
Juzu Web Framework

0.6.0-beta4
Tutorial

Julien Viet

eXo Platform
Copyright © 2011 eXo Platform SAS

Table of Contents

Preface

1. Quickstart
1.1. Deploy the applications
1.2. Interacting with the application

2. Template overwiew

3. Dependency Injection

4. Views

5. Actions

6. Type safe templating

7. Styling the application
7.1. The style
7.2. Plugins in action

8. Adding Ajax
8.1. Javascript to the rescue
8.2. Bridge the gap with Ajax

9. Testing our application
9.1. Setting up the test
9.2. Testing the app

10. Wrap up

List of Examples

3.1. Using Spring IOC in a servlet
3.2. Using Spring IOC in a portlet
7.1. The necessary Bootstrap less files
7.2. Injecting Bootstrap CSS in our application
9.1. Using the Arquillian runner
9.2. Application deployment
9.3. Arquillian injection
9.4. Creating URL for an application
9.5. Creating URL for an application

Preface
Juzu is a web framework based on MVC concepts for developing applications. Juzu is an open
source project developed on GitHub licensed under the license.project LGPL 2.1

This tutorial will make you familliar with Juzu, to reach our objective we will develop a weather
application in several steps, each step introducing a new feature to gradually improve the
application.

https://github.com/juzu/juzu
http://www.gnu.org/licenses/lgpl-2.1.html

Page 4 of 30

1
Quickstart

1.1. Deploy the applications
Before diving in the technical part of this tutorial, we need to study how to deploy the examples and
how to use them. In the package you downloaded you will find a war file adapted to your portal
server in the directory:/tutorial

 for the Tomcat serverjuzu-tutorial-examples-tomcat.war

 for the GateIn portal serverjuzu-tutorial-examples-gatein.war

 for the Liferay portal serverjuzu-tutorial-examples-liferay.war

In Tomcat server the application is executed as a Servlet whereas in GateIn or Liferay, the
application is executed as a Portlet.

The main reason we have several servers is that the jars are not exactly the same, each is
adapted to the server you will use. When you deploy the applications, the deployment process will
print information in the console, similar to:

INFO: Deploying web application archive juzu-tutorial-tomcat.war
[Weather1Portlet] Using injection CDI_WELD
[Weather1Portlet] Building application
[Weather1Portlet] Starting Weather1Application
[Weather2Portlet] Using injection CDI_WELD
[Weather2Portlet] Building application
[Weather2Portlet] Starting Weather2Application
[Weather3Portlet] Using injection INJECT_SPRING
[Weather3Portlet] Building application
[Weather3Portlet] Starting Weather3Application
....

As we can notice, there are 8 applications deployed, one for each of the topic of this tutorial

Weather1Application: Chapter 1, Quickstart

Weather2Application: Chapter 2, Template overwiew

Page 5 of 30

Weather3Application: Chapter 3, Dependency Injection

Weather4Application: Chapter 4, Views

Weather5Application: Chapter 5, Actions

Weather6Application: Chapter 6, Type safe templating

Weather7Application: Chapter 7, Styling the application

Weather8Application: Chapter 8, Adding Ajax

1.2. Interacting with the application
The first version of the application shows the most basic Juzu application. Our application is
declared in the package package annotated with the examples.tutorial.weather1

 annotation This annotation declares a Juzu application and does not require any@Application

mandatory value. Like classes, methods or fields, Java packages can be annotated, such
packages declaration are represented by a special file named .package-info.java

The first thing to do when developping a Juzu application is to declare the application. The
package of the application must be annotated with the annotation to@juzu.Application

declare the application. The Java file contains theexamples/tutorial/weather1/package-info.java
package declaration along with the annotation:

@Application
@Route("/weather1")
@Portlet

 examples.tutorial.weather1;package

Along with the annotation there are two other annotations and @Application @Route @Portlet

:

The annotation defines the route of the application when the application is used as@Route

a servlet. It binds the application to the path./weather1

The annotation generates a portlet application class used by the portlet container@Portlet

Both annotations are not coupled, you can use either the or the annotation, or@Route @Portlet

both if you want tod deploy your application in both runtimes.

