule-set> tag, 9

54

RuleBase class, 12, 13, 16-20, 29, 30
newWorkingMemory (), 13

RuleBaseBuilder class, 18

RuleSet class, 16-18, 29, 30, 38

RuleSetReader class, 16, 36

RuleType class, 33

SalienceConflictResolutionStrategy class,

17, 20, 21
getInstance(), 20

SAXReader class, 16

Selders, Bart, 49

semantic module framework, 32

SemanticModule class, 36

SemanticsRepository class, 16, 36

Serializable class, 18

SimplicityConflictResolutionStrategy class,

17, 21
Strachan, James, 49

Tuple class, 32-34
Vasak, Tom, 49

working memory, 6

WorkingMemory class, 13-15, 30
assertObject(...), 13, 14
fireAllRules(...), 15
modifyObject(...), 13
retractObject(...), 13

XEmacs, v

55

	Preface
	Why rules?

	List of Figures
	Acknowledgements
	About this manual
	Typographic conventions
	Production notes

	About the authors
	Bob McWhirter
	Robert Searle

	Part I Drools---How and why
	50,000ft view
	Work Flow Engine

	Part II Drools
	Functional Overview
	Rules
	Declarative Form
	Applicable Context

	Knowledge
	Why a rule-engine?
	A note about ``business rules''

	Drools Rule Language
	Introduction
	Core DRL namespace
	Core DRL tags
	<rule-set>
	<rule>
	<parameter>
	<declaration>
	<duration>

	Client API
	Introduction
	Retrieving a RuleBase
	Looking up a RuleBase from JNDI
	Deserializing a RuleBase from a file

	Creating a WorkingMemory
	Working with knowledge
	Adding knowledge
	Removing knowledge
	Modifying knowledge

	Firing rules

	Administrative API
	Introduction
	Building rules
	Building a RuleBase
	Loading rules
	Conflict resolution

	Deploying a RuleBase to a JNDI data store
	JNDI deployment utility

	Serializing a RuleBase to a file
	Serialization utility

	Conflict Resolution
	Introduction
	SalienceConflictResolutionStrategy
	ComplexityConflictResolutionStrategy
	SimplicityConflictResolutionStrategy

	Part III Semantic Modules
	Java Semantic Module
	Introduction
	Java semantic module namespace URI
	Java Semantic Module tags
	<class>
	<condition>
	<extractor>
	<consequence>

	Python Semantic Module
	Introduction
	<class>
	<condition>
	<extractor>
	<consequence>

	XML Semantic Module
	Introduction
	<document>
	<expr>
	<extractor>
	<consequence>

	Dispatcher Semantic Module
	Introduction
	<rule>
	<consequence>

	Part IV Drools Internals
	Architecture
	Rules, rule-sets, and rule-bases
	Rule, Condition and Consequence
	RuleSet
	RuleBase

	Knowledge
	Complete Model

	Semantic Module Framework
	Introduction
	Declaration objects
	Tuple objects
	Semantic components
	RuleType
	ObjectType
	Condition
	Extractor
	Condition
	Consequence

	The Configuration structure
	Semantic Module Descriptor
	SemanticsRepository
	The DefaultSemanticsRepository helper

	Rule Assembly API
	Introduction
	Requirements

	Part V Examples
	Part VI Appendices
	Algorithms
	Efficient Matching
	Rete
	Rete-OO

	Frequently Asked Questions
	Why are ``or'' conditions not allowed?
	Can I nest rules?
	What happened to version 1.0?

	Project Information
	Web Site
	Mailing Lists
	Source Repository
	Internet Relay Chat
	Bug, Issue & Feature Tracking
	Project Team
	Bob McWhirter
	Thomas Diesler
	Roger F. Gay
	Contributors

	Licensing
	Drools license
	The license
	Summary

	JSR-94 : JavaTM Rule-Engine API
	Introduction
	Scope
	JSR-94 and Drools

	Index