This is enough to create an empty Juzu application, now let's see the application itself!

Usually an application is made of controllers and templates, in this example, the JavaWeather

class contains a method annotated with the annotation, which turns the class into@View Weather

a Juzu controller. The controller method is the name of the default method that Juzu willindex()

call.

Page 6 of 30

 @View
 index() {public void
 index.render();
 }

Methods annotated by have the unique purpose of providing markup, they are called .@View views
In our case, the method delegates the rendering to the template. The template isindex.gtmpl

injected in the controller thanks to the annotation and the @Inject @Path("index.gtmpl")

annotation.

 @Inject
 @Path("index.gtmpl")
 Template index;

By default templates are located in the package of the application, in our case the templates

 package. The annotation specifies theexamples.tutorial.weather1.templates @Path

path of the template in this package. The templates are located in the same source tree than the
java classes because the files must be available for the Java compiler.

The last step of this section is to explain how to package the application, let's see how to do that.

1.2.1. Packaging the application in Tomcat

We need to provide a descriptor:web.xml

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>JuzuServlet</servlet-name>
 <servlet-class>juzu.bridge.servlet.JuzuServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>AssetServlet</servlet-name>
 <servlet-class>juzu.impl.asset.AssetServlet</servlet-class>
 <load-on-startup>0</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>JuzuServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>AssetServlet</servlet-name>
 <url-pattern>/assets/*</url-pattern>
 </servlet-mapping>
</web-app>

There are two servlets used for serving the application:

The serves the Juzu applications contained in the war fileJuzuServlet

The serves the asset of the applications such as stylesheets or JavaScriptAssetServlet

Page 7 of 30

1.2.2. Packaging the application for the GateIn portal

Our application is annotated with the annotation. The juzu.plugin.portlet.Portlet

 anno ta t i on genera tes a Java c lass @Portlet

 that we specifies in the examples.tutorial.weather1.Weather1Portlet

 deployment descriptor of the web application:WEB-INF/portlet.xml

<portlet>
 Weather1Portlet<portlet-name> </portlet-name>
 examples.tutorial.weather1.Weather1Portlet<portlet-class> </portlet-class>
</portlet>

Page 8 of 30

2
Template overwiew

Now we will improve our application by exploring a bit the templating engine. We will show a quick
overview of Juzu templating system. Templates are essentially made of static part (usually
markup) and dynamic parts. In this section we will focus on explaining the use of dynamic
expression in a template.

The application shows how a view can provide variable input for a dynamic template with
parameters. Our application has a view controller and a template, but now the template contains
the expression that makes it dynamic.${ }

The weather temperature in ${location} is ${temperature} degrees.

Like before the template is used in the view controller but now we use a containing the Map

 and parameters.location temperature

 @View
 index() {public void
 Map<String, Object> parameters = HashMap<String, Object>();new
 parameters.put(,);"location" "marseille"
 parameters.put(,);"temperature" "20"
 index.render(parameters);
 }

During the template rendering, the and expressions are resolved to thelocation temperature

value provided by the view controller. When a template is rendered, an optional map can be
provided, this map will be available during the rendering of the template for resolving expression.

Page 9 of 30

3
Dependency Injection

The next step is to make our application obtain real data instead of the hardcoded values we used
in the previous section. For this matter we use a remote service that we encapsulate into the

.WeatherService

Page 10 of 30

public WeatherService {class

 /** A cache for temperatures. */
 HashMap<String, String> cache = HashMap<String, String>();private final new

 /**
 * Returns the temperature for the specifed location in celsius degrees.
 *
 * @param location the location
 * @return the temperature
 */
 String getTemperature(String location) {public
 String temperature = cache.get(location);
 (temperature == null) {if
 cache.put(location, temperature = retrieveTemperature(location));
 }
 temperature;return
 }

 String getValue(String url, String xpath) Exception {private throws
 XPathExpression expr = XPathFactory.
 newInstance().newXPath().compile(xpath);
 InputSource src = InputSource(url);new
 expr.evaluate(src);return
 }

 /**
 * Retrieve the temperature.
 *
 * @param location the location
 * @return the temperature
 */
 String retrieveTemperature(String location) {protected
 {try
 // First we get the location WOEID
 String woeidURL =
 +"http://query.yahooapis.com/v1/public/yql"
 +"?q=select%20*%20from%20geo.places%20where%20text%3D%22"
 URLEncoder.encode(location,) +"UTF-8"
 ;"%22&format=xml"
 String woeid = getValue(woeidURL,);"//*[local-name()='woeid']/text()"

 // Now get weather temperature
 String weatherURL =
 +"http://weather.yahooapis.com/forecastrss?w="
 URLEncoder.encode(woeid,) +"UTF-8"
 ;"&u=c"
 getValue(weatherURL,);return "//*[local-name()='condition']/@temp"
 }
 (Exception e) {catch
 // Unavailable
 ;return "?"
 }
 }
}

Juzu uses dependency injection to interact with a service layer. The , also knowns as JSR-330
, defines an API for dependency injection. The is injected in the@Inject WeatherService

http://jcp.org/en/jsr/detail?id=330

Page 11 of 30

controller with the field annotated with the annotation:weatherService @Inject

 @Inject
 WeatherService weatherService;

This service is then simply used into our controller method:index()

 @View
 index() {public void
 Map<String, Object> parameters = HashMap<String, Object>();new
 parameters.put(,);"location" "marseille"
 parameters.put(, weatherService.getTemperature());"temperature" "marseille"
 index.render(parameters);
 }

As we can see, Juzu relies on the portable annotation to declare sinjections. Injection is@Inject

performed by the dependency injection container. At the moment the following containers are
supported:

Spring Framework

JBoss Weld

There is a preliminary support for , but it is not yet available. In the future moreGoogle Guice 3.0
container support could be achieved.

By default it uses the container, if you want instead to use container instead theWeld Spring
configuration is done by a init param defined in the deployment descriptor:

Example 3.1. Using Spring IOC in a servlet

<init-param>
 juzu.inject<param-name> </param-name>
 spring<param-value> </param-value>
</init-param>

The same can be achieved for a portlet of course:

Example 3.2. Using Spring IOC in a portlet

<init-param>
 juzu.inject<name> </name>
 spring<value> </value>
</init-param>

In the case of injection, the file file is needed, it contains the service declarationsSpring spring.xml
for the Spring container.

Juzu provides more advanced dependency injection, in particular it uses the and Qualifier

 features defined by the JSR-330 specification, however they are not covered in this tutorial.Scope

http://www.springsource.org/
http://seamframework.org/Weld
http://code.google.com/p/google-guice/wiki/Guice30

Page 12 of 30

4
Views

So far we seen a basic view controller, in this section we will study more in depth view controllers.
A view controller is invoked by Juzu when the application needs to be rendered, which can happen
anytime during the lifecycle of an application.

This version has still the view controller, but now it has also an overloaded index()

 method that accept a argument as a view parameter.index(String location) location

 @View
 @Route("/show/{location}")
 index(String location) {public void
 Map<String, Object> parameters = HashMap<String, Object>();new
 parameters.put(, location);"location"
 parameters.put(, weatherService.getTemperature(location));"temperature"
 index.render(parameters);
 }

The annotation binds the the controller method to the @Route("/show/{location}") index

 route. Since our our application package is annotated with the /show/* @Route("/weather4")

annotation, an URL like invokes this controller method with the /weather4/show/marseille marseille
location.

View parameters are bound to the current navigation of the application and their value are
managed by the framework. At this point it is normal to wonder how a view parameter value can
change. Let's have a closer look at the application template.index.gtmpl

The weather temperature in ${location} is ${temperature} degrees.
Marseille
Paris

The template now has two links changing view parameters when they are processed. Such links
are created by a special syntax that references the view method, for instance the script fragment

 generates an url that updates the view@{index(location = 'paris')} location

parameter to the value when it is processed.paris

The initial controller method is still there but now it simply invokes the index() index(String

Page 13 of 30

 controller with a predefined value.location)

 @View
 index() {public void
 index();"marseille"
 }

We could't close this section without talking a bit about . Juzu is deeply integrated at thesafe urls
heart of the Java compiler and performs many checks to detect applications bugs during the
application compilation. Among those checks, templates are validated and the url syntax is@{ }

checked against the application controllers. In fact Juzu will resolve an url syntax until it finds one
controller that resolves the specified name and parameters. If not Juzu will make the compilation
fail and give detailled information about the error. This kind of feature makes Juzu really unique
among all other web frameworks, we will see some other later.

Juzu leverages the (APT) facility standardized since Java 6. APTAnnotation Processing Tool
works with any Java compiler and is not specific to a build system or IDE, it just works
anywhere, we will see later that it even works with Eclipse incremental compiler.

http://download.oracle.com/javase/6/docs/technotes/guides/apt/index.html

Page 14 of 30

5
Actions

Now it's time to introduce action controllers, actions are method annotated by the @Action
annotation.

The role of an action controller is to process actions parameters. Each parameter of an action
controller method is mapped to the incoming request processed by Juzu, such parameters can be
encoded directly in the URL or be present in the form that triggers the action.

The weather temperature in ${location} is ${temperature} degrees.

<% locations.each() { location -> %>
${location}
<% } %>

<form action="@{add()}" method="post">
 <input type="text" name="location" value=""/>
 <input type="submit"/>
</form>

In this example, we use a form which contains the the action parameters. In order tolocation

create an action url we use the same syntax than view url but this time we don't need to@{add()}

set any parameter, instead the form parameters will be used when the form is submitted. However
this is not mandatory and instead we could have url parameters such as @{add(location =

, such syntax is valid specially when it is used without a form. Obviously there is'washington'}

the possibility to mix form and action parameters.

When the url is processed, the following action controller method will be invoked:

 @Action
 @Route("/add")
 Response.View add(String location) {public
 locations.add(location);
 Weather_.index(location);return
 }

The method is annotated with two annotations:

Page 15 of 30

 declares an action controller method@Action

 binds the action on the route@Route("/add") /weather5/add

The parameter is not declared in the route because it can be invoked by a form and thelocation

 parameter is part of it.location

The method returns a object. This object instructs Juzu to use the Response.View

 controller view after the action. The controllerindex(String location) Weather_

compagnion provides a type safe way for generating the response:
. Our action just needs to return it, Juzu will take care of showingWeather_.index(location)

the corresponding view after invoking the action.

Page 16 of 30

6
Type safe templating

We have seen previously how to render templates from a controller and how we can pass
parameters for rendering a template. Templates use expressions that often refers to${ }

parameters passed by the controller. For this purpose we used an for storing the variousHashMap

parameters used during rendering.

This syntax is a generic way and uses an untyped syntax, indeed if a template parameter name
changes the controller will continue to compile because of the generic parameter map. To improve
this situation, parameters can be declared thanks to a tag inside the template:param

#{param name=location/}
#{param name=temperature/}
#{param name=locations/}

The weather temperature in ${location} is ${temperature} degrees.

<% locations.each() { location -> %>
${location}
<% } %>

<form action="@{add()}" method="post">
 <input type="text" name="location" value=""/>
 <input type="submit"/>
</form>

For example the parameter is declared by the tag.location #{param name=location/}

During the Java compilation, Juzu leverage such parameter declarations to provide a more
convenient way to render a template.

The tight integration with the Java compiler allows Juzu to generate a template class for each
template of the application, those template classes inherits the class and adds specificTemplate

methods for passing them parameters in a safe manner.

Page 17 of 30

 @View
 index(String location) {public void
 index.
 with().
 location(location).
 temperature(weatherService.getTemperature(location)).
 locations(locations).
 render();
 }

As we can see, the is not used anymore and now we use a type safe and compactHashMap

expression for rendering the template. Each declared parameter generates a method named by
the parameter name, for the parameter, we do have now a location location(String

 method that can be used.location)

To make the syntax fluent, the parameter methods can be chained, finally the methodrender()

is invoked to render the template, however it does not require any parameter since all parameters
where passed thanks to the parameter methods.

The Java name of the generated template class is the name of the template in the templates
package of the application. In our case we do obtain the

 class name. It is very easy to use ourexamples.tutorial.weather6.templates.index

subclass by injecting the template subclass instead of the generic class.Template

 @Inject
 @Path("index.gtmpl")
 examples.tutorial.weather6.templates.index index;

Of course it is possible to import this value and use directly the class name. We usedindex

directly the full qualified name of the class for the sake of the clarity.

Page 18 of 30

7
Styling the application

Our application is almost complete, in this section we will work on the look and feel to make the
application appealing. We will use the famous framework and show how itTwitter Bootstrap
integrates well in Juzu applications.

7.1. The style
Bootstrap provides a solid fundation for building quickly attractive applications. Bootstrap is based
on the dynamic stylesheet language and provides a very modular organization. We willLess
perform trivial modifications to a subset of the Less files and integrate them in our application.

7.1.1. A la carte

We will then modify the file to keep only what is necessary for our application:bootstrap.less

http://twitter.github.com/bootstrap/
http://lesscss.org/

Page 19 of 30

Example 7.1. The necessary Bootstrap less files

/*!
 * Bootstrap v2.0.3
 *
 * Copyright 2012 Twitter, Inc
 * Licensed under the Apache License v2.0
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Designed and built with all the love in the world @twitter by @mdo and @fat.
 */

// CSS Reset
@import "reset.less";

// Core variables and mixins
@import "variables.less"; // Modify this for custom colors, font-sizes, etc
@import "mixins.less";

// Grid system and page structure
@import "scaffolding.less";

// Base CSS
@import "type.less";
@import "forms.less";

// Components: common
@import "component-animations.less";

// Components: Buttons & Alerts
@import "buttons.less";
@import "button-groups.less";

// Components: Misc
@import "accordion.less";

This version of bootstrap.less is a trimmed down of the original files.

7.2. Plugins in action
Juzu can be extended with plugins, in this section we will use two of them

The Less plugin compiles less files into css files

The Asset plugin inject asset such as stylesheet or javascript in the application page

7.2.1. Less compilation

Juzu provides native support for the Less language via the Less plugin and the annotation.@Less

It allows a set of less files to be transformed into the corresponding css files during the java
compilation, achieving two important steps during the compilation phase:

The less files are transformed into ready to use css files

It ensures a maximum of safety: the Less parser will report any error in the source

Page 20 of 30

Our first step is to create the package, we copy the Bootstrapexamples.tutorial.assets

Less files into this package and annotate the package with the examples.tutorial @Less

annotation to trigger the compilation of the stylesheet in the package:assets

@Less(value = "bootstrap.less", minify = true)
 examples.tutorial;package

 juzu.plugin.less.Less;import

This annotation triggers the compilation of the in the package, the bootstrap.less assets

 parameter instruct Less to minify the resulting css.minified

7.2.2. Injecting CSS

Now that we have worked out the CSS details we need to make our stylesheet available in the
application page. The plugin will achieve this result for us. This plugin provides declarativeasset
configuration for the various assets required by an application. It works both for stylesheets and
javascript, in this section we use it for stylesheet:

Example 7.2. Injecting Bootstrap CSS in our application

@Application
@Assets(stylesheets = @Stylesheet(
 src = "/examples/tutorial/assets/bootstrap.css",
 location = AssetLocation.CLASSPATH)
)

 examples.tutorial.weather7;package

The usage is fairly straightforward with the and annotations. We configure@Assets Stylesheet

the parameter to be because the Less plugin created it there.location CLASSPATH

7.2.3. Bringing CSS to life

After this step we need to modify our application template to use the various styles provided by
Bootstrap:

Figure 7.1. The Bootstrapized application

Page 21 of 30

We will not explain that in details, however we will study the important modifications:

7.2.3.1. Accordion

The Bootstrap provides the . We will not use the entire Collapse componentCollapse component
here but instead reuse the CSS rules to display the available cities:

<div class="accordion-group">
 <div class="accordion-heading">${current}</div>
 <div class="accordion-body">
 <div class="accordion-inner">The weather temperature in ${current} is ${temperature}° ${grade.toUpperCase()}.</div>
 </div>
</div>

7.2.3.2. Adding a city

Finally the form for adding is modified to reuse :Bootstrap form support

<form action="@{add()}" method="post">
 <fieldset>
 <div class="controls">
 <div class="input-append">
 <input class="span2" type="text" size="16"name="location" value=""/>
 <button type="submit" class="btn">Add</button>
 </div>
 </div>
 </fieldset>
</form>

http://twitter.github.com/bootstrap/javascript.html#collapse
http://twitter.github.com/bootstrap/base-css.html#forms

Page 22 of 30

8
Adding Ajax

Now that our application look great, we are going to add a final touch to our application and make it
more dynamic.

In the previous section we introduced the accordion user interface component, but it was used in a
static way. In this section we will make it dynamic and introduce the Ajax plugin.

The accordion component can be combined to the JQuery collapse plugin providing the capability
to unfold an item to display the weather of the location. When the item is unfolded an ajax request
is performed to the application to retrieve the markup that will be inserted.

8.1. Javascript to the rescue
The application will use several Javascript libraries:

The JQuery library provides the fundations for building our application

The Bootstrap accordion component provides scripts as a JQuery plugin

Juzu provides Ajax helpers as a JQuery plugin

A small custom script to setup the accordion plugin with the ajax plugin

8.1.1. Adding scripts

The Asset plugin was introduced in the previous section to handle the serving of the Bootstrap
stylesheets. The annotation can be used also for embedding scripts, but it provides more@Asset

control about the script, in particular a dependency mechanism to control the order of scripts that
we will use: indeed JQuery plugins have to be loaded after the JQuery library is loaded.

We extend the annotation to add our scripts:@Asset

Page 23 of 30

@Assets(
 scripts = {
 @Script(
 id = "jquery",
 src = "jquery-1.7.1.min.js",
 location = AssetLocation.CLASSPATH),
 @Script(
 id = "transition",
 src = "bootstrap-transition.js",
 location = AssetLocation.CLASSPATH,
 depends = "jquery"),
 @Script(
 id = "collapse",
 src = "bootstrap-collapse.js",
 location = AssetLocation.CLASSPATH,
 depends = {
 "jquery", // 1
 "transition"}),
 @Script(
 src = "weather.js",
 location = AssetLocation.CLASSPATH,
 depends = {
 "jquery",
 "collapse"})
 },
 stylesheets = @Stylesheet(src = "/examples/tutorial/assets/bootstrap.css", location = AssetLocation.CLASSPATH)
)

 examples.tutorial.weather8;package

All other scripts than JQuery depends on JQuery

The JQuery plugin depends on the scriptcollapse transition

Our script depends also on the JQuery pluginweather collapse

The declaration is straightforward, any annotation may configure@Script

an optional used for creating dependencies between scriptsid

a mandatory for the script namesrc

an optional for resolving the scriptlocation

an optional that declares the ids a script depends ondepends

8.1.2. The collapse plugin

The Bootstrap collapse plugin allows the user to unfold a city to display its weather, you can see
how it works in the . In our case we modify the to use it, inBootstrap manual index.gtmpl

particular the part:accordion-group

http://twitter.github.com/bootstrap/javascript.html#collapse

Page 24 of 30

<div class="accordion-group">
 <div class="accordion-heading">
 ${current}
 </div>
 <% def expanded = i != index ? 'in' : ''; %>
 <div id="${current}" class="accordion-body collapse ${expanded}">
 <div class="accordion-inner">
 </div>
 </div>
</div>

There are two noticeable points to explain:

The is empty now, the reason is that the weather will be loaded usingaccordion-inner

JQuery ajax capabilities

The element id is set to the current item location, this value will be reuseddiv.collapse

during an ajax interaction, we will see more about this later.

8.2. Bridge the gap with Ajax
Now our application loads a set of dynamic tabs managed by JQuery and the collapse plugin, it's
time to develop the ajax part: our goal is to load a markup fragment to insert in an accordion item
when it is unfolded. We will develop a bit of client side Javascript and a resource controller on the
Weather controller.

8.2.1. Resource controller

We need a controller method to server the markup of the weather of a particular city. Until now we
have studied view and action controllers, for this use case we will use a new type of controller : the

 controller.resource

Resource controllers are pretty much like a view controllers except that they must produce the
entire response sent to the client and that is precisely what we want to achieve on the server side.

Our application requires a single resource controller method that we will call , it willgetFragment

render a markup fragment for a specific city location:

 @Inject
 @Path("fragment.gtmpl")
 examples.tutorial.weather8.templates.fragment fragment;

 @Ajax
 @Resource
 @Route("/fragment")
 getFragment(String location) {public void
 fragment.
 with().
 location(location).
 temperature(weatherService.getTemperature(location)).
 render();
 }

Page 25 of 30

The fragment template is very simple and only renders the portion of the screen that will be
updated by the client side javascript code when an item is unfolded:

#{param name=location/}
#{param name=temperature/}
<p>The weather temperature in ${location} is ${temperature} degrees C</p>

8.2.2. JQuery

The last part of our application is the javascript part that will react on the collapse plugin
component to load the markup from the controller when the item is unfolded. WegetFragment

create the javascript file in the :weather.js examples.tutorial.weather8.assets

$(function () {

 // Setup an event listener on the .collapse element when it is shown
 $().on(, function () {'.collapse' 'show'

 // Get the location attribute from the dom
 var location = $().attr();this "id"

 // Update the .accordion-inner fragment
 $().this
 closest().".accordion-group"
 find().".accordion-inner"
 each(function () {

 // Load the fragment from the resource controller
 $().jzLoad(this
 ,"Weather.getFragment()"
 { :location});"location"

 });
 });

 // Setup the collapse component
 $().collapse();".collapse"
});

The following construct is important because it ensures that the code inside the function will be
executed when JQuery is loaded:

$(function() {
 //
});

If you take time to read the collapse plugin component you will see that there aredocumentation
two important things to do for integrating it in our application:

We must setup an event listener on elements to react to the event.collapse shown

The collapase component is setup with the code$(".collapse").collapse()

http://twitter.github.com/bootstrap/javascript.html#collapse

Page 26 of 30

The important code is inside the event listener:show

The location to display is extracted from the element on the componentid div.collapse

We find the appropriate element to update with the
 selectors$(this).closest(".accordion-group").find(".accordion-inner")

On the element we invoke the resource controller with the .accordion-inner

 functionjzLoad(...)

The function is a JQuery plugin provided by the Juzu ajax plugin. It allows to invoke ajzLoad

controller method using ajax and cares about propagating the call to the resource controller
method. It replaces the standard JQuery function and accepts the same argument. Howeverload

the url part is replaced by a controller method, in our case.Weather.getFragment()

The Juzu ajax plugin takes care of finding the right URL for invoking the controller method. It is
designed to work in a standalone javascript file without requiring tags in the page and<script>

works even when multiples instances of the portlets are on the same page.

When the ajax plugin operates on controller method, it wraps the markup with a DOM@Ajax

structure that contains the URL for the method of the application:@Ajax

<div class="jz">
 <div data-method-id="Weather.getFragment()" data-url="http://localhost:8080/....."/>
 ...
</div>

The function is invoked on a portion of the DOM that is wrapped by the elementjzLoad div.jz

and this function will simply locate the correct URL using the attribute. Thisdata-method-id

makes the same script work with different portlets on the same page.

Note also that in our code we never used any JQuery selector containing id in order to allow
several instances of the same application to work without conflicts.

Page 27 of 30

9
Testing our application

The last chapter of our tutorial will teach you how to test a Juzu application. Juzu applications can
be tested using existing tools, we will use in this chapter the following tools:

JUnit 4

 : a framework for managing web containersArquillian

: Arquillian's little brother for creating Java archives easilyShrinkWrap

 : a simple API for simulating browser behaviorSelenium WebDriver

For making testing easy, Juzu provides a Maven dependencies containing all the required
dependencies for testing an application:

<dependency>
 junit<groupId> </groupId>
 junit<artifactId> </artifactId>
 test<scope> </scope>
</dependency>
<dependency>
 org.juzu<groupId> </groupId>
 juzu-bom-arquillian<artifactId> </artifactId>
 test<scope> </scope>
</dependency>
<dependency>
 org.juzu<groupId> </groupId>
 juzu-bom-arquillian-tomcat7<artifactId> </artifactId>
 test<scope> </scope>
</dependency>

The and provides setup for Arquillian andjuzu-bom-arquillian juzu-bom-arquillian-tomcat7
Selenium for Tomcat7 based testing.

http://www.junit.org
http://arquillian.org
http://www.jboss.org/shrinkwrap
http://seleniumhq.org/docs/03_webdriver.html

Page 28 of 30

9.1. Setting up the test
Let's start by setting up our test class with Arquillian, the goal is to run the Weather application
during the test. We will rely on the servlet container for running our application and on theTomcat
Arquillian framework for starting and stopping Tomcat. Arquillian provides a JUnit runner for
managing a web container during a unit test:

Example 9.1. Using the Arquillian runner

@RunWith(Arquillian.class)
 WeatherTestCase {public class

}

Arquillian supports also the TestNG framework

This only setup Tomcat during the test, we need to deploy the Weather application and for this we
use Arquillian annotation and we return a ShrinkWrap object that will@Deployment WebArchive

be deployed in Tomcat by Arquillian. are easy to build programmatically, however weWebArchive

will use an helper provided by Juzu to build the base archive:

Example 9.2. Application deployment

 @Deployment
 WebArchive deployment() {public static
 WebArchive war = Helper.createBaseServletDeployment();
 war.addAsWebInfResource(File()); new "src/test/resources/spring.xml"
 war.addPackages(true,); "examples.tutorial"
 war;return
 }

Create the base servlet deployment

Add the spring.xml descriptor

Add the examples.tutorial package

For testing our application we will use Selenium WebDriver managed by Arquillian. Arquillian can
inject WebDriver thanks to the extension and it is quite easy to achieve. We also need theDrone
base URL of the Weather application after it is deployed:

http://tomcat.apache.org

Page 29 of 30

Example 9.3. Arquillian injection

 @Drone
 WebDriver driver;

 @ArquillianResource
 URL deploymentURL;

The last step of the setup is a little helper method for creating application URL for our applications
, , ...weather1 weather2

Example 9.4. Creating URL for an application

 URL getApplicationURL(String application) {public
 {try
 deploymentURL.toURI().resolve(application).toURL();return
 }
 (Exception e) {catch
 AssertionFailedError afe = AssertionFailedError();new
 afe.initCause(e);
 afe;throw
 }
 }

This method simply generates an URL based on the application name, for example
 returns the URL for the application.getApplicationURL("weather1") weather1

9.2. Testing the app
Now that our test class is done we can write a few tests for the application:

Example 9.5. Creating URL for an application

 @Test
 @RunAsClient
 testWeather1() Exception {public void throws
 URL url = getApplicationURL(); "weather1"
 driver.get(url.toString());
 WebElement body = driver.findElement(By.tagName());"body"
 assertTrue(body.getText().contains()); "The weather application"
 }

Retrieve the application

Check markup is correct

Page 30 of 30

10
Wrap up

We reached the ends our walk through Juzu, now you can learn more and study the Booking
application. This application can be found in the package you downloaded in the booking
directory.

